
CSS.203.1 COMPUTATIONAL COMPLEXITY (2024-I) PROBLEM SET 1

Problem Set 1

• Due date: 18 Feb, 2024 (released on 25 Jan, 2024; last addition on 6 Feb, 2024).

• The points for each problem is indicated on the side.

• More problems will be released gradually as we cover more material in class. At the
moment, the total for this set is 65 points.

• The problem set has a fair number of questions so please do not wait until close to the
deadline to start on them. Try and do one question every couple of days.

• Turn in your problem sets electronically (PDF; either LATEXed or scanned etc.) on Piazza
via private post.

• Collaboration with other students taking this course is encouraged, but collaboration
with others is not allowed. Irrespective of this, all writeups must be done individually
and must include names of all collaborators (if any).

• Referring to sources other than the text book and class notes is STRONGLY DISCOUR-
AGED. But if you do use an external source (eg.,other text books, lecture notes, or any
material available online), ACKNOWLEDGE all your sources (including collaborators)
in your writeup. This will not affect your grades. However, not acknowledging will be
treated as a serious case of academic dishonesty.

• Be clear in your writing.

1. [Classification of problems] (5)

For each of these problems, mention (with justification) if they are in P, or not (known to
be) in P, or in NP, or in coNP, or is NP-hard, or is coNP-hard etc.

(a) Factoring =
{
(1n, 1k) : n has a prime factor less than k

}
.

(b) Contradiction = {〈ϕ〉 : 〈ϕ〉 encodes a formula that is false for every assignment.}
(For example, 〈x1 ∧ ¬x1〉 is in the language.)

(c)

EquivalentFormulas =

{
(〈ϕ1〉 , 〈ϕ2〉) : 〈ϕ1〉 , 〈ϕ2〉 encode two formulas such that

for all x we have ϕ1(x) = ϕ2(x).

}
2. [Properties of reductions] (5)

We’ll use L1 ≤
poly
m L2 to denote that there is a polynomial-time many-one reduction from

L1 to L2.

Answer each of the questions with True/False with brief justifications.

(a) If L1 ≤
poly
m L2, then L2 ≤poly

m L1.

(b) If L1 ≤
poly
m L2, then L1 ≤

poly
m L2.

(c) If L is NP-hard, then L is coNP-hard.

(d) If L1 ≤
poly
m L2 and L2 ≤poly

m L3, then L1 ≤
poly
m L3.

(e) If L1 ≤lin
m L2 and L2 ≤lin

m L3, then L1 ≤lin
m L3. (Here, ≤lin

m refers to linear-time many-
one reductions).

git info: e4c1d20 , (2024-02-06 11:25:43 +0530) 1 of 3

CSS.203.1 COMPUTATIONAL COMPLEXITY (2024-I) PROBLEM SET 1

(f) If L1 ≤
quad
m L2 and L2 ≤quad

m L3, then L1 ≤
quad
m L3. (Here, ≤quad

m refers to quadratic-
time many-one reductions).

3. [Operations on languages] (10)

(a) If L1, L2 are two languages in NP, show that the languages L1 ∩ L2 and L1 ∪ L2 are
in NP as well.

(b) For any three languages L1, L2, L3,

Maj(L1, L2, L3) = {x : x is in at least two of the Li’s} .

Show that, if L1, L2, L3 ∈ NP, then the language Maj(L1, L2, L3) is also in NP.

(c) For two languages L1, L2, let L1 ⊕ L2 = {x ∈ Σ∗ : x is in exactly one of L1, L2}. If
L1, L2 ∈ NP∩ coNP, show that L1 ⊕ L2 ∈ NP∩ coNP as well.

4. [Not-all-equal-SAT] (5 + 3 + 2)

The ‘not-all-equal’ function NAE(x1, . . . , xk) is the Boolean function that is true when
not all the values of x1, . . . , xk are equal (that is, it is false only on the inputs 000 · · · 0 and
111 · · · 1).

Not-all-equal-SAT is the constrait satisfaction problem where each constraint is the above
NAE-function. (Similar to how CNF-SAT had the contraints as the ‘OR’ function.)

(a) Consider the following purported reduction from CNF-SAT to NAE-SAT:

Consider a new variable z. For each clause of the form, (xi ∨ xj ∨ xk) in the
CNF, add the constraint NAE(xi, xj, xk, z) to the NAE instance.

Prove that this is a legitimate reduction from CNF-SAT to NAE-SAT.

(b) If we begin with 3 CNF-SAT, then we end up with 4 NAE-SAT in the above reduc-
tion. Give a polynomial-time many-one reduction from 4 NAE-SAT to 3 NAE-SAT.

(c) What is the 2 NAE-SAT problem? Do you know it by a different name? Is it in P?

5. [SAT with few negations] (1 + 4)

(a) Consider the special case of CNF-SAT where you are promised that all literals are
un-negated (i.e., there are no ¬xi in the expression at all). Show that satisfiability of
such instances is in P.

(b) Consider the slightly more general specualial case of CNF-SAT where you are promised
that every clause has at most 1 negated variable. Prove that checking satisfiability
of such instances is also in P.

[Hint:Aclauseoftheformx1∨x2∨x3∨x4isequivalentto“allofx1,x2,x3
beingfalseforcesx4tobefalseaswell”.]

6. [Integer solutions to an equation] (5 + 0 + 0)

Consider the following language

L =

{
(a, b) : a, b ∈ Z ,

there exists integers x, y
such that x2 + ay + b = 0

}
Here, the inputs a, b are provided in binary.

(a) Prove that L ∈ NP.

git info: e4c1d20 , (2024-02-06 11:25:43 +0530) 2 of 3

CSS.203.1 COMPUTATIONAL COMPLEXITY (2024-I) PROBLEM SET 1

(b) What is your guess on whether or not this problem is NP-complete, and why do you
feel so? (Giving no answer here will cost you 5 points!)

(c) Above, we were checking if a given (by providing a, b) special quadratic polynomial
P(x, y) = x2 + ay + b had integer solutions. What do you think is the complexity
of the problem if you generalise it to arbitrary equations? For instance, given a
polynomial P(x1, x2, . . . , x58) of degree 4 polynomial (again, provided by presenting
its coefficients), what do you think is the complexity of checking if it has integer
solutions? (Giving no answer here will cost you 5 points!)

7. [Non-deterministic UTM simulations] (10)

Assume that T : N → N is a time-constructible function. Consider the following task
— you are given a source code of a non-deterministic machine M deciding a language
L running in time T : N → N but M uses 81234 tapes. Show that there is a different
machine M′ deciding the same language L with just 2 tapes with the running time T′ :
N→N of M′ satisfying T′(n) = O(T(n)).

In words, show that we can perform tape-reduction with just a constant overhead if we
have the power of non-determinism.

[Hint:InthemachineM′,useoneofthetapesto‘interleave’the81234tapes
ofMandusethesecondtapetowritedownaguessforwhattheheadsof
M′dointheTsteps.]

8. [Improving the time-hierarchy theorem] (15)

For this problem, you may assume that any ‘reasonable-looking’ function is time-constructible.
And whenever you see functions like n2 log3/4(n), assume that there is an implicit ceiling
to make sure this is an integer etc. (Basically don’t worry about technicalities!)

In class we proved that the deterministic time hierarchy theorem that stated the follow-
ing:

Suppose t1, t2 : N → N are non-decreasing time-constructible functions with
t1(n), t2(n) ≥ n. If we have t1(n) log t1(n) = o(t2(n)), then we have DTIME(t1) (
DTIME(t2).

One of your classmates asked in class if this log-factor can be made smaller. You can now
blame him for this question.

(a) Let t1, t2, f : N → N be time-constructible non-decreasing functions that satisfy
t1(n), t2(n), f (n) ≥ n. Show that DTIME(t1(n)) = DTIME(t2(n)) implies

DTIME(t1(f (n))) = DTIME(t2(f (n))).

[Hint:Padding.]

(b) Show that DTIME(n2) (DTIME(n2 log3/4(n)).

[Hint:Youmayhavetousetheabovepartmultipletimes.]

(c) Extend this to show that for any rational number a, ε satisfying a > 1 and 0 < ε < 1,
we have

DTIME(na) (DTIME(na(log n)ε).

git info: e4c1d20 , (2024-02-06 11:25:43 +0530) 3 of 3

