
CSS.413.1 Pseudorandomness 28 Sept, 2023

Problem Set 2

• Due Date: 15 October 2023

• The points for each problem is indicated on the side. The total for this set is 60 points.

• The problem set has a fair number of questions so please do not wait until close to the deadline
to start on them. Try and do one question every couple of days.

• Turn in your problem sets electronically (PDF; either LATEXed or scanned etc.) on Piazza.

• Collaboration is encouraged, but all writeups must be done individually and must include
names of all collaborators.

• Referring to sources other than the text book and class notes is strongly discouraged. But if
you do use an external source (eg., other text books, lecture notes, or any material available
online), ACKNOWLEDGE all your sources (including collaborators) in your writeup. This
will not affect your grades. However, not acknowledging will be treated as a serious case of
academic dishonesty.

• Be clear in your writing.

1. [The Affine Line graph] (1 + 4 + 2 + 3)

Let F be a finite field. Consider the following graph G whose vertex set is F2 and edges set E
defined as

E = {((a, b), (c, d)) : ac = b+ d} .

One way to interpret this is the point (a, b) is connected to all points (c, d) on the line y = ax−b.

(a) Show that G is |F|-regular.

(b) Compute the adjacency matrix of the graph G2. What are its eigenvalues?

(c) Use the above to show that λ(G) ≤ 1√
|F|

.

(d) Starting with this, and using the graph operations seen in class, show that you can
construct a (D8, D, 1/8)-spectral expander for some suitably large constant D.

2. [Chernoff’s bound for expander walks] (3 + 3 + 3 + 6)

In this problem, you will see a generic way to go from a hitting-set tail to a Chernoff tail due
to Kabanets and Impagliazzo which we can instantiate for expander walks.

Lemma 1. Let X1, . . . , Xt ∈ {0, 1} be random variables (possibly correlated) such that for any
subset S ⊆ [t], we have

Pr

[∧
i∈S

Xi = 1

]
≤ µ|S|.

Then, for any ε > 0 with µ+ ε < 1, we also have

Pr

[∑
Xi

t
> µ+ ε

]
≤ e−KL(µ+ε‖µ)·t ≤ exp(−Ω(ε2t)).
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The quantity KL(p‖q), called the Kullback-Leibler divergence, or relative entropy, equals p ln p
q + (1 − p) ln 1−p

1−q .

Standard Taylor arguments show that KL(µ+ ε‖µ) = O(ε2).

In this problem, you will prove the above lemma, and then instantiate it with expander random
walks to get the upper-tail bound.

Let p ∈ [0, 1] be a parameter to be chosen shortly. Consider the following event where a set
S ⊆ [t] is chosen at random by adding each element i ∈ [t] to S independently with probability
p. Let M be the following expression:

M = Pr
S,X1,...,Xt

[∧
i∈S

Xi = 1

]

(a) Show that M ≤ (pµ+ (1− p))t.
(b) Show that

Pr
S,X1,...,Xt

[∧
i∈S

Xi = 1
∣∣∣ ∑Xi > (µ+ ε)t

]
≥ (1− p)(1−µ−ε)t.

to conclude that

M ≥ Pr
[∑

Xi > (µ+ ε) · t
]
· (1− p)(1−µ−ε)t.

(c) By setting p = ε
(µ+ε)(1−µ) , argue that

Pr
[∑

Xi > (µ+ ε) · t
]
≤

((
µ

µ+ ε

)µ+ε
·
(

1− µ
1− µ− ε

)1−µ−ε
)t

= e−KL(µ+ε‖µ)·t

(d) The above is a generic way to use a ‘hitting probability’ bound into a concentration
bound. Instantiate this for expander random walks to prove the following result:

Let G be an (N,D, λ)-expander. Suppose B ⊆ [N ] with µ = |B|
N . Let µ′ =

µ(1 − λ) + λ, and ε > 0 so that µ′ + ε < 1. If v1, . . . , vt is a random walk in G
(pick v1 uniformly at random, and keep choosing a uniformly random neighbour),
then

Pr

[
|{v1, . . . , vt} ∩B|

|B|
> µ′ + ε

]
≤ exp(−Ω(ε2t)).

Although this problem worked with only indicator random variables (where Xi = 1[vi ∈ B]), one can work with more

general “weight” functions f : V → [−1, 1] and expander random walks give a pretty good estimate for Ev [f(v)]. For

more details see Thm 4.22 in Vadhan’s manuscript.

3. [Spectral gap of general regular graphs] (1 + 2 + 2 + 4 + 4 + 2)

In this problem we will show that λ(G) ≤ 1− 1
poly(n,d) for any d-regular n-vertex non-bipartite

graph. In the process also learn about a very useful object called the Laplacian of a graph.

For an n-vertex d-regular undirected graph, define the Laplacian of the graph G (denoted by
LG) as

LG = d · I −AG
where AG is the adjacency matrix of G.
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For a symmetric matrix M , we shall write M � 0 to mean that xTMx ≥ 0 for all x ∈ Rn.
This is equivalent to stating that all eigenvalues of M are non-negative, and such matrices are
also called positive semi-definite matrices (PSD) matrices.

We will extend this to a partial order between matrices to say that A � B if and only if
A − B � 0. If A and B are PSD matrices, this also implies that if λ1 ≥ . . . ≥ λn and
ν1 ≥ . . . ≥ νn are the eigenvalues of A and B respectively, then λi ≤ νi for all i.

(a) If H is a subgraph of G, show that LG � LH .

(b) If Kn is the complete graph on n-vertices (without self-loops), what are the eigenvalues
of LKn

?

(c) Show that for any real numbers x1, . . . , xn, we have

(n− 1) ·
n−1∑
i=1

(xi − xi+1)2 ≥ (x1 − xn)2.

Use this to conclude that if Pn is a path graph consisting of edges
{(1, 2), (2, 3), . . . , (n− 1, n)} and E1,n is the graph with a single edge (1, n), then

LPn �
1

n− 1
· LE1,n .

(d) For a connected graph G on n-vertices, show that(
n

2

)
· LG �

1

(n− 1)
LKn

[Hint:Foreachpairofvertices(i,j),takethepathPi,jinthegraphGthatconnects
itoj.Instantiatetheprevioussubdivisionforthispathandsumupoverallsuch
pairs(i,j)∈([n] 2).]

(e) Show that if G is a connected graph, then all nonzero eigenvalues of LG are at least 1/n2.

In particular, if G is a connected d-regular graph, then all non-trivial eigenvalues of G
are at most (1− 1

dn2 ).

(This doesn’t quite give us a spectral gap yet, we are not claiming that the absolute values
of eigenvalues is bounded away from 1, but the next subdivision addresses this.)

(f) Let G be an n-vertex d-regular non-bipartite graph. Show that

λ(G) ≤ 1− Ω

(
1

d2n2

)

[Hint:ConsiderG′=G
2
,whichmustbeconnectedandapplythepreviousargu-

ment.]

One of the exercises in Vadhan’s notes is a far shorter way to get the above spectral gap bound, but we felt

that perhaps the above route shines more light on some of the steps.

4. [An optimal non-averaging sampler] (5 + 10)

Suppose f : {0, 1}m → {0, 1} is some function and µ = Ex[f(x)]. A (δ, ε)-sampler is a
randomized algorithm that queries f at various points and outputs some estimate µ̂ with the
property that

Pr[|µ̂− µ| > ε] ≤ δ.
We are primarily interested in two parameters of such samplers — how many queries did it
make, and how many random bits did it use. For this entire problem, assume that we have a
strongly-explicit (2m, d, 0.5)-spectral expander for some constant d.
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(a) Using expanders, show how one can obtain a (δ, ε)-sampler that makes at most
O
(

1
ε2 log 1

δ

)
queries and uses at most

m+O

(
log(1/ε)

ε2
· log

1

δ

)
random bits.

(You may assume Theorem 4.22 from Vadhan’s manuscript, which is a stronger form of
the Question 2 in this set, for this problem. You may also assume that there are strongly
explicit constant-degree expanders on 2m vertices.)

(b) Suppose we have a ((1/8), ε)-sampler S that makes Q queries and uses R random bits.
In the last problem set, you studied the “median of averages sampler” built from S:

Run the sampler S for t independent trials to obtain µ̂1, . . . , µ̂t. Output the
median of these estimates.

You should have shown that this new sampler will be an (δ, ε)-sampler if t = O
(
log 1

δ

)
and instantiated S using pairwise independence.

Use expander random walks to now construct an (δ, ε)-sampler that makes at most
O
(

1
ε2 log 1

δ

)
queries and uses at most

O

(
m+ log

1

ε
+ log

1

δ

)
random bits.

You have now seen a sampler that has optimal number of queries and random bits used (up to constants) but is NOT

an averaging sampler! Obtaining an averaging sampler with the same performance is an open problem.

5. [Error reduction for randomised algorithms] (5)

Suppose you have a randomised algorithm M for some language L. Let’s say that on inputs
of length n, the algorithm tosses m(n) random coins and runs for time t(n) and we have the
guarantee that probability of error is at most 1/3. That is,

x ∈ L =⇒ Pr
r∈{0,1}m

[M(x, r) = 1] ≥ 2/3,

x /∈ L =⇒ Pr
r∈{0,1}m

[M(x, r) = 1] ≤ 1/3.

However, you wish to have the probability of error no more than δ. Based on what you have
seen in class so far, how would you modify the above algorithm to drive the probability of
error down to δ?

How much time does your modified algorithm take? How many random bits does your modified
algorithm use?

(This question is purposefully vague as we will be revisiting this question multiple times.)
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