Problem Set 1

- Due Date: 10 Sep 2023
- The points for each problem is indicated on the side. The total for this set is $\mathbf{7 0}$ points.
- The problem set has a fair number of questions so please do not wait until close to the deadline to start on them. Try and do one question every couple of days.
- Turn in your problem sets electronically (PDF; either $\mathrm{LA}_{\mathrm{E}} \mathrm{Xed}$ or scanned etc.) on Piazza.
- Collaboration is encouraged, but all writeups must be done individually and must include names of all collaborators.
- Referring to sources other than the text book and class notes is strongly discouraged. But if you do use an external source (eg., other text books, lecture notes, or any material available online), ACKNOWLEDGE all your sources (including collaborators) in your writeup. This will not affect your grades. However, not acknowledging will be treated as a serious case of academic dishonesty.
- Be clear in your writing.

1. [Derandomising approximation for Max3SAT]

(a) Let Φ be a 3CNF with m clauses. If m_{1}, m_{2}, m_{3} are the number of clauses with 1,2 and 3 literals respectively, what is the expected number of clauses satisfied by a random assignment satisfy (in terms of m_{1}, m_{2}, m_{3})?
(b) Using the method of conditional expectation, construct a deterministic algorithm that, on input a 3 CNF instance Φ, outputs an assignment $\mathbf{a} \in\{0,1\}^{n}$ that satisfies as many clauses as the expected number of clauses satisfied by a random assignment.

2. [Derandomising Turán's theorem]

Let $G=(V, E)$ be an undirected graph. For a vertex $v \in V$, let $d(v)$ denote the degree of the vertex v in G. Let $d_{\text {avg }}=2|E| /|V|$ denote the average degree.
(a) Show that any such graph G has an independent set (a subset of vertices such that no two of them are connected) of size at least

$$
\sum_{v \in V} \frac{1}{d(v)+1} \geq \frac{|V|}{d_{\mathrm{avg}+1}}
$$

(b) Come up with a deterministic polynomial time algorithm to compute an independent set of size of the above size.

[^0]Which of the following family of functions of the form $\left\{h:\{0,1\}^{n} \rightarrow\{0,1\}^{n}\right\}$ constitute a pairwise independent hash family? Support your answer with a proof of pairwise independence (if yes), or provide a counter-example (if no).
(a) $\mathcal{H}=\left\{h_{A}(x)=A x: A \in \mathbb{F}_{2}^{n \times n}\right\}$. That is, each hash function is specified by a matrix A and the hash function is just matrix-vector multiplication (over \mathbb{F}_{2}).
A random function from the family is chosen by picking the matrix A uniformly at random.
(b) $\mathcal{H}=\left\{h_{A, b}(x)=A x+b: A \in \mathbb{F}_{2}^{n \times n}, b \in \mathbb{F}_{2}^{n}\right\}$. That is, each hash function is given by multiplication by a matrix A followed by adding b (again, over \mathbb{F}_{2}).
A random function from the family is chosen by picking the matrix A and vector b uniformly at random.
4. [Lower bounds for pairwise independent hash families]

$$
(1+3+6)
$$

Let $\mathcal{H}=\{h:[N] \rightarrow[M]\}$ be a pairwise independent hash family.
(a) If $N \geq 2$, show that $|\mathcal{H}| \geq M^{2}$.
(b) If $M=2$, show that $|\mathcal{H}| \geq N+1$.
(c) More generally, prove that for arbitrary M, we have $|\mathcal{H}| \geq N \cdot(M-1)+1$.

$$
\left[{ }^{\bullet}, x \neq x \text { 扌! } \kappa^{n^{\iota}, x_{\Omega}} \top^{\kappa^{\iota} x_{\Omega} \text { ұеч чวns }}\right.
$$

5. [Lower bound for k-wise independent families]

For this problem, we will only consider families of the form $\mathcal{H}=\{h:[n] \rightarrow\{0,1\}\}$. Each such $h:[n] \rightarrow\{0,1\}$ can be thought of as just a string in $\{0,1\}^{n}$ and hence \mathcal{H} is just some (multi-)set of strings in $\{0,1\}^{n}$.
Rephrasing the definition of k-wise independent in this setting, we have that for any distinct $i_{1}, \ldots, i_{k} \in[n]$ and (not necessarily distinct) $a_{1}, \ldots, a_{k} \in\{0,1\}$,

$$
\operatorname{Pr}_{x \in \mathcal{H}}\left[x_{i_{1}}=a_{1}, \ldots, x_{i_{k}}=a_{k}\right]=\frac{1}{2^{k}}
$$

For any $T \subseteq[n]$, define $\chi_{T}:\{0,1\}^{n} \rightarrow \mathbb{R}$ as $\chi_{T}(x)=(-1)^{\sum_{i \in T} x_{i}}$.
(a) Suppose \mathcal{H} was a k-wise independent (multi-)set. Consider the following collection of vectors in $\mathbb{R}^{|\mathcal{H}|}$:

$$
\left\{\left(\chi_{T}(x): x \in \mathcal{H}\right)\right\}_{T \subseteq[n],|T| \leq(k / 2)}
$$

That is, there is a vector for each $T \subseteq[n]$ of size at most $k / 2$, and each such vector consists of the evaluation of χ_{T} on the points in \mathcal{H}.

Show that the above set of vectors are linearly independent over \mathbb{R}.
(b) Conclude that $|\mathcal{H}| \geq \sum_{i=0}^{k / 2}\binom{n}{i}$.

6. [Error reduction for randomised algorithms]

Suppose you have a randomised algorithm \mathcal{M} for some language L. Let's say that on inputs of length n, the algorithm tosses $m(n)$ random coins and runs for time $t(n)$ and we have the guarantee that probability of error is at most $1 / 3$. That is,

$$
\begin{aligned}
& x \in L \Longrightarrow \operatorname{Pr}_{r \in\{0,1\}^{m}}[\mathcal{M}(x, r)=1] \geq 2 / 3, \\
& x \notin L \Longrightarrow \operatorname{Pr}_{r \in\{0,1\}^{m}}[\mathcal{M}(x, r)=1] \leq 1 / 3 .
\end{aligned}
$$

However, you wish to have the probability of error no more than δ. Based on what you have seen in class so far, how would you modify the above algorithm to drive the probability of error down to δ ?

How much time does your modified algorithm take? How many random bits does your modified algorithm use?
(This question is purposefully vague as we will be revisiting this question multiple times.)

7. [Better tail bounds with higher independence]

Suppose X_{1}, \ldots, X_{t} are random variables taking values in $[0,1]$ and let $X=X_{1}+\cdots+X_{t}$. Let $\mu_{i}=\mathbb{E}\left[X_{i}\right]$, and $\mu=\sum \mu_{i}=\mathbb{E}[X]$. Suppose that these random variables are 4 -wise independent, i.e. for any set of 4 -distinct indices $i_{1}, i_{2}, i_{3}, i_{4}$ and any events $A_{1}, A_{2}, A_{3}, A_{4} \subseteq$ $[0,1]$, we have

$$
\operatorname{Pr}\left[X_{i_{1}} \in A_{1}, \ldots, X_{i_{4}} \in A_{4}\right]=\prod_{j=1}^{4} \operatorname{Pr}\left[X_{i_{j}} \in A_{j}\right]
$$

(a) Prove that $\mathbb{E}\left[(X-\mu)^{4}\right] \leq O\left(t+t^{2}\right)$

(b) Conclude that $\operatorname{Pr}[|X-\mu| \geq t \varepsilon] \leq O\left(\frac{1}{t^{2} \varepsilon^{4}}\right)$ in the 4 -wise independent case.
(c) [extra credit] Can you generalise this to k-wise independence (for even k)? That is, show that if X_{1}, \ldots, X_{t} are k-wise independent and $X=\sum X_{i}$, then

$$
\operatorname{Pr}[|X-\mu|>t \varepsilon] \leq O\left(\frac{k^{k}}{t^{k / 2} \varepsilon^{k}}\right)
$$

8. [Not an averaging sampler]

The following template known as "median-of-averages" is often used to improve a general sampler. Let $\mathcal{A}(\delta, \varepsilon)$ be an arbitrary (δ, ε)-sampler for m-coordinate functions and suppose this sampler makes $q(\delta, \varepsilon)$ queries to the function and uses $r(\delta, \varepsilon)$ random bits. From \mathcal{A}, consider the following alternate sampler:

Let t be a positive integer (to be chosen by you). Run t independent runs of $\mathcal{A}(0.1, \varepsilon)$
to get estimates μ_{1}, \ldots, μ_{t}. Return the median of μ_{1}, \ldots, μ_{t}.
(a) What should you choose t to be so that the above gives a (δ, ε)-sampler?
(b) If \mathcal{A} was instantiated to be the pairwise independent sampler that we saw in class, how many queries does the above sampler make and how many random bits does it use?

[^0]: Base version: (2023-08-29 23:51:41 + 0530), 2b92559

