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Lecture 1

Introduction to the course
Scribe: Aindrila Rakshit

Topics covered in this lecture

1. Introduction to Computational Complexity

2. Examples of problems and Reduction

3. Automata

4. Turing Machines

1.1 Introduction to Computational Complexity

Computational Complexity is the study of understanding the resource constraint of a compu-
tational model when it comes to solving a task. So given some objects that we wish to study,
we look at the procedural way of computing them, i.e. their computational models and the
resources required to do so.

∑∗ : a string of arbitrary finite length with elements of the alphabet Σ.
E.g.- {0, 1}∗ : binary string of some arbitrary finite length

Some examples of Objects, Computational Models, and Resources
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Objects Computational model Resources

1.
Boolean functions
f : {0, 1}⋆ −→ N

Python Programs Time / Memory/ No. of API calls

2. f : Rn → R
Query a few times and do

something
No. of queries

3.
f : Σ∗ × Σ∗ → Σ∗

say f : x × y → f (x, y)

Communication between two
parties where each party has
some part of the input and
they communicate amongst
themselves to combine the

inputs to produce an output

No. of bits of communication

Defn: Complexity - Classifying ’objects’ based on ’resource required’ by ’computational
model’.
Here ’classifying’ means creating a gradation of complexity (hardness) among objects/tasks.

1.2 Examples of problems and reductions

1. Graph Reachability (undirected vs directed)

Input: Graph G
Question: Given a vertex set, we want to find a path from s to t.

2. Perfect Matching

Input : Graph G on even no. of vertices
Question: Is every vertex in G adjacent to exactly one edge in G.

3. Linear Programs

max cTx
st Ax ≤ b

4. Primality

Given n, check if n is prime

5. Vertex Cover (set of vertices that includes at least one endpoint of every edge of the
graph)

Input: Graph G, integer k
Question: Does G have a vertex cover of size ≤ k

6. Independent set (Subset of vertices with no edge b/w them)

Input: Graph G, integer k
Question: Does G have an independent set of size ≥ k
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7. Chess

Input: Position
Question: Does white have a winning strategy

Surely it seems that Problem 1 is the easiest and Problem 7 is the hardest. In fact, the
problems seem to be gradually increasing in hardness with some problems having similar
levels of complexity. For example, in Problem 5 & 6 it would be easier to check whether they
are at the same level of complexity if we are given a subset of vertices. Our aim in this course
would be to quantify these notions of complexity.

Reductions: Transforming an instance of one problem to an instance of another problem such
that learning the solution to one problem instance tells us that the other problem instance is
solvable.

1.3 Automata

Languages:

f : Σ∗ −→ {0, 1}

L f = {y ∈ Σ∗ : f (y) = 1}

Languages L f are subsets of Σ∗.

Automata are primitive computational models.

qinitstart qacc

1
0

1
0

Figure 1.1: Example of an automata

We have a set of states Q and there is a specified start state qinit and a final state or accepting
state qacc The language accepted by the automata is the set of strings that the automata accepts.

1.4 Turing Machine

Turing Machines are an abstraction of how computers work. It is a combination of a set of
states Q, with initial state qinit and the final states qacc , qrej and the transition function δ, which
defines the Turing Machines. It consists of an infinite-length input tape, some infinite-length
work tape, used for computation, and one output tape which is used for writing only once.
The finite state machine points to the current symbol it is reading on each of the input and
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work tapes using a head marker.

Transition function:

δ : Q × Σinput tape
symbols

× Σwork tape
symbols

→ Q × Σto write on
input tape

× Σto write on
work tape

× {L, R, S}2︸ ︷︷ ︸
decides whether the

head moves left,
right or stays at

the same position

It could also be possible that the machine never reaches the final state, i.e. doesn’t halt but
in this course, we will only be interested in problems where it does halt.

7



Lecture 2

Tape / alphabet reduction and
Universal Turing Machines
Scribe: Siddharth Choudhary

2.1 Turing Machines

We consider the objects f : Σ∗ → Σ∗ where Σ is a fixed finite alphabet. A Turing Machine is a
computational model with fixed finite number of states, along with access to a set of finite (say
k) unbounded tapes.

a. . .▷ . . . $

FSM

input tape

b. . .▷ . . . $ work tapes

c. . .▷ . . . $ output tape

With the tape alphabet as Σ′, states Q of the Finite State Machine and the transition function

δ : Q × Σ′ × Σ′k → Q × Σ′ × Σ′k × {L, R, S}k+1 × Σ′︸︷︷︸
output

Given a TM M, on an input x, if δ∞ eventually reaches qexit ∈ Q, then output is defined as
the content of the output tape. Else, we say that M did not halt on x.
A machine is said to be halting if it halts on every x ∈ Σ∗.

We say M computes f iff for every x ∈ Σ∗, M on x halts and outputs f (x).

For the set of functions f : Σ∗ → {0, 1}, the language L f = {x ∈ Σ∗ | f (x) = 1} is the set of
words which output 1 on f .
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Given a halting machine M, let us denote TM(x) to be the time taken by machine M to halt
on the input x ∈ Σ∗. Then, we define TM(n) = maxx∈Σn TM(x) to be the maximum time taken
among all inputs of length n. Hence we get TM : N → N to represent the time complexity of a
language corresponding to the machine M.

2.2 Reductions

2.2.1 Alphabet Reduction

Problem: Given a TM M with alphabet Σ, can we build another equivalent machine M′ with
tape alphabet Σ′ = {0, 1, ␣, ▷}?
Solution: Yes. This can be done by giving any prefix-free binary encoding of Σ and making
copies of states of M to keep track of partially read encoding of a single character from Σ.
Hence, we get the new machine M′ with finite set of states s.t. |Q′| ≈ |Q|k|Σ|.
Hence we get that if TM(x) = n then TM′(x) ≤ n ∗ k ∗ ln |Σ|. Therefore TM′ = O(TM).

2.2.2 Tape Reduction

Problem: Given a TM M with k working tapes, can we build another equivalent machine M′

with single working tape?
Solution: Yes. This can be done by appending the k tapes content in a single tape with new
alphabet which marks the pointer location of the corresponding tapes. Then the machine can
scan entire tape every iteration to read the set of k pointer characters and make corresponding
transition.
Hence we get that if TM(x) = n then TM′(x) ≤ n2. Therefore TM′ = O(T2

M).

Note: There is method by interweaving the tapes to reduce the time s.t. TM′ = O(TM ln(TM)).

2.3 Universal Turing Machine

Denoted by U, a Universal Turing Machine takes the input as an encoding of a Turing Machine
M and its input x, to output U(⟨M⟩, x) = M(x).
This can be done by copying the encoding of M and x into two working tapes, and referring
to the transition function δ in the encoding of M to do the corresponding transition using as
many work tapes as given in the encoding of M.
Since each transition of U scans the work tape storing description of M to refer to the its
transition function, we get that a Universal Turing Machine U with 1 working tape takes
TU(⟨M⟩,_)(x) = O(TM(x) ln(TM(x))) time.
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Lecture 3

Non-determinism, and classes P, NP
and coNP
Scribe: Jainam Khakhra

Before we dive into non-determinism, it would be a good idea to take a short detour into
automata theory.

3.1 Regular Expressions

A regular expression, is a sequence of characters used to check if a given string follows a
required pattern.Using quantifiers such as OR, AND, NOT etc., one can construct complex
regular expressions.

For a long time, backtracking would be used to check the match of a regular expression.
Backtracking proved to be an inefficient process because it would take a lot of time to match a
string that did not match the required pattern.

Regular expressions can be converted into finite state machines as defined below.

3.1.1 Some basics on Automata

A finite state machine (or finite state automata) (FSM) is a machine that can exist in only finitely
many states. There are two types of FSM, Deterministic Finite Automation (DFA) and Non-
Deterministic Finite Automation (NFA).

In DFA, moving from the current state to the next state is uniquely determined, while in
NFA, the next state is not uniquely determined by the machine. There may exist more than
one possible next state from the current state.

Mathematically, a DFA is completely specified by a single transition function δ : Q×Σ → Q
which is the transition from the current state to the next.
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For an NFA, we have two transition functions δ0 and δ1 defined similarly as

δ0 : Q × Σ → Q

δ1 : Q × Σ → Q.

The NFA is said to accept a string if there is any “valid run” (choice of one of the transitions
at every step) that results in the automata ending at the accept state.

3.2 Deterministic and Non Deterministic Turing Machines

In a Deterministic Turing Machine, the machine would perform either no action or exactly
one action from a given configuration (state + whatever the heads were reading at that point),
while in a Non Deterministic Turing Machine, the machine could perform any action among
a group of possible actions from a given state. This is again specified by giving two transition
functions for the machine to choose from.

A Non Deterministic Turing Machine must halt on every path, also known as the halting
property, and is said to ’Accept’ an input string if one of the possible paths lead to an accept.

A Co-Non Deterministic Turing Machine must also halt on every path but is said to ’Accept’
a string if all the paths lead to accept.

3.3 Classes P, NP and coNP

3.3.1 Class P

The Class P is defined to be the set of languages L such that there is a Deterministic Halting
Turing Machine M and a constant ’c’ such that

• L(M) = L

• The running time of M is O(nc), i.e in polynomial time.

Example: The Circuit Evaluation Problem (Circuit-Eval). The Circuit-Eval problem is the task
of computing the evaluation of an given circuit on a given input.

Circuit-Eval = {(⟨C⟩ , x) : ⟨C⟩ encodes a circuit and C(x) = True}

It is easy to see that Circuit-Eval ∈ P.

3.3.2 Class NP

The Class NP is defined to be the set of languages L such that there is a Non Deterministic
Halting Turing Machine M such that

• L(M) = L
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• The running time of M is O(nc) i.e in polynomial time.

The running time of M is measured as that of the worst case over all possible inputs and paths.
Example: The Circuit Satistifiability Problem (Circuit-SAT). The Circuit-SAT problem is

the task of determining if a given a Boolean Circuit is satisfiable, i.e. is there a set of inputs for
which the output could be determined as ‘True’.

It is easy to see that Circuit-SAT ∈ NP.

3.3.3 Class coNP

The class coNP is the set of languages L whose complement language where in the running
time of M is in polynomial time.

Example: Tautology (TAUT). Given a circuit C, determine if C is a tautology, i.e. is C true
on every input x.

It is easy to see that TAUT ∈ coNP.
Note that in order to check if a circuit is a tautology, we only need to check if there is any

input that makes the circuit ¬C true. That is, we merely need to check if ¬C ∈ Circuit-SAT.
Indeed, it is the case that a language L ∈ NP if and only if L ∈ coNP.
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Lecture 4

Reductions
Scribe: Bikshan Chatterjee

When is one problem harder than another? A reduction from problem A to problem B is a
way to construct a machine that solves problem A given a machine that solves problem B,
usually using this machine for B as a subroutine, and without requiring too much overhead.
This shows that problem A is no harder than problem B.
(Here problems are languages and solving is outputing 1 for strings in the language and 0 for
others).

4.1 Turing Reduction

The machine MB (solving B) can be used multiple times and the output of MA can be com-
puted based on any postprocessing of the outputs from MB.

MB

MB

Σ

MA

Reduction Time: time required for computations other than running MB.

Example:
Circuit-SAT → Tautology
A circuit C is satisfiable if and only if ¬C is not a tautology.
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Circuit-NOT
C

MTautology

¬C
¬

MCircuit-SAT

4.2 Many-one Reduction

The machine MB (solving B) can only be used once at the end of the process, the output of
MB must be the output of MA. It is a function f : Σ∗

A → Σ∗
B (computable by a TM) mapping

instances of problem to A to instances of problem B such that x ∈ A if and only if f (x) ∈ B.

MBf
x f (x)

MA

A B

Σ∗
A Σ∗

Bf

Reduction Time: time for computing f .

Since f must be computable in polynomial time (including the time taken to write the out-
put), | f (x)| cannot be much larger than |x| (bounded by some polynomial in |x|).

Many-one reduction from Circuit-SAT to Tautology is not known.

Theorem 4.1 (Cook-Levin). Given any language L ∈ NP, there is a poly time many-one reduction fL

from L to Circuit-SAT. “L is no harder than Circuit-SAT”.

4.2.1 Examples

Languages:
(i) Ind-Set = { (G, k) | G has an independent set of size ≥ k }.
(ii) Clique = { (G, k) | G has a clique of size ≥ k }.
(iii) Vertex-Cover = { (G, k) | G has a vertex cover of size ≤ k }.

1. Ind-Set → Clique: Let G(V, E) be a graph. A clique of k vertices S ⊆ V in the comple-
ment graph Ḡ(V, Ē) (edges and non-edges flipped), would become an indepnendent set of
size k in G.
Reduction: f : (G, k) 7→ (Ḡ, k). Same reduction works for Clique → Ind-Set.
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2. Vertex-Cover → Ind-Set : Let G(V, E) be a graph. If S ⊆ V is an independent set then
V \ S would be a vertex cover (no edges among vertices in S, so every edge has at least one
endpoint in V \ S).
Reduction: f : (G(V, E), k) 7→ (G(V, E), |V| − k). Same reduction works for Ind-Set →
Vertex-Cover.

4.3 Hardness and Completeness

C-Hardness A language L is said to be C-hard under “type of reduction” (usually polytime
many-one reduction) if for all L′ ∈ C there is such a reduction from L′ to L (for polytime many-
one reductions, a polytime computable function f : Σ∗

L′ → Σ∗
L).

C-Complete If in addition L ∈ C, then L is said to be C-complete.

Theorem 5.8 says Circuit-SAT is NP -hard (and in NP so NP-complete). If we want to show
some L is NP-complete, it is enough to show L ∈ NP and a polytime reduction from Circuit-SAT
to L. Then any language in NP can be reduced first to Circuit-SAT then to L.

4.4 Circuit-SAT → CNF-Sat

CNF: Boolean formulas of the form

(x1 ∨ x̄2 ∨ . . .) ∧ (x̄3 ∨ x4 ∨ . . .) ∧ . . .

Special case of circuits with 2 levels:

∧

∨ ∨ . . . . . . . . . ∨

literals literals literals

CNF-Sat = { Formulas/circuits φ in CNF form | φ is satisfiable }.

Reducing Circuit-SAT to CNF-Sat:

The circuit C input to Circuit-SAT can be given as a graph with vertices and edges repre-
senting gates and wires. The fan in of each gate can be assumed to be 2: a gate with fan in n
can be replaced by n − 1 gates of fan in 2, circuit size remains comparable (increase bounded
by a factor of number of wires in C).
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In the corresponding formula φC, there would be literals for all literals in the circuit C and
new ones for every gate.

For each gate i there would be a CNF formula that corresponds to “gate i is correct”. The
final formula is of the form

φC =
∧

i

(gate i is correct) ∧ (output is 1)

C will be satisfiable if and only if φC is satisfiable.

Gate is correct CNFs:

NOT gates

¬

x

a

a x correct

0 0 x
0 1 ✓

1 0 ✓

1 1 x

CNF: (a ∧ x) ∨ (¬a ∧ ¬x) = (¬a ∨ ¬x) ∧ (a ∨ x)

AND gates

∧

x

a b

a b x correct

0 0 0 ✓

0 0 1 x
0 1 0 ✓

0 1 1 x
1 0 0 ✓

1 0 1 x
1 1 0 x
1 1 1 ✓

CNF: (¬a ∧ ¬b ∧ x) ∨ (¬a ∧ b ∧ x) ∨ (a ∧ ¬b ∧ x) ∨ (a ∧ b ∧ ¬x)
= (a ∨ b ∨ ¬x) ∧ (a ∨ ¬b ∨ ¬x) ∧ (¬a ∨ b ∨ ¬x) ∧ (¬a ∨ ¬b ∨ x)

OR gates
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∨

x

a b

a b x correct

0 0 0 ✓

0 0 1 x
0 1 0 x
0 1 1 ✓

1 0 0 x
1 0 1 ✓

1 1 0 x
1 1 1 ✓

CNF: (¬a ∧ ¬b ∧ x) ∨ (¬a ∧ b ∧ ¬x) ∨ (a ∧ ¬b ∧ ¬x) ∨ (a ∧ b ∧ ¬x)
= (a ∨ b ∨ ¬x) ∧ (a ∨ ¬b ∨ x) ∧ (¬a ∨ b ∨ x) ∧ (¬a ∨ ¬b ∨ x)

4.5 3-CNF-Sat → Ind-Set

3-CNF-Sat : Each clause has 3 literals.
Given a formula with m clauses, create a graph with m complete subgraphs containing 7 ver-
tices each. The vertices in the subgraphs correspond to the 7 assignments to the variables in
the clause that satisfy it. Then join the incosistent assignments across the clauses. An indepen-
dent set of m vertices now must take exactly one vertex from each clause (it’s assignment will
satisfy the clause) with no inconsistent assignments.

A formula with m clauses is satisfiable if and only if the corresponding graph has an inde-
pendent set of size ≥ m (cannot be > m so = m).

Example:
The CNF (¬x1 ∨ x2 ∨ ¬x3) ∧ (x3 ∨ ¬x4 ∨ x5) ∧ (x5 ∨ x6 ∨ x7) maps to the graph

000

001

010

011

100

110

111

¬x1 ∨ x2 ∨ ¬x3

000

001

011

100

101

110

111

x3 ∨ ¬x4 ∨ x5

001

010

011

100

101

110

111

x5 ∨ x6 ∨ x7

The ellipses are the cliques corresponding to the clauses and the rectangles are vertices cor-
responding to assignments that satisfy the clause. The assignments are to the variables not

17



literals eg. 000 in the first clique corresponds to the assignment x1 = 0, x2 = 0, x3 = 0.

The shaded vertices give an independent set with satisfying assignment: x1 = 0, x2 = 0, x3 =

0, x4 = 0, x5 = 0, x6 = 0, x7 = 1.

If a formula is satisfiable, take a satisfying assignment. Each clique would contain one ver-
tex that agrees with the assignment (because it satisfies every clause). The vertices do not have
edges among them because the assignment is consistent. These vertices form a clique of size m.

If there is an independent set of size m, take one independent set. It would contain one vertex
from each clique (only way to select m vertices). The vertices give assignments that satisfy the
clauses corresponding to the cliques. And they are consistent because there is no edge among
them.
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Lecture 5

Cook-Levin Theorem
Scribe: Yeshwant Pandit

Previously, we saw a web of reductions assuming Cook-Levin theorem. In this section, we will
see a proof of Cook-Levin theorem. Before that, let us see few definitions.

Definition 5.1. (class DTIME(·)) : A language L is in DTIME(T(n)) iff there is a deterministic TM
ML that runs in time c · T(n) for some constant c > 0 and decides L.

♢

Definition 5.2. (class P) : P =
⋃

c≥1 DTIME(nc).
♢

Definition 5.3. (class EXP) : EXP =
⋃

c≥1 DTIME(2nc
).

♢

Definition 5.4. (class NTIME(·)) : A language L is in NTIME(T(n)) iff there is a non-deterministic
TM ML that runs in time c · T(n) for some constant c > 0 and decides L.

♢

Definition 5.5. (class NP) : NP =
⋃

c≥1 NTIME(nc).
♢

Definition 5.6. (class NEXP) : NEXP =
⋃

c≥1 NTIME(2nc
).

♢

Before we state and prove Cook-Levin theorem, let us look at a simple example of an NP-
complete language.

5.1 An example of an NP-complete language

Recall, a language L is NP-complete if

• L ∈ NP

• For all L′ ∈ NP, we have L′ ≤P L
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Consider the language L = {(⟨M⟩ , x, 1k) : M encodes an NDTM that accepts x in k steps}.
Assume k to be p(|x|), where p is some polynomial.

Theorem 5.7. L is NP-complete.

Proof. Firstly, let us show that L ∈ NP. We construct a NDTM ML for language L as follows

• Using a non-deterministic universal Turing machine, simulate M on input x. The execu-
tion can cause at most a polynomial time slowdown.

• Accept if M accepts x

• Reject if M rejects x or M exceeds k steps

This shows that L ∈ NP. Now, let us show that L is NP-hard. Consider any L′ ∈ NP. By
definition, there is an NDTM M′ and a polynomial p such that M′(x) = 1 ⇔ x ∈ L′ and M′

runs in p(|x|) steps.
If x 7→ (⟨M′⟩ , x, 1p(|x|)) then we have x ∈ L′ ⇔ (⟨M′⟩ , x, 1p(|x|)) ∈ L. This proves that L is
NP-hard. Therefore, L is NP-complete

5.2 Proof of Cook-Levin theorem

Theorem 5.8 (Cook-Levin). Circuit-SAT is NP-complete.

Proof Sketch. It is easy to see that Circuit-SAT ∈ NP because a witness would be a satisfying
assignment. The non-trivial part is to prove that Circuit-SAT is NP-hard.

Before we dive into the proof, let us introduce two notions namely Snaphot of a TM, and
Computational Tableau.

• Snapshot: A snaphot of a TM at any step comprises of state of the TM, tape contents and
the positions of tape heads.

• Computational Tableau: A computational tableau is a table with each row consisting of
a snapshot of a TM and a bit i representing the transition function δi chosen by the TM.
For example, i = 0 means TM selects transition function δ0. The snapshots in the first and
the last row correspond to the start and the end configuration of the TM. The snapshot
of kth row of the table is determined by the snapshot of (k − 1)th row and the transition
δi chosen by the TM in (k − 1)th row.

Having introduced these two notions, we are now ready to show that Circuit-SAT is NP-
hard. To show this consider any L ∈ NP. Since L ∈ NP, we know there is a NDTM ML

that runs in polynomial time and decides L. Let nc be the running time of this machine on
inputs of length n. We construct a boolean circuit CL,x that is satisfiable iff some branch of
ML’s computation accepts x.

Since, a computational tableau consists of the snapshots attained by a NDTM on some
branch of its computation tree, determining x ∈ L is equivalent to searching whether the
snapshot corresponding to the last row of the tableau contains the state qaccept.

We now obtain a boolean circuit CL,x as follows:
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Figure 5.1: Computational Tableau

• For every cell in the tableau, we define a propositional variable which is true iff the cell
contains a valid tape symbol. Note that the machine ML accepts x iff

– Every cell is well-defined.

– The first row represents a valid start configuration.

– Each row can be determined from the previous row using the transition function
chosen by the machine ML.

– The last row of the tableau contains the state qaccept.

• The conditions mentioned above can be captured in boolean formulae and combining all
of them using AND gives us the final boolean formula and hence a boolean circuit CL,x.

• It is easy to see that the circuit CL,x is satisfiable iff some branch of ML’s computation
accepts x

It is yet to be demonstrated that the reduction is computable in polynomial time. Since, we
assumed that the machine ML runs in nc time and as a result it cannot use more than nc cells
of a tape, the size of the tableau (number of cells ) is O(n2c). Since, we had one propositional
variable corresponding to each cell in the tableau, the number of literals in the circuit CL,x is
O(n2c). The fact that the size of each formula constructed is O(n2c) and there are constant
number of formulae, allows us to infer that the reduction is carried out efficiently. Hence,
Circuit-SAT is NP-hard.
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Lecture 6

Padding and the deterministic
hierarchy theorem
Scribe: Soumyajit Pyne

6.1 Collapses and Separations of Complexity Classes

In this section we will discuss about two key statements:

• “ Collapses scale up."

• “ Separations scale down."

Intuitively, the initial statement suggests that if a certain capability (such as non-determinism)
cannot differentiate between two classes, then it shouldn’t be capable of distinguishing be-
tween two bigger classes. The next theorem is an example of such statement.

Theorem 6.1. If P = NP, then EXP = NEXP.

Proof. To prove this theorem we will use a technique called padding. Suppose L ∈ NEXP and
MNEXP is the non deterministic machine that decides L in time O(2|x|

c
) where x is the input

and c is a positive constant. Now we will define another language L′ as follows.

L′ =
{

x#12|x|
c

: x ∈ L, # is a special character
}

Claim 6.2. L′ ∈ NP.

Proof. Suppose we are given an input y. We define a non deterministic polytime Turing ma-
chine for L′ as follows.

1. we check if input y is of the form x#12|x|
c

where x is a binary string. If it does, proceed to
step 2; otherwise, return 0.
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2. Return MNEXP(x).

The first step of the algorithm can be done in time O(|Y|). Note that if the input y is not of
the form x#12|x|

c
, then y /∈ L′. Conversely, if the input y is of the form x#12|x|

c
, then x ∈ L if

and only if y ∈ L′. As L ∈ NEXP, MNEXP takes O(2|x|
c
) time on input x. Therefore, the above

non-deterministic Turing machine runs in poly(|y|) time.

Claim 6.3. L ∈ EXP.

Proof. By the hypothesis that P = NP, we haveL′ ∈ P (Claim 6.2). Suppose MP is the deter-
ministic polytime Turing machine that decides L′. Now we define a deterministic exponential
time Turing machine MEXP that decides L as follows.

1. Given an input x, create y = x#12|x|
c
.

2. Return MP(y).

Observe that x ∈ L′ if and only if x#12|x|
c
∈ L. It is easy to verify that MEXP runs in exponential

time. Therefore, MEXP decides L is exponential time.

From Claim 6.3 we conclude that EXP = NEXP.

An example of the second statement “Separations scale down." would be the contrapositive
of Theorem 6.1.

6.2 Deterministic Time Hierarchy Theorem

The Time Hierarchy Theorem demonstrates that providing Turing machines with additional
computation time increases the class of languages that they can decide.

Definition 6.4 (DTIME(·)). Let f : N → N be non-decreasing function. The class DTIME( f (n))
contains languages for which then there exists a constant c > 0 and a deterministic Turing Machine
that can decide L in with a running time bounded by c · f (n) for all large enough n (where n represents
the input size). ♢

Theorem 6.5 (Deterministic time hierarchy theorem). If f , g : N → N are non-decreasing time-
constructible1 functions satisfying f (n) log f (n) = o(g(n)), then

DTIME( f ) ⊊ DTIME(g).

Proof. To describe the proof idea we will prove a simpler statement DTIME(n2) ⊊ DTIME(n4).
It is easy to see that DTIME(n2) ⊆ DTIME(n4). Now we will prove the strict inclusion.

Note that all Turing machines can be described using a finite string (some representation
of the number of states, number of tapes, the alphabet, and the transition function). This is like
providing the ‘source code’ of the Turing machine. We will choose some systematic way of
encoding Turing Machines, with the ability to ‘add comments’ (for instance, we could always
allow encodings of the form “⟨M⟩ #aaaaa” where just ignore the string after the last ‘#’ symbol).
All this is to ensure the following property of the encodings.

1we’ll define this in the next lecture

23



Observation 6.6. Each Turing machine has infinitely many possible encodings.

We can now go ahead to define the language L that will witness the separation and we will
do so via a Turing machine D running in time O(n4).

1. If the input x is not a valid encoding of a deterministic Turing machine, reject it.

2. Let Mx be the Turing machine encoded by x, and let |x| = n.

3. Run the Universal Turing Machine U for at most n4 steps and simulate Mx on input x. If
by within that time the machine Mx rejects the string x, then our machine D accepts the
string. Else (i.e., either Mx has accepted the string x by then, or hasn’t finished computa-
tion), we reject the string x.

By the very definition of the above machine, since we are only running U for n4 steps, we
immediately have the following

Claim 6.7. L ∈ DTIME(n4).

We need to only show that L /∈ DTIME(n2).

Claim 6.8. L /∈ DTIME(n2).

Proof. For the sake of contradiction suppose M decides L and the running time of M is O(n2).
By a theorem we saw in an earlier lecture, the Universal Turing Machine can simulate M in
O(n2 log n) steps. More precisely, there is a constant c and an integer n0 such that for all n ≥ n0

the UTM U can simulate M in inputs of length n in at most cn2 log n steps.
Since n2 log n = o(n4), there is a large enough integer n1 ≥ n0 such that for all n ≥ n1, we

have cn2 log n < n4. Also, by Observation 6.6, let x be an encoding of the machine M of length
at least n1. We are going to show that the machine M makes a mistake on the string x.

Firstly, since n ≥ n1 ≥ n0, we note that n4 steps of the UTM U can entirely simulate the
running of M on the string x. Note that by the definition of L, we have x /∈ L if and only if the
machine encoded by the string x (namely the machine M) accepts the string x within n4 steps
of the UTM simulation. Thus, we have that x ∈ L if M rejects x, and x /∈ L if M accepts x.
Either way, the language accepted by M is not equal to L.

Claim 6.7 and 6.8 together conclude that DTIME(n2) ⊂ DTIME(n4).
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Lecture 7

Non-Deterministic Time Hierarchy
Theorem
Scribe: Ashutosh Singh

In the previous lecture, we saw the deterministic time hierarchy theorem which states that
there are languages that are decidable in time, say n2, but not in, say n4. In general it states
that for any two time-constructible functions f , g : N → N, such that f (n) log f (n) = o(g(n)),
we have DTIME( f (n)) ⊊ DTIME(g(n)).

In this lecture, we saw the non-deterministic time hierarchy theorem. Before stating and
proving the non-deterministic time hierarchy theorem, we define this notion of time-constructible
functions.

Definition 7.1 (Time-Constructible functions). A function f : N → N is said to be time-constructible
if f can be computed by a Turing machine in time O( f (n)). ♢

We also defined this notion of clocked UTM simulation for our convenience as follows.

Definition 7.2 (Clocked UTM Simulation). For a given TM description µ and input x, let n =

|µ|+ |x|. Then for a function f : N → N, a clocked UTM simulation means that we use UTM U to
simulate µ on input x for at most f (n) steps. ♢

Then we saw the following weaker version of the non-deterministic time hierarchy theo-
rem.

Theorem 7.3. Suppose f , g : N → N are non-decreasing time constructible functions with f (n +

1) log f (n + 1) = o(g(n)), then

NTIME( f (n)) ⊊ NTIME(g(n))

This is a weaker statement of the non-deterministic time hierarchy theorem which will be
stated later. Regardless, the first question that we would like to address is that we have seen
the deterministic time hierarchy theorem and its proof. What could go wrong in attempting to
extend the same proof here? i.e., We had defined the following TM D, that on input x,
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1. Simulate Mx on x for |x|4 steps of the UTM.

2. Flip the answer

The question is, Why does the language defined by the above TM D is not enough to prove the
theorem at hand? As we saw, the problem is that the machine Mx now is a non-deterministic
machine. As we know for a non-deterministic machine, the acceptance criteria is that some
path leads to an accepting state, but for rejection, it is that all paths lead to a rejecting state.
Now the machine D itself is non-deterministic. Then think about, how would we go about
defining the acceptance criteria for the machine D which essentially is trying to flip the answer
of the machine Mx?
So now that we understand the non-deterministic time hierarchy isn’t as easy to prove as it
may first occur, we see the following proof due to Fortnow and Santhanam. We are again
considering, f (n) = n2 and g(n) = n4 for convenience.

Proof. The idea is again to define the language by the machine that decides it. We define the
Turing machine D which this time takes an ordered pair (x, y) as input and computes D(x, y)
as follows,

1. If |y| < |x|4:

(a) Run clocked UTM simulation of Mx for (|x| + |y| + 1)4 steps on (x, y0) and on
(x, y1).

(b) Accept if both simulations end up accepting

2. Else(|y| ≥ |x|4):

(a) Run clocked UTM simulation of Mx for |x|4 steps on (x, " ") deterministically on the
computational path y.

(b) Flip the answer

As the very first thing, it is easy to see that the above construction of D doesn’t suffer
from the abnormality that we discussed above, and as was the case with the deterministic time
hierarchy theorem, by the very definition of the machine D, L(D) ∈ NTIME(n4). So all we
need to show is that L(D) /∈ NTIME(n2). Assume that we have a machine M which claims to
run on input x such that |x| = n in time O(n2) and correctly decides L(D). By the definition of
Big-Oh, we have that there exist constants c0, n0, such that for all n ≥ n0 length inputs, machine
M runs in time at most c0n2. Now the UTM simulation of machine M on input of length n takes
O(n2 log n) time which again implies that there are constants, say c1, n1, such that for all input
of length n ≥ n1, UTM can simulate M on the corresponding input in time at most c1n2 log n.
Lastly, since, n2 log n = o(n4), there are constants c2, n2, such that for n ≥ n2, n2 log n < c2n4.
Then consider the equivalent description of the TM M such that | ⟨M⟩ | ≥ max(n0, n1, n2).
Then what we essentially have is that a UTM simulation of this M can be completed in time
n4. Now, Since L(M) = L(D), then on input (⟨M⟩ , " "), we have
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M(⟨M⟩ , " ") = 1 ⇔ D(⟨M⟩ , " ") = 1

⇔ M(⟨M⟩ , 0), M(⟨M⟩ , 1) = 1

⇔ D(⟨M⟩ , 0), D(⟨M⟩ , 1) = 1

⇔ M(⟨M⟩ , 00) · · · M(⟨M⟩ , 11) = 1

⇔ D(⟨M⟩ , 00) · · · D(⟨M⟩ , 11) = 1
...

⇔ M(⟨M⟩ , 0|⟨M⟩|4) · · · M(⟨M⟩ , 1|⟨M⟩|4) = 1

⇔ D(⟨M⟩ , 0|⟨M⟩|4) · · · D(⟨M⟩ , 1|⟨M⟩|4) = 1

⇔ M on input (⟨M⟩ , " ") rejects on paths 0|⟨M⟩|4 , . . . , 1|⟨M⟩|4

⇔ M(⟨M⟩ , " ") = 0

Let’s look at the above chain of conclusions more closely. The first bi-implication holds
because of the claim that L(M) = L(D). Now, M(⟨M⟩ , " ") = 1 implies that there exists a
computational path y on which M accepts (⟨M⟩ , " "). Then the second bi-implication holds
because of the first ’If’ condition in the definition of TM D. Then the third bi-implication again
follows because M and D compute the same language. The above story continues till the
second last bi-implication where we have D(⟨M⟩ , y) = 1 for all y ∈ Σ4 but then the ’Else’
part of our definition of D says that if |y| ≥ |x|4, then we reject if M(x, " ") accepts on the
computational path y. So D(⟨M⟩ , y) = 1 for all y ∈ Σ4 implies that M(x, " ") rejects on the
computational path y for all y ∈ Σ4 which contradicts the first bi-implication.

In the above theorem, we considered functions f , g such that f (n + 1) log f (n + 1) =

o(g(n)) and then we showed that NTIME( f (n)) ⊊ NTIME(g(n)). But as we will see in problem
set 1, we can simulate a non-deterministic TM using UTM without any loss of log factor in the
time. So we have,

Theorem 7.4 (Non-Deterministic Time Hierarchy Theorem). For f , g : N → N time-constructible
functions such that f (n + 1) = o(g(n)), we have,

NTIME( f (n)) ⊊ NTIME(g(n)).
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Lecture 8

Diagonalization and Ladner’s theorem
Scribe: Sourav Roy

Theorem 8.1 (Ladner’s theorem). If P ̸= NP, then there exists a language L ∈ NP that is neither in
P nor is NP-complete.

We would like to create a language L in a manner that can be taken as “Easier SAT” to
perform either to give the machine more time or, make some instances on Ladner’s theorem.

Thus the obvious question that can be ask is the following:

How do we “pretend to give more time”, and thus make SAT easier?

We will do this by padding.

8.1 The language SATH

Definition 8.2 (SATH). Let H : N → N be a non-decreasing function. Define the language SATH as
follows:

SATH =
{

φ#0mH(m)
: φ ∈ SAT and |φ| = m

}
.

That is, the language is essentially SAT with the right amount of padding. ♢

8.1.1 Some basic properties

Observation 8.3 (If H grows too quickly...). If H(m) = m, then SATH ∈ P.

Proof. Given in input φ#0k of length n, let m be the size of φ. We can check quickly (in poly(n)
time) check if k = mm and reject if not. If the padding is right, then we have that n ≥ k = mm

and hence m = O(log n). Thus, we can even afford a brute-force algorithm to check if the
formula φ is satisfiable or not, as we have poly(n) time at our disposal.

Thus if H(m) “grows too quickly”, then we have SATH ∈ P.
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Observation 8.4 (If H is bounded by a constant...). If H(m) ≤ c for all m, i.e. H(m) is bounded
above by a constant c, then SATH is NP-hard.

Proof. We have an immediate reduction from SAT to SATH via φ 7→ φ#0mH(m)
. Since H(m) is

bounded by a constant, this reduction takes just O(mc) time (to add the extra padding) and
thus is a polynomial time many-one reduction from SAT to SATH.

Observation 8.5 (Sufficient condition for SATH ∈ NP). Suppose H : N → N is a efficiently
computable (i.e., there is a deterministic Turing machine that on input 1n outputs 1H(n) in poly(n)
time). Then, SATH ∈ NP.

Proof. Given an input φ#0k of length n, the machine just needs to check if the padding is correct
(which can be done in deterministic poly(n) time certainly), and then check if φ ∈ SAT. All of
this can be done by a non-deterministic polynomial time machine.

8.1.2 Constructing the right H

The goal right now is the following — design a function H : N → N such that

1. H is efficiently computable.

2. H(m) → ∞ as m → ∞ (assuming P ̸= NP).

3. Ensure that there does not exists any reduction from SAT → SATH.

Here is a definition that satisfies the above conditions. The value of H(m) is defined via the
following procedure:

H(m) is defined as the smallest i < log log m (if any exists) such that the machine
Mi, when clocked at at most ni steps, correctly solves SATH on all strings x of length
at most log log m.

If no such i exists, then H(m) is defined to be log log m.

Intuitively, H(m) = i (if i < log log m) is indicating that Mi is the first machine that appears
to solve SATH correctly (for log log m-length strings).

The above definition may appear a bit circular, but note that H(m) only depends on the
values of H on i ≤ log log m. Thus, the above definition is indeed well-defined. It is not hard
to see that H is also efficiently computable.

Observation 8.6. H(m) is computable in poly(m) time.

Proof. To compute H(m), we can list all strings y of length at most log log m and machines Mi

source codes with i ≤ log log m, and simulate each Mi each y for at most |y|i steps. This can be
done in at most 2O(log log m) · (log log m)O(log log m) = poly(m).

Based on the above simulations, we can iteratively compute H(1), H(2), . . . and eventually
H(m).

Thus, by Observation 8.5, we now have that SATH ∈ NP.
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Theorem 8.7 (Ladner’s theorem). If P ̸= NP, then SATH is not NP-complete under polynomial time
many-one reductions.

Proof. Let’s consider the following two cases.

Case 1: H is bounded. Suppose max H(m) = a and say H(m0) = a. Then, we have that
the machine Mm0 correctly solves SATH for all inputs in at most nm0 time. In particular
SATH ∈ P.

Then, we have an immediate reduction from SAT to SATH that maps any formula φ of
length m > m0 to φ#ma (and maintain an appropriate mapping for all formulas of size at
most m0). Thus, in this case we have a reduction SAT to SATH. Since we observed that
SATH ∈ P, we have that P = NP, contradicting our assumption. Hence, this case isn’t
possible.

Case 2: H is unbounded. This in particular means that SATH /∈ P (for otherwise). We will
show that SATH cannot be NP-complete if P ̸= NP.

Let M1, M2, · · · be an enumeration of deterministic Turing machines computing func-
tions Σ∗ → Σ∗, with Mi clocked at ni steps. Suppose on the contrary that the machine
Mc does compute a legitimate reduction f : Σ∗ → Σ∗ from SAT to SATH in nc time. Let
n0 be the largest integer such that h(n0) ≤ 2c.

We now present a polynomial time algorithm for SAT. On an input formula φ of length
n, let y = f (φ). If y is not of the form ψ#0k or if k ̸= mH(m) where m = |ψ|, the algorithm
returns No. If |ψ| ≤ n0, we brute-force and check if ψ ∈ SAT. If absψ > n0, note that
nc ≥ k > m2c. Hence, |ψ| = m <

√
n =

√
|φ|. Thus we have that φ ∈ SAT if and only

if ψ ∈ SAT and we have reduced the length from n to
√

n. Recursing, we eventually
reduce to a constant-sized formula in polynomial time. Thus we have a polynomial time
algorithm for SAT, which contradicts the assumption that P ̸= NP. Hence, we have that
SATH cannot be NP-hard.
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Lecture 9

Oracle Machines
Scribe: Siddharth Choudary

So far, we have covered various topics in applying "diagonalization". We will see that di-
agonalization also has its limitations.

9.1 Oracle Turing Machines

a. . .▷ . . . $ input tape

b. . .▷ . . . $ work tape

FSM
qquery

qquery,y qquery,n

c. . .▷ . . . $ query tape

Definition 9.1 (Oracle Turing Machines). An Oracle Turing Machine ML corresponding to the lan-
guage L is a machine with access to an oracle which answers instantly whether the queries given by M
is in L. Thus they use additional states qquery to query the oracle, qquery,y when the oracle return "YES"
and qquery,n when the oracle returns "NO". ♢

If A is some language, then PA is the class of languages which are accepted by poly-time
deterministic turing machines with access to oracle A.

Observation 9.2. A ∈ P =⇒ PA = P.

Observation 9.3. A = SAT =⇒ PA ⊇ P,NP, coNP.

Note: NPSAT is believed to be bigger than NP.

Observation 9.4 (Time hierarchy theorem with oracles). Let f , g : N → N be non-decreasing
time-constructible functions with f (n) log f (n) = o(g(n)). Then, for any language A, we have
DTIMEA( f ) ⊊ DTIMEA(g).

The proof is almost identical as it only involves machine simulations (the simulator ma-
chine can make the same oracle queries whenever the simulated machine intends to make
one). This is a feature of a ‘diagonalization’ proof as we only rely on simulations and flipping
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answers. However, this strength is also a weakness as it means that this technique can only
prove results that remain true even in the presense of oracles.

The following theorem says that the “P vs NP” is not such an oracle-oblivious statement.

Theorem 9.5 (Baker-Gill-Solovay). There exists a language A s.t. PA ̸= NPA and there exists a
language B s.t. PB = NPB.

Proof. ii) Taking B ∈ EXP-complete (under polynomial time many-one reductions), we will
show that PA = NPA = EXP.

a) L ∈ EXP ⊆ PB: Since B is EXP-Complete, there is a poly-time reduction f s.t. x ∈ L
iff f (x) ∈ B.
PB ⊆ EXP: Solve B in EXP time at each query.
Therefore PB = EXP.

b) EXP ⊆ NPB: as EXP ⊆ PB ⊆ NPB.
NPB ⊆ EXP: Run every possible path and solve B when query is made.

i) For language A let LA = {1n : there is a string of length n in A}.

Lemma 9.6. For any choice of A, we have that LA ∈ NPA.

Proof. Guess a string of length n and make oracle call to A.

The goal is now to build the language A such that LA /∈ PA.

Let M1, M2, ... be the enumeration of all deterministic poly-time Oracle Turing Machines.
We will build A in phases, where phase i will be responsible for ensuring that MA

i does
not correctly decide LA.

Phase i:

Step 1: Clock all simulations of Mi at ni steps. Choose a smallest ni such that
ni /∈ {n1, ..., ni−1} and 2ni > ni

i.

Step 2: Simulate Mi on 1ni for ni
i steps. Whenever Mi makes an oracle query, an-

swer consistently if we have decided on those strings in previous phases,
and default to “No” (when queried about any currently undecided string).

Step 3a: If Mi rejects 1ni , take some string of length ni that was not queried by Mi

and add it to A.

Step 3b: If Mi accepts 1ni , don’t add any string of length ni to A.

Hence, the language LA contradicts every Mi on some input 1ni . Therefore LA /∈ PA.
Therefore, we have a language A s.t. PA ⊊ NPA.
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Lecture 10

Mahoney’s theorem and Polynomial
Hierarchy
Scribe: Soumyajit Pyne

10.1 Search to decision reduction in NP

Suppose φ(x1, x2, ..., xn) is a boolean formula on n variable. We want to decide if φ is sat-
isfiable or not. Note that φ(x1, x2, ..., xn) is satisfiable if and only if φ(x1 = 0, x2, ..., xn) or
φ(x1 = 1, x2, ..., xn) is satisfiable. Thus, the task of determining whether an n-variable formula
is satisfiable or not reduces to determining the satisfiability of two smaller-length formulas,
which is referred to as the self-reducibility of SAT.

Definition 10.1 (Search-SAT). SearchSAT is a function f : Σ∗ → Σ∗ ∪ {⊥} defined as follows.

f (φ) =

⊥ φ is unsatisfiable

x ∈ {0, 1}∗ such that φ(x) = 1 otherwise

♢

Theorem 10.2. SearchSAT ∈ FPSAT.

Proof. Now we propose a polytime algorithm which uses SAT as a subroutine.
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Algorithm 1 SearchSAT(φ(x1, x2, ..., xn))

1: if SAT(φ(x1, x2, ..., xn)) is false then
2: Return ⊥
3: end if
4: if n = 1 then
5: if φ(1) is true then
6: Return 1
7: else
8: Return 0
9: end if

10: end if
11: if SAT(φ(x1 = 0, x2, ..., xn)) is true then
12: Return 0 · SearchSAT(φ(0, x2, ..., xn))
13: else
14: Return 1 · SearchSAT(φ(1, x2, ..., xn))
15: end if

Algorithm 1 runs in poly(|φ|) time with the help of the subroutine SAT which concludes
the proof.

10.2 Mahoney’s theorems

Mahoney’s theorems show that certain kinds of “simple” languages cannot be NP-hard unless
P = NP. We will see a few instantiations of this.

These results follow a general template for an algorithm to solve SAT, assuming a suitable
“Prune” operation.

Algorithm 2 SATSolver(i, n, B = {φ1, . . . , φk})
Input: An integer i, and a list of formulas
Output: Yes if and only if at least one of the formulas is satisfiable

1: if i = n and any φi is True then
2: Return true
3: end if
4: if i = n and all φi are False then
5: Return False
6: end if
7: B′ = {φ(xi = 0) : φ ∈ B} ∪ {φ(xi = 1) : φ ∈ B}.
8: B′ = Prune(n, B′)
9: Return SATSolver(i + 1, n, B′).

In words, we just try both values for the variable xi, thus potentially doubling the size of B,
and “pruning” the size (which at the moment we haven’t specified how), and repeating until
we find a true formula in our list. To check if a given formula φ is satisfiable, we will just call
SATSolver(1, {φ}).
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10.2.1 Unary languages

Definition 10.3 (Unary Language). L is a unary language if L ⊆ {1}∗. ♢

Theorem 10.4 (Mahoney’s theorem for unary languages). If L is unary and NP-hard, then P =

NP.

Proof. We will use Algorithm 2 and appropriately specific the Prune function using L. As L is
NP-hard, there is an nc time (for some constant c) reduction f : Σ∗ → Σ∗ from SAT to L: i.e.,
x ∈ SAT if and only if f (x) ∈ L.

We now specific the prune function.

Algorithm 3 PruneUnary(n, B = {φ1, . . . , φr})
1: if |B| ≤ nc then
2: Return B
3: end if
4: Remove all φ ∈ B such that f (φ) /∈ {1}∗.
5: Compute yi = f (φi) for each φi ∈ B.
6: For each y, retain in B at most one φi such that f (φi) = y and discard other collisions.
7: Return B.

We claim that Algorithm 2 instantiated with Algorithm 3 correctly solves SAT in polyno-
mial time.

Note that f runs in nc time, therefore | f (φ)| ≤ |φ|c. Algorithm 3 only discards formulas
when it is guaranteed that it is not the only satisfiable formula in the set (if f (φi) = f (φj), then
either both are satisfiable or neither are; thus retaining just one of them is safe).

Furthermore, the set B returned by Algorithm 3 consists of formulas that under f yield
distinct strings of the form {1}∗ and thus can have size at most nc since f runs in time at most
nc. Thus, we always maintain that the set of formulas is no larger than 2 · nc and that there is
always one satisfiable formula in this set if the original φ was satisfiable.

It is easy to see that the running time is also polynomial since the size of the set of formulas
never exceeds 2nc and all other operations are polynomial time operations. We conclude that
SAT ∈ P which implies P = NP.

10.2.2 Sparse languages

Definition 10.5 (Sparse Language). L ⊆ {0, 1}∗ is said to be sparse if ∃c, n0 such that ∀n ≥ n0

|L ∩ {0, 1}≤n| ≤ nc. ♢

Definition 10.6 (co-Sparse Language). L ⊆ {0, 1}∗ is said to be co-sparse if L is sparse. ♢

Theorem 10.7 (Mahoney’s theorem for co-sparse languages). If L is co-sparse and NP-hard, then
P = NP.

Proof. Once again, it suffices to specific the Prune function in this case. As L is sparse, ∃c1, n0

such that ∀n ≥ n0 |L ∩ {0, 1}≤n| ≤ nc1 . As L is NP-hard, there is an nc2 time reduction f : Σ∗ →
Σ∗ such that x ∈ SAT if and only if f (x) ∈ L.
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Algorithm 4 PruneCoSparse(n, B = {φ1, . . . , φr})
1: if |B| ≤ n2c1c2 then
2: Return B
3: end if
4: Compute yi = f (φi) for each φi ∈ B.
5: if all yi’s are distinct then
6: Return {True}
7: end if
8: For each y, retain in B at most one φi such that f (φi) = y and discard other collisions.
9: Return B.

The only part to justify in the above algorithm is why we can assume that the formula is
satisfiable if all yi’s are distinct (Line 6). If it were the case that all the φi’s were unsatisfiable,
then f (φi) ∈ L for all i. But then, | f (φi)| ≤ nc2 and

∣∣∣L ∩ {0, 1}≤nc2
∣∣∣ ≤ nc1c2 and therefore we

do not have more nc1c2 within these. Thus, we must have that at least one of f (φi) must be in
L and that is possible if and only if φi is satisfiable (since f is a valid reduction).

That concludes the theorem.

The following statement would be given in the problem set.

Theorem 10.8 (Mahoney’s theorem for sparse languages). If L is sparse and NP-hard, then P =

NP.

10.3 Polynomial Hierarchy

Suppose C is a class of languages.

Definition 10.9 (∃ · C). A language L ∈ ∃ · C if and only if there is a predicate R ∈ C such that
x ∈ L ⇐⇒ ∃y of length poly(|x|) such that R(x, y) = True. ♢

Definition 10.10 (∀ · C). A language L ∈ ∃ · C if and only if there is a predicate R ∈ C such that
x ∈ L ⇐⇒ ∀y of length poly(|x|) such that R(x, y) = True. ♢

It is immediate to check from the definition that ∃ · P = NP and ∀ · P = coNP. It is also not
hard to check that ∃ ·NP = NP and ∀ · coNP = coNP. But what about classes such that ∃ · coNP
and ∀ ·NP? How powerful are these?

The following are not too difficult to see.

Claim 10.11. ∀ ·NP ⊆ coNPSAT.

Claim 10.12. ∃ · coNP ⊆ NPSAT.

Turns out, both of the above are equalities! On the face of it, it seems like NPSAT is more
powerful (as it can make adaptive queries, whereas ∃ · coNP seems like a single query). We
will see that in the subsequent lectures.
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Lecture 11

Polynomial Hierarchy
Scribe: Bikshan Chatterjee

Recall the Circuit-Eval where we are given a circuit C and an input x and want to check if
C(x) is true. This is morally equivalent to asking if a given deterministic Turing machine M
accepts a certain input x within a pre-specific amount of time.

Given a TM M and input x (variable), the circuit (boolean formula) that encodes the state-
ment “M accepts x” can be constructed using the computational tableau. Each row of the
tableau can be computed from the previous row using basic (AND, OR, NOT) computations.

qi1 x

qi2
. . .

qit
. . .

qfinal == qaccept

x1 x2 xn

Deterministic TMs:
The length of x (|x| = n) has to be fixed. Then the input x to the machine can be used as

the input to the circuit. The first row is given by the initial state and x and with worktapes
initialied to blanks. The other rows can be computed as logical formulae depending on the
first row. The final circuit would be something of the form

t∧
i=2

[Row i consistent with Row i − 1] ∧
[
qit = qaccept

]
Thus, we have a formula ΦM,t(x), of size O(poly(t, |x|)), that evaluates to true if and only if M
accepts x within t steps.

Non-Deterministic TMs:
Both x and the certificate/computational path y can be considered inputs to the circuit. The
formula would encode “M accepts x on computational path y”.
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If we fix x in the language and use the certificate/computational path as input, NP corresponds
to the circuit being satisfiable and coNP corresponds to the circuit being tautology.

11.1 The classes ΣP
i , ΠP

i

We first define two ‘operators’ to build new classes for existing classes.

Definition 11.1 (The ∃ and ∀ operators for classes). For any class C, we define ∃C to consist of all
languages L such that there is polynomial bounded function ℓ : N → N and a relation R ∈ C such
that for all x ∈ Σ∗

x ∈ L ⇐⇒ ∃y ∈ Σ≤ℓ(|x|) : R(x, y) = true.

On a similar vein, ∀C is defined via a similar requirement

♢ x ∈ L ⇐⇒ ∀y ∈ Σ≤ℓ(|x|) : R(x, y) = true.

We know ∃P = NP and ∀P = coNP. What is ∃coNP ? For any language L ∈ ∃coNP, we
have x ∈ L ⇔ ∃y : R(x, y) = true, for some R(x, y) ∈ coNP. That is, ∃y ∀z R′(x, y, z) = true,
for some R′ ∈ P (z represents any computational path taken by the co-non-deterministic ma-
chine computing R).

Σ2-SAT = {∃y ∀z φ(y, z) : it is true}. This is complete for ∃coNP using polynomial time
many one reductions.
Given a language L ∈ ∃coNP, in order to check if x ∈ L, we have a predicate R ∈ coNP such
that ∃y : R(x, y) = true. Take the co-non-deterministic machine M that computes R, and
encode the statement “M accepts (x, y) on computational path z” into the formula φM,x(y, z).

On a similar vein, Π2-SAT = {∀y ∃z φ(y, z) : it is true}. This is complete for ∀NP using
polynomial time many one reductions.

More generally, for any i, Σi-SAT = {∃x1 ∀x2 . . . ∃/∀xi φ(x1, x2, . . . , xi) : it is true}.
Πi-SAT = {∀x1 ∃x2 . . . ∃/∀xi φ(x1, x2, . . . , xi) : it is true}.

For now, we will describe classes of languages with a complete language from that class
but we will have a more formal description later on.

ΣP
i is the largest class of languages for which Σi-SAT is complete.

ΠP
i is the largest class of languages for which Πi-SAT is complete.

ΣP
i ⊆ ΣP

i+1 : because Σi-SAT can be reduced to Σi+1-SAT, by adding an unused quantifier
at the end. Eg. ∃x1 ∀x2 ∃x3 φ(x1, x2, x3) is true if and only if ∃x1 ∀x2 ∃x3 ∀x4 φ(x1, x2, x3) is
true.
ΣP

i ⊆ ΠP
i+1 : Σi-SAT can be reduced to Πi+1-SAT by adding an unused quantifier at the begin-

ning.
Similarly, ΠP

i ⊆ ΣP
i+1 and ΠP

i ⊆ ΠP
i+1.
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P

NP

coNP

ΣP
2

ΠP
2

ΣP
3

ΠP
3

. . .

The class PH is defined as PH =
⋃

i ΣP
i . Recursively: ΣP

1 = NP, ΠP
1 = coNP, ΣP

i = ∃ΠP
i−1,

ΠP
i = ∀ΣP

i−1.

Theorem 11.2. If ΣP
i = ΠP

i , for some i, then PH = ΣP
i = ΠP

i .

Proof. We will prove the above statement for i = 1, although the same ideas work for all i.
Recall ΣP

1 = NP, ΠP
1 = coNP. Suppose ΣP

1 = ΠP
1 , i.e. NP = coNP.

Let L ∈ ΠP
2 . That is for any x,

x ∈ L ⇔ ∀y R(x, y) = true, where R(x, y) ∈ ΣP
1 = NP

⇔ ∀y ∃z R′(x, y, z) = true, where R′(x, y, z) ∈ P.

The language of the predicate R is L′ = {(x, y) : ∃z R′(x, y, z) = true}. This language is in
NP. Because NP = coNP, it is also in coNP. So there must be a predicate R′′(x, y, z) ∈ P such
that

L′ =
{
(x, y) : ∀z R′′(x, y, z) = true

}
z has to be of size poly(|x|+ |y|)

That is, for any (x, y)

∃z R′(x, y, z) = true ⇔ ∀z R′′(x, y, z) = true

So we have

x ∈ L ⇔ ∀y ∀z R′′(x, y, z) = true

that is, ∀yz R′′(x, y, z) = true, where R′′(x, y, z) ∈ P

size of y is poly(|x|), size of z is poly(|x|+ |y|)

So, L ∈ coNP, ΠP
2 ⊆ coNP. Similarly it can be shown ΣP

2 ⊆ NP.
For L ∈ ΣP

2 , checking if x ∈ L is equivalent to computing predicate of the form

∃y ∀z R(x, y, z)︸ ︷︷ ︸
replace with

∃z R′(x, y, z)

That shows that ΠP
2 is in fact equal to coNP = NP and this can be repeated to larger (but

constant!) number of quantifiers.
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11.2 The language TQBF

TQBF is the set of true quantified boolean formulas. Quantified boolean formulas are formulas
of the form ∃x1 ∀x2 ∃x3 . . . ∀xn φ(x1, x2, . . . , xn) for any n (can start or end with ∃ or ∀).

TQBF = {∃x1 ∀x2 ∃x3 . . . ∀xn φ(x1, . . . , xn) : it is true}

It is important to stress that proof of Theorem 11.2 does not extend to show NP = coNP ⇒
TQBF ∈ P.
Removing one quantifier can increase the formula size to a polynomial of the original size.
Doing this a constant number of times results in a polynomial sized formula. But doing it n
times (part of input) can result in exponential sized formula.

∃x1 ∀x2 ∃x3 φ(x1, x2, x3)

⇔ ∃x1 ∀x2 ∀x3 φ′(x1, x2, x3)

11.3 Polynomial hierarchy via oracle machines

Σ2 SAT = {∃y ∀z φ(y, z) : it is true}.

This is certainly in NPSAT. The oracle machine would guess y and ask the oracle if ¬φ(y, z)
is satisfiable. If the answer is yes, then for the particular y, ∀z φ(y, z) is false. If the answer is
no, for the particular y, ∀z φ(y, z) is true.

Σ2 SAT is complete for ΣP
2 . This shows ΣP

2 ⊆ NPSAT. However, it still leaves the question:
Is NPSAT ⊆ ΣP

2 true?

It seems unlikely as the oracle machine can make multiple and adaptive unsatisfiability
queries (asking a SAT query and going down the “no” path), while the formula in Σ2-SAT is
restricted to a single unsatisfiability query at the end (the ∀z φ(y, z) formula). (Satisfiability
queries can be encoded in the ∃y part).

However, turns out it is indeed the case that ΣP
2 = NPSAT

Proposition 11.3. NPSAT = ΣP
2

Proof. The idea is to guess queries and answers. The NPSAT machine accepting a string x would
be encoded as the Σ2-SAT statement:

∃ computational path y ∃ SAT queries q1, . . . , qn ∃ answers a1, . . . , an to the queries

∃ satisfying assignment for yes answers σ1, . . . , σm

"on path y, queries made by M(x) on path y are correct conditioned on

previous answers being correct and for yes answers σi are satisfying

and for no answers the answers are correct"︸ ︷︷ ︸
check unsatisfiability using ∀ formula
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Check if sat formulas φ1, φ2, . . . , φn−m are all unsatisfiable by the truth of

∀ variables in φi ¬(φ1 ∨ φ2 ∨ . . . ∨ φn−m)

This shows NPSAT = ΣP
2 .

Thus, we can alternatively define the classes using oracle machines as follows: ΣP
1 = NP,

ΠP
1 = coNP. ΣP

2 = NPΣP
1 , ΠP

2 = coNPΣP
1

In general, ΣP
i = NPΣP

i−1 .

11.4 On complete problems for the polynomial hierarchy

For NP, we have seen that Circuit-SAT is complete. For ΣP
2 , Σ2 SAT is the natural complete

problem.

Is there a complete problem for PH?
Suppose L is a complete language for PH. L ∈ PH =

⋃
i ΣP

i so L ∈ ΣP
i for some i.

So every problem in PH can be reduced to a problem in ΣP
i , then PH = ΣP

i .

Thus, there are no complete problems for the entireity of PH unless the polynomial hierar-
chy collapses.
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Lecture 12

Space Complexity
Scribe: Ashutosh Singh

In this lecture, we start considering space as a resource. So far we have been trying to clas-
sify problems based on the time it takes to solve them using some Turing machine, but now
time is of no concern, we just want to consider the ’space used’ by a Turing machine M to solve
a particular problem. Again, we only consider halting TMs. Now recall that a Turing machine
M has an input tape, k work-tapes, and an output tape. For our purposes, we will only allow
the input tape to be read only and the output tape to be only write once. All the k work-tapes will
have full read-write access. Then for the TM M, we define space used by M as, SM : N → N,
such that, SM(n) = maximum number of work-tape cells accessed by TM M on any input of
length n. Then similar to DTIME(TM(n)) and NTIME(TM(n)), we have DSPACE(SM(n)) and
NSPACE(SM(n)), if M is a DTM or an NTM respectively and uses space O(SM(n)) on any in-
put of length n. Although technically we should write SM(n) to denote the space used by the
machine on the input of length n, we drop the subscript M for brevity and also because it’s
clear from the context what we mean. Observe that we didn’t consider the space used by the
input tape in defining the space used by the TM M because for as simple a problem as PARITY,
where we have a binary string as an input and we accept if and only if has an odd number of
1’s. Now clearly this can be done using a constant number of work tape cells but if we were to
charge for the space used by the input tape too then PARITY would belong to DSPACE(n).

Now consider the following language,

Dir-ST-Conn =

{
(G, s, t) :

G = (V, E) is a graph with vertices s, t
and there is a path from s to t

}

Observe that Dir-ST-Conn ∈ DSPACE(n) because our classic graph traversal algorithm DFS
would need to store vertices explored so far in the current path which is at most n. But if we
use the power of non-determinism, then Dir-ST-Conn ∈ NSPACE(log n), because starting from
vertex s, at every step, we could just guess the next vertex adjacent to the current one and accept
if, in the end, we reach t. We just have to be slightly careful so that we are not stuck in the loop
of guessing, so we maintain a counter and reject if the counter exceeds n because, in an n vertex
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graph, any path is of length at most n. Now surprisingly, Undir-ST-Conn ∈ DSPACE(log n) as
was shown by Reingold.

Similar to the time hierarchy theorems, we also have, the space hierarchy theorems, and
similar to the notion of time constructible functions, here we have space constructible func-
tions.

Definition 12.1 (Space Constructible Function). A function f : N → N is called space con-
structible if there is a TM M, such that M(1(n)) = 1 f (n) and SM(n) = O( f (n)). ♢

Theorem 12.2 (Space Hierarchy Theorem). For any two space constructible functions f and g, such
that f (n) = o(g(n)), we have,

DSPACE( f (n)) ⊊ DSPACE(g(n)), and

NSPACE( f (n)) ⊊ NSPACE(g(n)).

Observe that, unlike the deterministic time hierarchy theorem, we don’t have any logarith-
mic overhead in the space hierarchy theorem because UTM won’t need to use any extra space
in simulating any Turing machine.

Now, similar to P,NP etc., we have the following analogous space classes,

PSPACE =
⋃
c≥0

DSPACE(nc)

NPSPACE =
⋃
c≥0

NSPACE(nc)

LOGSPACE = DSPACE(O(log n))

NL = NSPACE(O(log n))

12.1 Relation between classes and the configuration graph

Observation 12.3. NP ⊆ PSPACE

The easiest way to see why the above observation follows is to consider SAT, and clearly,
all we would need is to enumerate all possible assignments at a time and check if it is a satis-
fying assignment. The space can be reused and thus the observation.

Then we also have the following set of inclusions which are easy to see.

DTIME( f (n)) ⊆ NTIME( f (n)) ⊆ DSPACE( f (n)) ⊆ NSPACE( f (n))

Recall in the proof of Cook-Levin theorem how we used this notion of computational tableaus
and used it to show that any language in NP ≤P Circuit-SAT. In fact, in the last lecture, we saw
that any language that is decided by an NTM in some time, t, amounts to checking satisfiability
of a circuit that is an encoding of the computational tableau of that NTM on some input. There
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is a similar notion for a language that is decidable by a Turing machine using some space s,
called a configuration graph. A configuration of a TM M on input x corresponds to all the data
that one would need to store if we were to halt it at some step in its run and then continue it
from that point forward sometime in the future. So as can be checked, we would need to store
the following data,

1. Current state of M

2. Current head positions

3. All the work tape content

Then the next question is how many configurations are possible of a TM M on input x that
uses space f (n). The total number of states is |Q|, the total number of head positions, assuming
that M is just a 2 work tape machine is n · ( f (n))2 and finally the total different possibilities for
work tape content is Σ f (n)). Thus the total number of configurations is,

|Q| · n · ( f (n))2 · |Σ| f (n) = 2O( f (n))

Now a configuration graph for machine M and input x, denoted by GM,x is a directed graph
(V, E) where,

V = {Ci : Ci is a possible configuration in the run of M on x}

E =
{
(Ci, Cj) : Ci, Cj is a configuration such that running one step of M on x from Ci leads to Cj

}
Note that if M is a DTM then every vertex in GM,x has out-degree of 1 except for the vertex

Caccept that represents the accepting configuration of M on input x and if M is an NTM then
every vertex except Caccept will have out-degree 2 and since we are considering only halting
TM’s GM,x would be acyclic. Now that we understand the notion of a configuration graph,
observe that for an input x, x ∈ L iff M accepts x using space O( f (n)). But equivalently we
have, x ∈ L iff there is a path from Cstart to Caccept in GM,x, where Cstart represents the initial
configuration of M on input x.

Lemma 12.4. NSPACE( f (n)) ⊆ DTIME(2 f (n))

Proof. Consider an L ∈ NSPACE( f (n)), let M be the machine such that L(M) = L. Then

x ∈ L ⇔ (GM,x, Cstart, Caccept) ∈ Dir-ST-Conn

Since GM,x has potentially 2O( f (n)) vertices we can just construct GM,x which would take 2O( f (n))

time and then run DFS which would take linear time.

12.2 Completeness of TQBF

In the last lecture, we were introduced to this language TQBF which we observed that it
seemed more powerful than the whole polynomial hierarchy. Now we show that in fact, TQBF
is PSPACE-complete.
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Theorem 12.5. TQBF is PSPACE-complete under polynomial-time many-one reductions.

Proof. In the first part of the proof, we show that TQBF ∈ PSPACE. Consider a TQBF for-
mula Ψn,m where n represents the number of quantified variables and m is the length of the
expression φ(x1, · · · , xn), i.e.,

Ψn,m = ∃x1∀x2 · · · ∃/∀φ(x1, · · · , xn).

Let S(Ψn,m) represent the space that would be needed to solve Ψn,m. As a base case observe
that S(Ψ0,m) ≤ m because n = 0 implies that there are no quantified variables and so we just
need to check if φ is satisfiable or not. Then we can define S(Ψn,m) inductively as,

S(Ψn,m) = S(Ψn−1,m) + O(m) + θ(1)

Because assuming that x1 to xn are Boolean variables we could set x1 to 0, evaluate φ(0, x2, · · · , xn)

which would take O(m) space and then evaluate,

∀x2 · · · ∃/∀φ(0, x2, · · · , xn),

which would take S(Ψn−1,m) space and then just store the final result which would take θ(1)
space. Since x1 is quantified by an existential quantifier we check if either setting x1 to 0 or 1
results in TRUE for Ψn,m. If either assignment gives TRUE then we accept else reject. Similarly,
if there were a universal quantifier we would need to check that it is satisfiable for both 0 and
1. From the above equation, it is easy to see that S(Ψn,m) = O(nm) and thus TQBF ∈ PSPACE.
Next, we will prove that TQBF is PSPACE-hard. Let L ∈ PSPACE and M be its corresponding
machine that takes space S(n). Then on an input x, we would like to output a TQBF instance
Ψn,m(s, t) such that,

x ∈ L ⇔ Ψn,m(s, t) = TRUE,

where Ψn,m(s, t) is true iff "s and t are connected by a path of length at most m in GM,x". As can
be guessed, s would correspond to Cstart and t would correspond to Caccept and m = 2O(S(n))

and if we can make sure that size(Ψn,m(s, t)) = O(S(n)) then we would be done. Towards that
end, observe that if there is a path from s to t of length m, then there must be an intermediate
vertex u such that there is a path of length m/2 from s to u and a path from u to t of the same
length. This suggests that we can write,

Ψn,m(s, t) = ∃u Ψn,m/2(s, u) ∧ Ψn,m/2(u, t).

But then size(Ψn,m(s, t)) ≤ S(n) + 2 · size(Ψn,m/2), where the first term is because there are
potentially 2O(S(n)) many vertices and so encoding of any vertex would require O(S(n)) space.
This means that the above formula would lead to an exponential blow-up in the size. But
observe that we haven’t used the universal quantifier. And so alternatively we can write,

Ψn,m(s, t) = ∃u ∀(a, b) ∈ {(s, u), (u, t)} Ψn,m/2(a, b).
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Then we have, size(Ψn,m(s, t)) = O(S(n))+ size(Ψn,m/2) which is clearly polynomially bounded.
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Lecture 13

Savitch’s theorem
Scribe: Yeshwant Pandit

In today’s lecture notes, we will see more properties of space classes. The first result we’ll
see is known as Savitch’s theorem. A nice consequence of this result is NPSPACE = PSPACE.

13.1 The easier observation of PSPACE = NPSPACE

Let us first try to show that NPSPACE = PSPACE using the result discussed in the last lecture.
In the previous lecture, we showed that TQBF is PSPACE-complete. Recall, to show that TQBF
is PSPACE-hard, we considered a language L ∈ PSPACE, and determining whether x ∈ L
was equivalent to determining whether there is a path from the start configuration Cstart to the
accept configuration Caccept in the configuration graph, and this was captured using a polyno-
mially long TQBF formula. Notice that in the proof, there was no mention of out-degree being
1 or 2 in the configuration graph. This means that the same proof can be used to show that
TQBF is NPSPACE-hard. Since TQBF ∈ PSPACE, we have NPSPACE = PSPACE.

13.2 General case of Savitch’s theorem

Theorem 13.1 (Savitch’s theorem). For any space-constructible S : N → N with S(n) ≥ log n,
NSPACE(S(n)) ⊆ SPACE(S(n)2)

Proof. Let L ∈ NSPACE(S(n)) be a language decided by a TM M. For every x ∈ {0, 1}n,
determining whether x ∈ L is equivalent to checking if there is a path from Cstart to Caccept in
the configuration graph GM,x. Note that the configuration graph has at most 2O(S(n)) vertices.
We describe a recursive algorithm PATHEXISTS(C1, C2, i) (Algorithm 5) that returns "1" if there
is a path of length at most 2i from C1 to C2 in the configuration graph GM,x and "0" otherwise.
Observe that there is a path of length at most 2i from C1 to C2 in GM,x if and only if there is a
configuration C

′
such that the paths from C1 to C

′
and from C2 to C

′
are at most 2i−1 long.

On receiving inputs C1, C2, and i, the algorithm PATHEXISTS for i ≥ 1 goes over all vertices
and outputs "1" if it finds a configuration C

′
such that both recursive calls PATHEXISTS(C1, C

′
, i−

1) and PATHEXISTS(C
′
, C2, i − 1) return "1". Note that the recursive call PATHEXISTS(C

′
, C2, i −
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1) can reuse the space already used by PATHEXISTS(C1, C
′
, i − 1). Let us find out the space

complexity of PATHEXISTS(C1, C2, i). For this, we define ∆M(i) to be the space required by
PATHEXISTS(C1, C2, i) on the worst pair of configurations C1,C2. Note that going over all ver-
tices requires an extra O(S(n)) space. Since we reuse the space for the recursive invocations,
we get the following recurrence.

∆M(i) ≤ ∆M(i − 1) + O(S(n))

Since ∆M(0) ≤ O(S(n)), solving the recurrence we get

∆M(i) = O(i · S(n))

Hence, we have ∆M(O(S(n))) = O(S(n)2). Thus, to determine whether x ∈ L, we set C1 =

Cstart, C2 = Caccept and i = O(S(n)) and invoke PATHEXISTS. This invocation runs in O(S(n)2)

space. This concludes the proof.

Algorithm 5 PATHEXISTS

Input: C1, C2, and i.
Output: "1" if there is a path of length at most 2i from C1 to C2 and "0" otherwise.

1: if i ≤ 0 then
2: if (C1 = C2) ∨ (C1, C2) is an edge then
3: return 1
4: else
5: return 0
6: end if
7: else
8: for all C

′ ∈ V(GM,x) do
9: a = PATHEXISTS(C1, C

′
, i − 1)

10: b = PATHEXISTS(C
′
, C2, i − 1)

11: if a ∧ b then
12: return 1
13: end if
14: end for
15: return 0
16: end if

Corollary 13.2. • NPSPACE = PSPACE

• NL ⊆ L2 = DSPACE(log2 n)
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Lecture 14

Log-space reductions and completeness
Scribe: Sourav Roy

14.1 Log-space reductions/Log-space Transducers:

Definition 14.1 (Logspace reductions). Let us take A, B to be two languages. We will say A ≤L B if
there exists a function f computable in log-space such that x ∈ A iff f (x) ∈ B. ♢

14.1.1 Some of log-space reductions

We list some simple properties of log-space reductions with brief proof outlines.

1. A ≤L B and B ∈ L =⇒ A ∈ L.
Outline of proof: Suppose f : Σ∗ → Σ∗ is the log-space computable reduction from A
to B. The main issue with the naive approach is that the final machine cannot afford to
write down the output of f (x) entirely. However, we can always re-compute it as and
when we need.

Essentially, we begin running M (that accepts B) on “ f (x)” but whener this machine
needs to read the i-th bit of f (x), we run the reduction f , maintain a counter for output
bits, and wait for the i-th bit of f (x) to be computed (discarding all other bits).

2. A ≤L B and B ≤L C implies A ≤L C. [Similar proofs]

14.2 NL-completeness

Definition 14.2 (NL-completeness under log-space reductions). A is NL-complete under log-space
reductions if

1. A ∈ NL

2. (NL-hardness) For all B ∈ NL, we have B ≤L A.

(Unless otherwise stated, we’ll assume that NL-completness is under log-space reductions.) ♢
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The following problem is the most natural NL-complete language — directed reachability,
or simply Dir-Path.

Definition 14.3 (Dir-Path). The language Dir-Path is defined as

♢ {⟨G, s, t⟩ : G is a directed graph and there is a directed path from s to t} .

Theorem 14.4. Dir-Path is NL-Complete.

Proof sketch. By guessing one vertex at a time, we can ‘guess’ a path from s to t, thus showing
that Dir-Path ∈ NL.

To show hardness, let B ∈ NL and suppose M is the NL-machine deciding it. For an input
x, we can build the ‘configuration graph’ GM,x for M on input x, and simply reduce the in-
put x to the instance

〈
GM,x, Cx,start, Cx,accept

〉
(where Cx,start, Cx,accept are the ‘start’ and ‘accept’

configurations respectively).
It is not hard to check that this can be computed in log-space.

Other complete problems for NL include checking if a graph G has a directed cycle.

For undirected graphs, there is a surprising result of Reingold that shows that the undi-
rected version of the above problems are actually in L.

Theorem 14.5 (Reingold, 2005). Undir-Path ∈ L (same for finding undirected cycles).

14.3 Certificate / witness perspective of NL

Just like we could equivalently define NP via the verifier / certificate / witness approach,
a natural question is whether there is a similar definition for NL. A first attempt would be
something along the following lines:

A ∈ NL iff (?) There exists a deterministic logspace machine M such that x ∈ L iff
∃w with |w| = poly(|x|) such that M accepts (x, w).

Unfortunately, the above definition also includes SAT (we can always check if a particular
assignment satisfies a formula in log-space). Thus, we need to be careful.

We fix the issue by insisting that the witness-tape is read-once and that turns out to be an
equivalent definition of NL.

Proposition 14.6 (Certificate / witness definition of NL). The set of languages L with the property:

There is some deterministic machine log-space M with a read-once witness tape such that
x ∈ L if and only if there is some w with |w| = poly(|x|) such that M(x, w) accepts.

exactly co-incides with the class NL.
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Lecture 15

Immerman-Szelepcsényi theorem,
Circuit Lower Bounds
Scribe: Soumyajit Pyne

15.1 Immerman-Szelepcsényi Theorem:

One of the most surprising results related to NL is the following theorem of Immerman and
Szelepsényi.

Theorem 15.1 (Immerman and Szelepsényi.). NL = coNL.

We will prove this by exhibiting a NL-machine that solves a coNL-complete problem, namely
the complement of the Dir-Path problem.

Definition 15.2 (Dir-Path).

Dir-Path := {⟨G, s, t⟩ : G is a directed graph and there is no directed path from s to t} .

♢

Theorem 15.1 is proved by exhibiting a certificate that the vertex t is not reachable from s in
the graph G and this is done via a technique that is now referred to as ‘inductive counting’. On
a high level, we will ‘certify’ that t is not reachable from s by instead certifying the number m
of vertices that are reachable from s, and giving a certificate of reachability for all n − m other
vertices in G.

Proof sketch. We define the following sets:

Ri = {u ∈ G : There is a path of length at most i from s to t} .

Clearly, s and t are disconnected if and only if t /∈ Rn.
Certainly membership in Rn can be certified easily — just provide the path as the certificate.

What about non-membership? Suppose, somehow, the verifier knew the size rn = |Rn|. Then,
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a certificate to show that t /∈ Rn could just be of the form [u1, path for u1], · · · , [urn , path for urn ]

where the ui’s are in lexicographically increasing order and none of them is t.
But how do we certify that rn is correct? And this is the key idea: if we knew the value

of rn−1, we can actually give a certificate for the value of rn. This process is called inductive
counting and is elaborated below.

Base Case: Note that R0 = {s} and hence r0 = 1 is trivially certifiable.

Inductive Step: Assume that we have already provided a certificate for the value of ri−1. We
now wish to provide a certificate for the value of ri. The certificate will be of the following
type:

[ri][u1, b1, cert. for ∈ Ri or /∈ Ri] · · · [un, bn, cert. for ∈ Ri or /∈ Ri]

where bj is the indicator for whether uj ∈ Ri, and the ui’s are in ascending order.

Certificate for uj ∈ Ri: Provide a path of length at most i starting from s as the certificate.

Certificate for uj /∈ Ri: This certificate is a little more involved. The certificate takes the
following form and will infact not even depend on uj (the verifier’s check will though):

[w1, cert. for w1 ∈ Ri−1] · · · [wri−1 , cert. for wri−1 ∈ Ri−1]

where the wk’s are the elements of Ri−1 in ascending order. Once again the certificate for
membership is just a path of length i − 1 or less.

The above is enough to convince the verifier that uj /∈ Ri by just checking that uj is not one
step away from any of the ri−1 many w’s in Ri−1.

Putting it all together, we can build a certificate for t /∈ Rn that is verifiable by a log-space
verifier. Thus, Dir-Path ∈ NL.

15.2 Circuits

A Boolean circuit is simply a visual representation demonstrating the process of generating an
output based on an input through a combination of fundamental Boolean operations involving
OR, AND, and NOT gates (see figure 15.1).

Formally, we define a boolean circuit as follows.

Definition 15.3 (Boolean Circuits). For every n, m ∈ N a Boolean circuit C with n inputs and m
outputs is a directed acyclic graph. It contains n nodes with no incoming edges; called the input nodes
and m nodes with no outgoing edges, called the output nodes. All other nodes are called gates and are
labeled with one of ∨, ∧ or ¬. The size of C denoted by |C| is the number of nodes in it.

The depth of a Boolean circuit refers to the length of the longest path from the input node to the
output node. ♢
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OR

AND AND

NOT NOT

x1 x2

x1 ⊕ x2

Figure 15.1: This circuit returns 1 iff x1 = x2

The boolean circuit in the above definition implements functions from {0, 1}n to {0, 1}m.
Now we will prove the following claim.

Claim 15.4. Addition of two integers can be done with a constant depth, unbounded fanin circuit.

Proof sketch. Let x and y be two n bit integers and z = x + y, where zi, xi, and yi represent the i-
th bit of z, x, and y, respectively. For each zi, we will design a constant depth circuit. ci denotes
the carry generated by adding xi and yi. Therefore, for all i ≤ n, we have zi = xi ⊕ yi ⊕ ci−1

(c0 = 0) and zn+1 = cn. Now we will build a constant depth circuit for each ci. Note that ci = 1
if and only if there exists a j ≤ i such that xj ∧ yj = 1 and for all i ≥ j′ ≥ j, xj′ ∨ yj′ = 1. Let j̃
be a Boolean variable corresponding to such j, i.e., j̃ = 1 iff such j exists. We can build a depth
3 circuit (figure 15.2) for each j̃ such that j ≤ i. Therefore, ci = ĩ ∨ (ĩ − 1) ∨ ... ∨ 1̃ which can be
realized by a constant depth circuit. Note that the size of the resulting circuit is polynomial in
n.

∧

∨ ∨ ∨ ∧

xi yi xi−1 yi−1 xj yj

j̃

· · ·

Figure 15.2: Depth 2 circuit for j̃

Now we define equivalent definition of circuits for deciding a language.
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Definition 15.5 (Circuit Family and Language Recognition). Let T : N → N be a function. A
T(n)-sized circuit family is a sequence {Cn}n∈N of Boolean circuits, where Cn has n inputs and a single
output, such that |Cn| ≤ T(n) for every n. We say that a language L ∈ SIZE(T(n)) if there exists a
T(n)-size circuit family {Cn}n∈N such that for every x ∈ {0, 1}n, x ∈ L ⇐⇒ C|x|(x) = 1. ♢

Circuit families can be surprisingly powerful because there is no expectation on how long
it would build the n-th circuit. In fact, here is a ridiculous language that is computable by very
small circuit families.

L = {1i : Mi halts on a blank tape input}

The above language is of course undecideable. However, it is computable by a really simple
circuit family.

Ci =

(x1 ∧ ... ∧ xi) if 1i ∈ L

¬(x1 ∧ ... ∧ xi) otherwise

Therefore, L ∈ size(n).

15.2.1 Some common circuit classes

Now we define two models of computation in circuits.

Definition 15.6 (NCi). A language is in NCi if there exists a poly size circuit with two fanins and logi n
depth that decides it. ♢

Definition 15.7 (ACi). A language is in ACi if there exists a poly size circuit with unbounded fanin
and logi n depth that decides it. ♢

It is easy to see that AC0 ⊆ NC1. In the next lecture, we will show that the problem Parity ∈
NC1 but Parity /∈ AC0.
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Lecture 16

PARITY is not in AC0

Scribe: Bikshan Chatterjee

Today’s lecture will focus on the language Parityn and the circuit class AC0.

Parityn: computes the parity of the n input bits.

It is a sensitive function: changing any input bit changes the output. Intuitively, it feels like
a constant depth circuit made of AND / OR / NOT gates cannot be too sensitive.

Upper bounds for Parityn Parityn can be computed by circuits of log n depth, O(n) size using
divide and conquer (recursively compute parity of left half and right half, then XOR). The gates
only require fan in 2. This shows Parityn ∈ NC1 (circuits with fan in 2, O(log n) depth). It can
be shown Parityn can be computed by depth d circuits of size O(2n1/(d−1)

).
What sort of lower bound can we prove for depth-d circuits computing Parityn? Can it be

computed by polynomial sized depth-d circuits? There was a long line of results that showed
that Parityn requires AC0 circuits of very large size to compute them starting with the result of
Furst-Saxe-Sipser, culminating in work of Håstad. In this lecture, we will see a proof due to
Razborov and Smolensky.

Theorem 16.1 (Razborov Smolensky). Parityn requires depth d cicruits of size 2Ω(n1/2d).

The result relies on a notion of ‘approximating a function by a polynomial’ which shortly.
But roughly speaking, Theorem 16.1 is proved via the following two lemmas (which is perhaps
vague at the moment).

Lemma. Any AC0 circuit of depth d and size s can be “approximated” by a polynomial of degree
O(log s)d.

Lemma. Any polynomial that “approximates” Parityn must have degree Ω(
√

n).

The above two lemmas would immediately yield that (log s)d = Ω(
√

n) which implies that
s = 2Ω(n1/2d).

We now proceed towards defining the notion of approximation.
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16.1 Approximating a function by a polynomial

We will restrict ourselves to the field F3 consisting of three elements {0, 1, 2} (or {0, 1,−1}).
An element a⃗ ∈ {0, 1}n can be thought of as an element of Fn

3 as well.

Definition 16.2 (Computation by polynomials). Let F : {0, 1}n → {0, 1} be a Boolean function.
We will say that a polynomial g(x1, . . . , xn) ∈ F3[x1, . . . , xn] computes F correctly at input a⃗ ∈ {0, 1}n

if F(⃗a) = g(⃗a) (where we are identifying 0, 1 with the 0, 1 inside F3). ♢

For example, the following are polynomials for the OR and AND functions that compute it
correctly everywhere.

g∧(x⃗) = x1x2 . . . xn

g∨(x⃗) = 1 − (1 − x1)(1 − x2) . . . (1 − xn)

However, both the above have degree n and we would like to ask if we can at least approx-
imate the function using a far lower degree polynomial.

16.1.1 Weak approximations

Definition 16.3 (Weak-approximation). We will say that a polynomial g(x⃗) ∈ F3 [⃗x] ε-weakly ap-
proximates a Boolean function F : {0, 1}n → {0, 1} if

Pr
a⃗∈{0,1}n

[g(⃗a) ̸= F(⃗a)] ≤ ε.

In words, g computes F correctly on all but an ε-fraction of the inputs. ♢

Under this definition, ∧ and ∨ of fan in n can be 1/2n approximated with 0 degree polyno-
mials

g∧(x⃗) = 0 and g∨(x⃗) = 1

where x⃗ = (x1, . . . , xn).

However, if we have a circuit consisting of many AND/OR gates, it is unclear how we can
‘compose’ these approximating polynomials in a meaningful way. It is because of these reasons
that a stronger notion of approximation is studied that is more amenable to composition.

16.1.2 Strong-approximation

Definition 16.4 (Strong-approximation by polynomials). For x⃗ = (x1, . . . , xn) ∈ Fn
3 and r⃗ =

(r1, . . . , rm) ∈ Fm
3 , a polynomial g(x⃗, r⃗) ∈ F3 [⃗x, r⃗] ε-approximates F : {0, 1}n → {0, 1} if

∀⃗a ∈ {0, 1}n : Pr
r⃗∈Fm

3

[g(⃗a, r⃗) ̸= F(⃗a)] ≥ ε.

That is, each g(x⃗, r⃗) ∈ F3 [⃗x, r⃗] gives a set of polynomials (indexed by different values of r⃗). The
above notion gives a bound on the error probability over random choice of r⃗ for all inputs instead of
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error for a randomly chosen input. ♢

16.1.3 Strong-approximation for OR

We begin by providing a 2/3-approximating polynomial for OR (for fan-in n).

g(x⃗, r⃗) = x1r1 + x2r2 + . . . + xnrn

If all xi = 0, g(x⃗, r⃗) = 0 irrespective of r⃗, so correctly computes OR with probability 1.
If some xi = 1, ∑ xjrj is a uniformly random element in F3.

ri needs to be equal to 1 − (whatever the rest of the sum is), and ri is independent of the rest of
r⃗. So it happens with probability 1/3.

Currently the error probability is 2/3 (worst case; when some xi = 1). This can be improved
by using the polynomial

g′(x⃗, r⃗) = (x1r1 + x2r2 + . . . + xnrn)
2

We still have for all xi = 0, g(x⃗, r⃗) = 0 irrespective of r⃗. When some xi = 1, g′(x⃗, r⃗) is correct
whenever g(x⃗, r⃗) is 1 or −1. So correct with probability 2/3, error probability 1/3.

Amplifying the success: This can be amplified by taking t samples of r⃗ instead of 1

g∨(x⃗, r⃗1, r⃗2, . . . , r⃗t) = 1 −
t

∏
i=1

(1 − g′(x⃗, r⃗i))

(each r⃗i is from Fn
3 )

This is still 0 when all xi are 0. And when some xi = 1, this is 1 whenever some sample r⃗i

makes g′(x⃗, r⃗i) = 1 (which happens with probability 2/3).
This polynomial is wrong (for some xi = 1 case) only when g′(x⃗, r⃗i) = 0 for all r⃗i. The error
probability is (1/3)t.

Lemma 16.5 (Strong-approximation for OR). The OR function on n bits can be ε-approximated
using a polynomial of degree O(log(1/ε)).

Proof. Follows by setting (1/3)t < ε, and the degree of the polynomial (in x⃗) is 2t.

Handling NOT gates NOT gates have fixed fan in 1. It is easy to see that if g is an approxi-
mating polynomial for F, then 1 − g is an approximating polynomial for ¬F

16.1.4 Strong-approximation for AND

x⃗ = (x1, . . . , xn). Using De Morgan’s law,

AND(x1, . . . , xn) = ¬OR(¬x1, . . . ,¬xn)
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AND can be (1/3)t approximated by the degree 2t polynomial

g∧(x⃗, r⃗) = 1 − g∨((1 − x1, 1 − x2, . . . , 1 − xn), r⃗)

(here r⃗ is a tn element vector made of (r⃗1, . . . , r⃗t))

16.1.5 Handling constant-depth circuits

Now a depth d circuit C can be approximated by composing the AND, OR, NOT polynomials.
Let the size of the circuit be s (number of gates).

To get an ε-approximating polynomial for the entire circuit, we begin with a δ-approximating
polynomial for each AND, OR and NOT gates and compose them in the obvious way. We
know that the degree of the δ-approximating polynomials is O(log(1/δ)) each and thus com-
posing them in depth d will make the degree no more than O(log(1/δ))d.

Eg. C =

∧ ¬

∧

∨

x1 x2 x3 x4

is approximated by

fC((x1, x2, x3, x4), (r1, r2, r3))

= g∨,2 (g∧,2((x1, x2), r1), 1 − g∧,2((x2, x3, x4), r2), r3)

The only thing to check is the error probability of this composed approximating polyno-
mial. This can be bounded by the probability of event that any of the s gates is wrong. Let us
fix any input a⃗

Pr
r
[polynomial computes wrong value at some gate]

≤
s

∑
i=1

Pr
r
[polynomial computes wrong value at i] = s · δ.

Thus, if we eventually want to get an ε-approximating polynomial, we need to set δ = ε/s and
hence the degree of the approximating polynomial is therefore O(log(s/ε))d.

We summarise this as the following lemma.

Lemma 16.6 (Strong-approximation for AC0). Any Boolean function computable by a size s depth d
circuit can be (1/4)-approximated using a polynomial of degree at most O(log s)d
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16.2 On strong-approximations for Parityn

The following lemma will allow us to complete the proof of Theorem 16.1.

Lemma 16.7 (Parity requires high degree to approximate). If g(x1, . . . , xn) ∈ F3[x1, . . . , xn] is a
(1/4)-weak approximation for Parityn, i.e.

Pr
a⃗∈{0,1}n

[g(⃗a ̸= Parityn (⃗a))] ≤ 1
4

,

then deg(g) ≥
√

n
4 .

(The above lemma was why we chose F3 and not F2 since the Parityn can be trivially com-
puted over F2 via the polynomial x1 + · · ·+ xn.)

The above lemma is stronger than stating that any strong-approximation for Parityn requires
degree Ω(

√
n) — if g(x⃗, r⃗) ∈ F3 [⃗x, r⃗] is an (1/4)-strong approximation for Parityn, then there

is some setting for r⃗ = α⃗ such that g′(x⃗) = g(x⃗, α⃗) is a (1/4)-weak approximation for Parityn.

16.2.1 Proof of Lemma 16.7

Let us assume that f (x⃗) is a polynomial that (1/4)-weakly approximates Parityn.

Switching from {0, 1} to {1,−1}: It would be convenient to switch perspective to the {1,−1}
basis since parity in this world (let’s call it P(x⃗) : {−1, 1}n → {−1, 1}) is simply the monomial
x1 · · · xn.

If f (x⃗) is an approximating polynomial for Parityn, then the polynomial

g(x⃗) = 1 + f (x1 + 1, . . . , xn + 1)

is an approximating polynomial for P(x⃗) in the {−1, 1}n world. This doesn’t change the de-
gree of the polynomial. [This is just using the fact that the map x 7→ x + 1 maps 0 to 1 and 1 to
2 = −1 mod 3.]

Let G =
{⃗

a ∈ {−1, 1}n : g(⃗a) = a1 · · · an
}

. By the hypothesis, we have that |G| ≥ (3/4) ·
2n. Let deg(g) = d. Our goal is to prove that d = Ω(

√
n).

Consider the space of all functions F = {H : G → F3}. Clearly, |G| = 3|G|. We will com-
pute the site of the set differently in terms of d by showing that all of these functions have a
structured polynomial h(x⃗) that computes it exactly on all of G and count the number of such
structured polynomials.

Any function from Q : Fn
3 → F3 can be computed by some polynomial q(x⃗) ∈ F3 [⃗x] using
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interpolation as follows:

q(x⃗) = ∑
a⃗∈Fn

3

Q(⃗a) · ∏
i

∏
α ̸=ai

xi − α

ai − α

and thus any function H ∈ G has such a polynomial h(x⃗). Furthermore, since we only care
about evaluating on a subset G of {−1, 1}n, we can make use of the fact that x2 = 1 for x = ±1
and thus assume without loss of generality that h(x⃗) is in fact a multilinear polynomial that
agrees with H on all of G.

We will now further simplify the polynomial h(x⃗) by making use of the fact that, over
G, we have x1 · · · xn = g(x⃗), the purported approximating polynomial for P(x⃗). Using this,
any monomial of h(x⃗) with degree > n/2 can be replaced as follows, without changing its
evaluation on any point of G:

∏
i∈S

xi = (∏
i∈S

xi) · x1x2 . . . xn = (∏
i∈S

xi) · g(x⃗),

again using the fact that x2
i = 1 in G and x1 · · · xn = g(x⃗) in G. The above process may once

again introduce some x2
i terms that we can eliminate again. Also note that the degree of the

RHS above is at most (n/2) + d since |S| ≥ (n/2).
Therefore, we now have that any H : G → F3 can be expressed as a multilinear polynomial

h(x⃗) ∈ F3 [⃗x] of degree at most (n/2) + d. Hence, the size of G is at most the number of such
structured polynomials.

Suppose the number of monomials possible monomials in such structured polynomials is
at most M, then the number of such polynomials is at most 3M (by choosing coefficients for
each such monomial). Hence

G = 3|G| = 30.75·2n ≤ 3M

=⇒ M ≥ 0.75 · 2n.

On the other hand, we can bound M via

M =

(
n
0

)
+ · · ·+

(
n

n
2 + d

)
=

((
n
0

)
+ · · ·+

(
n
n
2

))
+

((
n

n
2 + 1

)
+ · · ·+

(
n

n
2 + d

))
= 2n−1 +

((
n

n
2 + 1

)
+ · · ·+

(
n

n
2 + d

))
≤ 2n−1 + d ·

(
n
n
2

)
≈ 2n−1 + d · 2n√

(π/2) · n
≤ 2n ·

(
1
2
+

d√
n

)

Thus, the only way M ≥ 0.75 · 2n is when d√
n ≥ 0.25, thus forcing d ≥

√
n

4 .
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Lecture 17

Circuit Families
Scribe: Siddharth Choudary

Definition 17.1. Circuit Families are sets of circuits {Cn : n ∈ N} where each Cn is a circuit on n
inputs. ♢

The power of these families comes from the fact that the complexity to construct each of
these circuits is not taken into account. These are called “Non-Uniform Models”.

Definition 17.2. {Cn : n ∈ N} is a D-Uniform circuit family for a language L if constructing Cn

from input 1n is in complexity class D.
♢

Theorem 17.3 (Karp-Lipton). If NP ⊆ SIZE(poly), then PH = Σ2 ∩ Π2.

Proof. Suppose L ∈ Π2. i.e. There is a Φ s.t.
x ∈ L ⇐⇒ ∀y∃zΦx(y, z) (⋆)

By assumption, SAT is computable by a family of poly-size circuits. i.e.
∃Cm∀y : CheckSAT&Verify(Φx(y, _), Cm) (†)

Algorithm 6 CheckSAT&Verify(Φ, C)
if C(Φ(_)) =False then

return False
else (i.e. C says that Φ ∈ SAT)

Use C to get satisfying assignment ‘a’ for Φ
if any error then

return False
else if Φ(a) =True then

return True
else

return False
end if

end if

Therefore, if (⋆) is true, then (†) is true by hypothesis, and if (⋆) is false, then Check-
SAT&Verify never returns True, thus (†) is also false.
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Hence, L ∈ Σ2.
Therefore Π2 ⊆ Σ2 and thus PH collapses to Π2 ∩ Σ2.

17.1 Hierarchies

Let us look at some properties:

1. No. of functions from {0, 1}n to {0, 1} is 22n
.

2. No. of these functions that are computable by size s circuits is 2O(s log s) (using any linear
space representation of a circuit and assigning gates and inputs for each node.)

3. Any function is computable by a size n2n circuit. (by using CNF or DNF form)

From these properties, we can see that there are functions which cannot be computed by size
O(2n/n) circuits.

Similarly, we have that SIZE(s) ⊊ SIZE(s ∗ 100n2).

17.2 Turing Machines with advice

Definition 17.4 (Advice). An advice is a set {zi ∈ {0, 1}∗ : i ∈ N} and its associated length
function ℓ : N → N defined by ℓ(i) = |zi|. A language L ∈ C/ℓ iff there is a Turing Machine M in
complexity class C and advice {zi : i ∈ N} of length ℓ(i) s.t. x ∈ L ⇐⇒ M(x, z|x|) = 1. ♢

In other words, for every i, there is a string z of length l(i) s.t. M with advice z correctly
decides membership of any length i input x.

P/ℓ = {L computed by det poly time TM with ℓ-length advice}.

17.2.1 Class Containments

• P/ poly ⊆ SIZE(poly) by Cook-Levin and freezing zi per length.

• P/ poly ⊇ SIZE(poly) by taking circuit description as advice.

• coNEXP ⊆ NEXP/ poly by taking zn as number of strings of length n that are not in L
and taking non-det guess as the sequence of pairs (x, y) for every x ∈ L of length n.
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Lecture 18

Randomised computation
Scribe: Sourav Roy

In this module of the course, we will be dealing with randomised algorithms. Here are a
few examples of interesting randomised algorithms:

1. The Miller-Rabin test for primality: a one-sided randomised algorithm to check if a given
n-bit number is prime.

2. 2-approximation for Max-Cut: Given a graph G, the task is to compute a “cut” that is
at least 50% as large as the best possible “cut”. This problem admits a really simple
randomised algorithm:

Pick a set S at random by adding every vertex of G to the set S with probability
1/2 each.

This simple randomised algorithm actually has an expected cut size of |E|/2, which is
certainly at least 50% of the largest possible cut size.

3. Bipartite matching: Given a graph G, check if there is a bipartite matching in the graph.

There is a simple randomised algorithm obtained by building a modified bipartite adja-
cency matrix A = (aij)i,j defined as follows:

ai,j =

0 if ui is not connected to vj

randomly chosen from
{

0, . . . , n2} if ui is connected to vj

The algorithm returns “Yes” if det(A) ̸= 0, and zero otherwise.

4. Computing square-roots modulo p: Given an integer a and a prime p (both given in
binary), compute a “square root” of a modulo p (if one exists). That is, output an integer
b such that b2 = a mod p, if one exists.

Surprisingly, checking if a square-root exists turns out to be easy.

Fact 18.1. a has a square-root modulo p if and only if a(p−1)/2 = 1 mod p.
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Proof sketch. Follows from the fact that F∗
p is cyclic (with say g as a generator), and the

only a’s that have a square root are those of the form g2i. Thus, a(p−1)/2 = g2i·(p−1)/2 =(
gi)p−1

= 1 mod p. And, the equation x(p−1)/2 − 1 = 0 has at most (p − 1)/2 solutions
and so this equation exactly characterises the elements that have a square-root.

Turns out, this is a problem for which we know a randomised algorithm, but we have no
known deterministic algorithm that is efficient!

18.1 Modelling randomised Computation in TMs

We will model randomised computation via the same syntactics used for non-deterministic
and co-non-deterministic machines. The machine has two transitions functions, δ0 and δ1, and
we will pretend the machine tosses a fair coin to choose between the two transitions at each
step. Thus, each computational path is associated with a certain probability mass. We’ll refer
to these as randomised Turing Machines (although syntactically they are the same as non-
deterministic or co-nondeterministic machines, but have different semantics for acceptance /
rejection).

The acceptance criterion for various complexity classes will be based on this probability.
We will use M(x, r) to denote the final accept/reject status when M runs on input x on path
defined by r.

18.1.1 Randomised complexity classes

Definition 18.2 (BPP, or bounded-error probability polynomial time). For two constants 0 ≤ s <
c ≤ 1, define the class BPPs,c as the set of language L such that there is some randomised polynomial
time Turing machine M such that for all x ∈ Σ∗

x ∈ L =⇒ Pr
r
[M(x, r) = accept] ≥ c,

x /∈ L =⇒ Pr
r
[M(x, r) = accept] ≤ s,

(Typically, c = 2
3 and s = 1

3 .) ♢

Definition 18.3 (RP and coRP). For a constant 0 < p < 1, define the class RPp as the set of language
L such that there is some randomised polynomial time Turing machine M such that for all x ∈ Σ∗

x ∈ L =⇒ Pr
r
[M(x, r) = accept] ≥ (1 − p),

x /∈ L =⇒ Pr
r
[M(x, r) = accept] = 0.

Similarly, coRPp is the set of languages L such that

x ∈ L =⇒ Pr
r
[M(x, r) = accept] = 1,

x /∈ L =⇒ Pr
r
[M(x, r) = accept] ≤ p.
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(Typically, p = 1
2 . ) ♢

In words, RPp and coRPp are one-sided error randomised algorithms, with the error proba-
bility being p. On the other hand, BPPs,c refer to two-sided error randomised algorithms where
s is the false-positive probability and (1 − c) is the false-negative probability.

Observation 18.4. RP, coRP ⊆ BPP, and RP ⊆ NP and coRP ⊆ coNP.

It is widely believed that BPP = P although we are far from proving it. However, we will
show that BPP is within the second level of the polynomial hierarchy in the next class.

18.2 Success amplification

18.2.1 For one-sided-error randomised algorithms

Let us compare RP0.5 with RPδ, for δ < 0.5. Obviously, RPδ ⊆ RP0.5 as any algorithm that has
an error of less than δ certainly has error less than 0.5.

Turns out, we can easily convert a one-sided randomised algorithm A with error 0.5 to
another algorithm A′ with error δ. We define the new algorithm A′ as follows

Compute bi = M(x, ri) for i = 1, . . . , t, where each ri is a fresh random string.
Accept x if any of the bi’s are accept.

One can easily see that

x /∈ L =⇒ Pr
r′
[A′(x, r′) = accept] = 0,

x /∈ L =⇒ Pr
r′
[A′(x, r′) ̸= accept] = (Pr

r
[A(x, r) = reject])t ≤ (0.5)t.

Thus, setting t = log2(1/δ) gives us the required randomised algorithm with error at most δ.
Note that the running time of the algorithm increases by a factor of t. As long as t =

poly(n), we are still within the range of polynomial time algorithms. Thus, we can tolerate
δ = 1/2poly(n).

Similarly, we could have also replaced 0.5 with 1 − 1/ poly(n). Thus, we can summarise
this in the following lemma.

Lemma 18.5 (Success amplification for RP).

RP1− 1
poly(n)

= RP0.5 = RP 1
2poly(n)

In words, even if we had a randomised algorithm with an inverse-polynomially small suc-
cess probability, we can convert it to another randomised algorithm (with only a polynomial
slow-down in time) where the error probability is inverse-exponentially small.

Thus, we will simply refer to the class as RP and ignore the constant.

18.2.2 For two-sided-error randomised algorithms.

How does the class BPP 1
3 , 2

3
compare with BPP0.1,0.9? Once again, one direction is trivial. In

fact, if c′ > c and s′ < s we always have BPPs′,c′ ⊆ BPPs,c just from the definitions.
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With some modest conditions on c′, s′, we can prove an equivalence between them. Before
that, we need the following well-known bound called the Chernoff-Hoeffding inequality.

Theorem 18.6 (Chernoff-Hoeffding inequality). Suppose X1, . . . , Xn are n independent, identically
distributed random variables with Xi ∈ {0, 1} and E[Xi] = µ. Let X = X1+···+Xn

n . Then, for any
0 < ε < 1,

Pr[|X − µ| > ε · µ] ≤ 2e−ε2nµ/3.

Using this, we can convert a BPP 1
2−ε, 1

2+ε algorithm A machine in to a BPPδ,(1−δ) algorithm
A′ as follows:

Set t = O
( 1

ε2 log
( 1

δ

))
. Let bi = A(x, ri) for i = 1, . . . , t where ri is an independently

chosen random string.

If ∑ bi > (t/2), accept. Otherwise, reject

It is easy to see that if A was a BPP 1
2−ε, 1

2+ε, then A′ is a BPPδ,1−δ.
Once again, since we can tolerate t = poly(n), this means that ε can be as small as 1

poly(n)
and δ can be as small as 1

2poly(n) . Thus, we can summarise this the following lemma.

Lemma 18.7 (Success amplification for BPP).

BPP 1
2−

1
poly(n) , 1

2+
1

poly(n)
= BPP 1

3 , 2
3
= BPP 1

2poly(n) ,1− 1
2poly(n)

.

In other words, we can amplify just an inverse-polynomial gap between the yes and no
instances to exponentially small error.

In fact, it is not even important that the completeness and soundness probabilities are sym-
metric around 0.5. The following is left as an execise:

Exercise: Show that BPP0.6,0.7 = BPP.
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Lecture 19

Relationship between BPP and other
complexity classes
Scribe: Yeshwant Pandit

In this section, we’ll explore the connections between BPP and other complexity classes.
We will first show that BPP ⊆ P/poly.

Theorem 19.1 (Adleman). BPP ⊆ P/poly.

Proof. To prove the result, we consider a language L ∈ BPP and then use the advice definition
of P/poly to show that L ∈ P/poly. By the definition of BPP and its error reduction procedure,
we know L ∈ BPP if there exists a polynomial-time Turing machine M and a polynomial
p : N → N such that for every x ∈ {0, 1}∗,

x ∈ L =⇒ Pr
r∈{0,1}poly(|x|)

[M(x, r) = 1] ≥ 1 − δ

x /∈ L =⇒ Pr
r∈{0,1}poly(|x|)

[M(x, r) = 1] ≤ δ

where δ = 1
2poly(|x|) . To show L ∈ P/poly, we show the existence of an advice string r ∈

{0, 1}poly(n) that works for all x ∈ {0, 1}n. That means x ∈ L =⇒ M(x, r) = 1 and x /∈
L =⇒ M(x, r) = 0.

For simplicity, let m = poly(n). Let A denote 2n × 2m matrix whose rows correspond to all
input strings of length n and columns correspond to all random bits of length m. For an input
xi (i.e., row xi) and a random bit string rj (i.e., column rj), A[xi, rj] = ✓ if M(xi, rj) = L(xi),
where L(xi) = 1 if xi ∈ L and L(xi) = 0 otherwise. By the definition of BPP, every row has at
least (1 − δ) · 2m ✓ marks. Thus, we have at least 2n · (1 − δ) · 2m ✓ marks in total.

Our goal is to show that there exists a column rj with all ✓ marks. To the contrary assume
that every column has at least one × mark. Thus, the total number of × marks is at least 2m and
the total number of ✓ marks is at most 2n · 2m − 2m. To obtain a contradiction, the following
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should hold.

Total number of ✓ marks by assumption < Total number of ✓ marks by definition

2n · 2m − 2m < 2n · (1 − δ) · 2m

2n − 1 < 2n · (1 − δ)

∴ δ <
1
2n

Since δ = 1
2poly(n) , we can set δ = 1

2n+1 and get a contradiction. Hence, we obtain an advice r that
works for all inputs x ∈ {0, 1}n.

The next result establishes a connection between BPP and the polynomial hierarchy.

Theorem 19.2 (Gács-Sipser). BPP ⊆ ΣP
2 ∩ ΠP

2

Proof. Since BPP is closed under complementation, it is enough to prove that BPP ⊆ ΣP
2 .

Suppose L ∈ BPP. Then by the definition of BPP and its error reduction procedure, we
know L ∈ BPP if there exists a polynomial-time Turing machine M and a polynomial p : N →
N such that for every x ∈ {0, 1}∗,

x ∈ L =⇒ Pr
r∈{0,1}m

[M(x, r) = 1] ≥ 1 − δ

x /∈ L =⇒ Pr
r∈{0,1}m

[M(x, r) = 1] ≤ δ

where δ = 1
2q(|x|) , m = p(|x|), and p and q are polynomials. To prove L ∈ ΣP

2 , we need to show
x ∈ L ⇐⇒ ∃u ∈ {0, 1}q(|x|) ∀v ∈ {0, 1}q(|x|) Ψ(x, u, v), where q is a polynomial.

For x ∈ {0, 1}n, let Accept(x) = {r ∈ {0, 1}m|M(x, r) = 1}, i.e., the set of random strings r
for which the machine M accepts the input pair (x, r). Then we know |Accept(x)| ≥ (1 − δ) ·
2m if x ∈ L and |Accept(x)| ≤ δ · 2m otherwise.

For a set S ⊆ {0, 1}m and string u ∈ {0, 1}m, let S ⊕ u denote the shift of the set S by u:
S ⊕ u = {x ⊕ u|x ∈ S} where ⊕ denotes the bitwise XOR operator.

Now we use the following idea:

• If x ∈ L, i.e., |Accept(x)| ≥ (1 − δ) · 2m then using few translates u1, . . . uk we can cover
the set {0, 1}m entirely, i.e.,

⋃k
i=1(Accept(x) ⊕ ui) = {0, 1}m. This can be further inter-

preted as ∃u1, . . . uk ∀r ∈ {0, 1}m ∃i ∈ [k] r ∈ Accept(x) ⊕ ui which is equivalent to
∃u1, . . . uk ∀r ∈ {0, 1}m ∨k

i=1 (M(x, r ⊕ ui) = 1).

• If x /∈ L, i.e., |Accept(x)| ≤ δ · 2m then even after using all translates we cannot cover the
set {0, 1}m entirely, i.e.,

⋃k
i=1(Accept(x)⊕ui) ̸= {0, 1}m. This is equivalent to ∀u1, . . . uk ∃r ∈

{0, 1}m ∧k
i=1 (M(x, r ⊕ ui) = 0).

Claim 19.3. If δ, k satisfy δ · k < 1 then x /∈ L implies ∀u1, . . . uk
⋃k

i=1(Accept(x)⊕ ui) ̸= {0, 1}m

Proof. By the union bound we have |⋃k
i=1(Accept(x) ⊕ ui)| ≤ k · |Accept(x)| ≤ k · δ · 2m <

2m
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Claim 19.4. If δ, k satisfy 2m · δk < 1 then x ∈ L implies ∃u1, . . . , uk,
⋃k

i=1(Accept(x) ⊕ ui) =

{0, 1}m.

Proof. We prove this claim using probabilistic method. We show that if u1, . . . , uk are chosen
independently at random then Pr[

⋃k
i=1(Accept(x)⊕ ui) = {0, 1}m] > 0.

Pr[
k⋃

i=1

(Accept(x)⊕ ui) = {0, 1}m] = 1 − Pr[∃r ∈ {0, 1}m, r /∈
k⋃

i=1

(Accept(x)⊕ ui)]

> 1 − ∑
r∈{0,1}m

Pr[r /∈
k⋃

i=1

(Accept(x)⊕ ui)] [By union bound]

= 1 − ∑
r∈{0,1}m

Pr[∀i ∈ [k], r /∈ (Accept(x)⊕ ui)]

Since u1, . . . , uk we chosen independently at random we get,

Pr[
k⋃

i=1

(Accept(x)⊕ ui) = {0, 1}m] > 1 − ∑
r∈{0,1}m

(Pr[r /∈ (Accept(x)⊕ u)])k

> 1 − ∑
r∈{0,1}m

δk

= 1 − 2m · δk

Thus, if 2m · δk < 1 then we get that Pr[
⋃k

i=1(Accept(x)⊕ ui) = {0, 1}m] > 0.

Claims 19.3 and 19.4 require k to be such that m
log 1

δ

< k < 1
δ holds. Observe that k = m and

δ = 1
2n would satisfy this condition. Thus, these claims allow us to infer that L ∈ ΣP

2 . Hence,
BPP ⊆ ΣP

2 .
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