
CSS.203.1 COMPUTATIONAL COMPLEXITY (2024-I) PROBLEM SET 3

Problem Set 3

• Due date: 15 April, 2024 (released on 30 Mar, 2024).

• The points for each problem is indicated on the side.

• The total for this set is 100 points.

• The problem set has a fair number of questions so please do not wait until close to the
deadline to start on them. Try and do one question every couple of days.

• Turn in your problem sets electronically (PDF; either LATEXed or scanned etc.) on Piazza
via private post.

• Collaboration with other students taking this course is encouraged, but collaboration
with others is not allowed. Irrespective of this, all writeups must be done individually
and must include names of all collaborators (if any).

• Referring to sources other than the text book and class notes is STRONGLY DISCOUR-
AGED. But if you do use an external source (eg.,other text books, lecture notes, or any
material available online), ACKNOWLEDGE all your sources (including collaborators)
in your writeup. This will not affect your grades. However, not acknowledging will be
treated as a serious case of academic dishonesty.

• Be clear in your writing.

1. [One-sided-ness of NP] (5)

Show that if NP ⊆ BPP, then NP = RP.

2. [Alternate definition of ZPP] (5)

The class ZPP was defined via TMs that could potentially never halt on some random
strings, which was a bit awkward to deal with. Let us consider the following different
definition for a class ZPP′ that also captures ‘zero-error randomised algorithms’.

A ZPP′- machine M for a language L is a randomized machine that always
halts in poly(n)-time on all (random) computational paths after outputting either
0 or 1 or ? such that M(x, r) = {1(x ∈ L), ‘?’} and Prr[M(x, r) = ‘?’] ≤ 1

2 .
That is, on every input x, the machine M either outputs the correct answer for
“x ∈ L” or says it is unsure (by outputting a ‘?’) with an additional guarantee
that the machine is unsure on at most half the random paths.

Prove formally that ZPP′ = ZPP.

3. [Generalising Karp-Lipton-Sipser] (2 + 3 + 2 + 3 + 5)

(i) Consider the following language L corresponding to the encodings of True expres-
sions of the form

“(∃x ∈ {0, 1}m φ(x)) ⇔ (∀y ∈ {0, 1}m ψ(y))′′

where φ and ψ are some polynomial time computable predicates.
Show that L ∈ PH. At what level of the hierarchy is it in?

git info: d03c1fa , (2024-03-30 19:02:18 +0530) 1 of 4

CSS.203.1 COMPUTATIONAL COMPLEXITY (2024-I) PROBLEM SET 3

(ii) Let L ∈ NP be any language that you are promised is in P/poly. This means that
there is a sequence of “advice strings” {zi}∞

i=1 and a polynomial time deterministic
TM M such that for all x we have x ∈ L ⇔ M(x, z|x|) = 1.
Define the following language:

ValidAdviceL =
{
(z, n) : ∀x ∈ {0, 1}n x ∈ L ⇔ M(x, z) = 1

}
Show that ValidAdviceL ∈ PH. What level of the hierarchy is it in?

(iii) Try and give a different proof of the Karp-Lipton-Sipser theorem (or a possibly
weaker statement) using the above observations.

(iv) Suppose L ∈ coNP that is promised to be in NP/poly. Show that ValidAdviceL ∈ PH.
What level of the hierarchy is it in?

(v) Show that if coNP ⊆ NP/poly, then PH collapses. (To what level?)

4. [Kannan’s theorem] (7 + 8 + 5)

(i) Fix any constant c > 0. Show that there is a language L ∈ PH that is not in SIZE(nc).

[Hint:Canyoutryandencode“thelexicographicallysmallestcircuitofsize
10ncthatisnotcomputablebycircuitsofsizenc”asaquantifiedexpres-
sion?]

(ii) Show that, for any constant c > 0, there is a language in L ∈ ΣP
2 that is not in

SIZE(nc).
[Hint:EitherNP⊆P/polyornot...]

(iii) Note that this means in particular that, for any constant c > 0, we know NP is not
computable by circuits of size nc. Why does this not show that NP ⊈ P/poly (which,
if you recall, is stronger than saying P ̸= NP)?

5. [Boolean Formula Evaluation] (7 + 8)

(i) Prove that computing the DFS order (the order of vertices visited, including repeti-
tions, in a DFS traversal that starts at the root and ends at the root) of an undirected
binary tree T = (V, E) can be done in L (logspace).
For example, the DFS order of the tree below is a, b, d, b, e, b, a, c, f , c, g, c, a.

a

b c

d e f g

[Hint:(a)Youmayassumethatthetreeisdescribedasfollows:Forev-
eryvertexv∈V,thereisafunctionnextv:V→V∪{⊥}whichgivesa
clockwiseorderingoftheedgesaroundthevertexV.I.e.,Foreveryvertex
v,thereisacyclicorderingamongtheneighboursofvandnextv(u)isthe
nextneighbourinthiscyclicorderingifuisaneighbourofvand⊥oth-
erwise.Finally,checkthatonecanmakethisassumptionwithoutlossof
generality.]

git info: d03c1fa , (2024-03-30 19:02:18 +0530) 2 of 4

CSS.203.1 COMPUTATIONAL COMPLEXITY (2024-I) PROBLEM SET 3

(ii) A Boolean formula φ on n inputs is a directed tree with n sources (vertices with
no incoming edges) and one sink (vertex with no outgoing edges). All nonsource
vertices are called gates and are labeled with one of ∨,∧ or ¬. The vertices labeled
with ∨ or ∧ have fan-in 2 and the vertices labeled with ¬ have fan-in 1. Let x ∈
{0, 1}n be some input. The output of φ on x, denoted by φ(x), is defined in the
natural way. The Boolean formula evaluation problem deals with, given a formula
φ on n inputs and x ∈ {0, 1}n, computing the value of φ(x). Show that formula
evaluation can be done in logspace. More precisely, define

FormulaEval = {⟨φ, x⟩ : φ is a Boolean formula and φ(x) = 1}

Prove that FormulaEval ∈ L.

6. [Generalised Geography] (7 + 8)

The following is a generalisation of popular games such as antakshari, word-building, ge-
ography etc. We are given a directed graph G, and a specified start-vertex s. The game is
played between two players P1 and P2 with a token placed at vertex s and P1 moving
first. At each turn, the player whose turn it is must move the token from the current
vertex u to an adjacent vertex v such that u → v is an edge, and the token has not been
placed at v earlier. (Typically in games such as antakshari, word-building etc., each ver-
tex represents a song / word, with an edge from u to v if the last-letter of u equals the
first-letter of v). If a player is unable to make a valid move (when the token is at a vertex
v and all out-neighbours of v have already been ‘played’ earlier) then that player loses.

We now define the language version of this game.

GeneralisedGeography =

{
(G, s) :

P1 has a winning strategy for the game
played on dir. graph G with start vertex s

}
(i) Show that GeneralisedGeography ∈ PSPACE.

(ii) Show that GeneralisedGeography is in fact PSPACE-complete by reducing TQBF to
PSPACE. The following ‘example’ might be helpful:

s x1 x2

C1

C2

∃x1∀x2 : (x1 ∨ x2) ∧ (x1 ∨ x2)

7. [Randomised log-space] (4 + 6)

In this problem, we are going to try and define the class RL just like we defined the class
RP. But we will have to handle a few subtleties.

Just like in the witness definition of NL, we can think of a log-space machine M that is
given a special ‘random tape’ that will be filled with a uniformly random string. Like in

git info: d03c1fa , (2024-03-30 19:02:18 +0530) 3 of 4

CSS.203.1 COMPUTATIONAL COMPLEXITY (2024-I) PROBLEM SET 3

the witness definition, this tape will be read-once. We will think of this as a definition of
the class RL but we need to address one subtlety.

An important subtlety is what is the halting requirement for an RX (for X replaced by
your favourite class)? There are two possible definitions we could think of:

• The machine M must halt on every input and every setting of the random tape.

• The machine M must halt on every input with probability 1 with respect to the ran-
dom tape contents.

(a) Show that for any time-bounded class X (such as P, or EXP etc.) both the above
variants of RX coincide. That is, the distinction is not important when talking about
classes such as RP or RE etc.

(b) For space-bounded classes, this becomes an important distinction. Define RL1 to be
the variant where we require the TM to halt on each input with probability 1 over
the the random tape contents. Show that RL1 is infact equal to NL.

Thus, the right definition for RL is one where we should insist that every computational
path is halting (and not just with probability 1).

8. [Circuit complexity of multiplication] (3 + 3 + 6 + 3)

We say in class that given two n-bit numbers, we can compute their sum in AC0. In this
problem we will understand the complexity of multiplying two n-bit numbers.

(a) Show that multiplying two given n-bit numbers cannot be done in AC0 by reducing
Paritym to it.
(Since we are dealing with really low-level classes such as AC0, your reduction has
to be super-low-level. Use this problem to come upw with a suitable definition for
such a “class” of reductions.)

[Hint:b200b100b0×1001001=?]

(b) Build an NC0 circuit (fan-in 2, constant depth; each output bit can therefore depend
on just constantly many input bits!) that takes three n-bit numbers x, y, z and output
an n-bit number u and an (n + 1)-bit number v such that x + y + z = u + v.

[Hint:

110101
011010
101100
000011

1111000

]

(c) Show that given n numbers that are n-bits long each, we can compute their sum
using an NC1 circuit (fan-in two, O(log n)-depth circuits).

(d) Conclude the product of two given n-bit numbers can be computed in NC1.

git info: d03c1fa , (2024-03-30 19:02:18 +0530) 4 of 4

