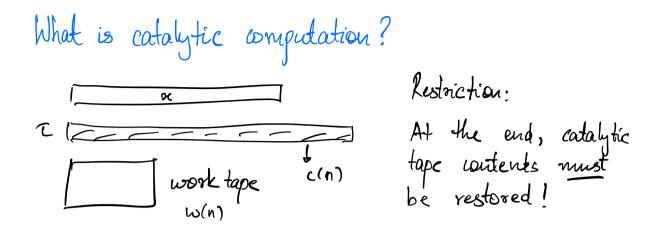
Machine models read-only input tape + work tape (s)



Defne CSPACE (w(n), c(n)) : Languages that are computable by catalytic machines with catalytic tape size ((n) & work tape W(n). Convention: CSPACE (w(n)) == CSPACE (w(n), 2)

Obs: LC CL

Qn: Is the containment strict? Can CL do tasks beyond L? Yes*

Reversible computation:

$$R_{1} = R_{2} = - R_{m}$$

 $R_{1} = R_{2} = - R_{m}$
 $R_{1} = R_{2} = - R_{m}$
 $R_{1} = R_{2} = - R_{m}$
 $R_{1} = R_{2}$
 $R_{1} = R_{2}$
 $R_{2} = - R_{m}$
 $R_{1} = R_{m}$
 $R_{1} = R_{2}$
 $R_{2} = - R_{m}$
 $R_{1} = R_{1}$
 $R_{2} = R_{1}$
 $R_{1} = R_{1}$
 $R_{2} = R_{2}$
 $R_{3} = R_{3}$
 $R_{$

Ego
$$R_1 \leftarrow R_1 + X$$

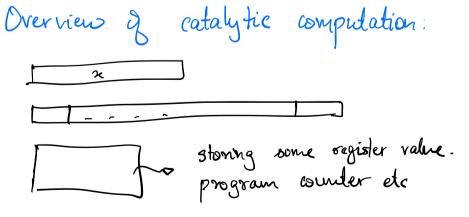
 $R_2 \leftarrow R_2 + R_1 R_3$ inverse $R_1 \leftarrow R_1 + \gamma R_2$
 $R_1 \leftarrow R_1 - \gamma R_2$
 $R_2 \leftarrow R_2 + R_1 Z$
 $R_1 \leftarrow R_1 - \gamma R_2$
 $R_1 \leftarrow R_1 - \chi R_3$

Transparent computation: A reversible program P
transparently computes
$$f(x_{1,2}, x_n)$$
 on register R_1
if $\forall T_{1,2}, T_m$
 $T_1 - \cdots T_m$
 $\downarrow P$
 $T_1 = T_1 + f(\bar{x})$.

Clean computation:
$$T'_{1} = T_{1} + f(\overline{x})$$

 $T'_{2} = T_{2}$
 $T''_{m} = T_{m}$.

Claim: Suppose there is an m-register program P
that transparently computes
$$f(\overline{x})$$
, then
there is an $(m+1)$ -register program P' that
cleanly computes $f(x)$, with $|P'| \le 2|P|+2$
Pf:
 $\overline{T_0} \quad \overline{T_0} \quad \overline{T_0} \quad - \quad \overline{T_m}$
 $R_0 \leftarrow R_0 - R_1 \quad \overline{T_0} + f$
 p
 $R_0 \leftarrow R_0 + R_1 \quad \overline{T_0}$
 $p^{-1} \quad \overline{T_m}$



What can we compute transparently?
$$f(x_1, \ldots, x_n) : \mathbb{R}^n \to \mathbb{R}$$

Lemma1: Suppose
$$f(\overline{x})$$
 can be transparently computed by P_f ,
& $g(\overline{x})$ can be transparently computed by P_g
then we can transparently compute $f+g$
by $P = P_f^{P_f} \cdot P_g^{P_f}$
 $Pf: Duh!$

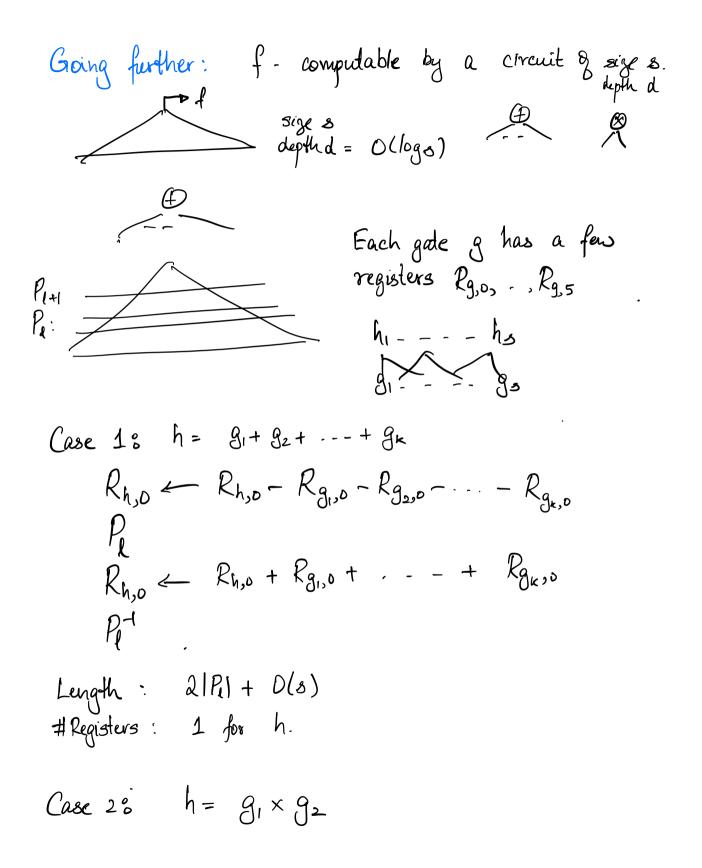
Lemma 2: If Pf cleanly computes f, & Pg cleanly computes g, then we can also cleanly compute fg.

Thm: [Ben-Or & Cleve] If f is computable by a a fan-in 2 depth d formula, then we can cleanly compute f via a program of length $\leq 4^d$ using 3-registers.

Fact: If f is computable by a formula of size s, then it is also computable by a formula of size polyles & depth O(log s) [Brent, Spira].

Obs & Ben-Or Cleve also works when R is not commutative.

Rne Suppose we are able to find keek matrices M_1, \ldots, M_s with entries in R or x_i and suppose $(M_1 \ldots M_s)_{i,1} = f(\overline{x})$. Can we compute f cleanly? R_1 R_2 R_3 Matrix registers. R_1 R_2 R_3 R_1 R_2 R_3



$$\begin{array}{l} R_{0} \leftarrow R_{0} + R_{1}R_{2} + R_{1}R_{4} + R_{3}R_{2} \\ \hline R_{1} \leftarrow R_{1} + g_{1} \\ R_{2} \leftarrow R_{2} + g_{2} \\ \hline R_{1} \leftarrow R_{2} + g_{2} \\ \hline R_{3} \leftarrow R_{3} + R_{1} \\ R_{4} \leftarrow R_{4} + R_{2} \\ R_{0} \leftarrow R_{0} + R_{1}R_{2} \\ \hline R_{2} \leftarrow R_{0} - R_{1}R_{4} - R_{3}R_{2} \end{array} \right) \begin{array}{l} T_{0} + T_{1}T_{2} + T_{1}T_{4} + T_{3}T_{2} \\ T_{1} + T_{2} + T_{2} + T_{3}T_{2} \\ \hline T_{1} + T_{2} + T_{2} + T_{3}T_{2} \\ \hline T_{1} + T_{2} + T_{2} \\ \hline T_{2} \\ T_{3} + T_{1} + g_{1} \\ \hline T_{4} + T_{2} + g_{2} \\ \hline R_{0} \leftarrow R_{0} - R_{1}R_{4} - R_{3}R_{2} \end{array}$$

Length & program & 21R1 + 8, # registers for h: 3 Sotup for Residence for all h for setup for all h. Total length. < 2 |Pe| + poly(s) ... Final length = 2^d. poly(s). #registers = O(s). I Thms LOGCFL & CL. Thms [BCKLS] withorm TC¹ & CL.

How large is CL? CL C PSPACE

Thm: [BCKLS] CL CZPP.

Next time: TEP