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A dummy’s guide

Theorem 1. This is a cool theorem

In fact we can refer to theorems using Theorem 1.
You could also define lemma, corollary etc. (take a look at thmmacros.tex for the environ-

ments).
Other useful macros are present in lazy_macros.tex and common_macros.tex. You can add

more to them if required.

One pet-peeve: There are many times when people have to define a function called ‘blah’.
There are multiple ways of doing this:

• (worst) $blah$ which renders as blah

• (bad) $\text{blah}$ which renders as blah

• (better, but not ideal) $\mathrm{blah}$ which renders as blah

• (right) $\operatorname{blah}$ which renders as blah

Here is a place where you can see the difference between these:

sinθ sinθ sinθ sin θ

And the same within an emphasised text

sinθ sinθ sinθ sin θ

Here is a general guide for deciding which to use:

If you just want to use text within a math block, then use \text. For examples such
as defining a set called ’PRIMES’ (which are not used as functions or operators),
you may use \mathrm{PRIMES}. If you are defining functions or operators, then use
\operatorname{blah} as it adds the right spacing around it.

Using $blah$ should only be used when you are multiplying four variables called
b, l, a and h.
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Lecture 1

Introduction to the course
Scribe: Aindrila Rakshit

Topics covered in this lecture

1. Introduction to Computational Complexity

2. Examples of problems and Reduction

3. Automata

1.1 Introduction to Computational Complexity

Computational Complexity is the study of understanding the resource constraint of a compu-
tational model when it comes to solving a task. So given some objects that we wish to study,
we look at the procedural way of computing them, i.e. their computational models and the
resources required to do so.

Σ∗ : a string of arbitrary finite length with elements of the alphabet Σ.
E.g.- {0, 1}∗ : binary string of some arbitrary finite length

Some examples of Objects, Computational Models, and Resources:

• For Boolean functions (i.e., f : {0, 1}n → {0, 1}), the computational model could be
circuits, or Turing machines, or python programs. The resource we care about could be
time taken, memory used, number of API calls etc.

• For polynomials (i.e, f (x1, . . . , xn) ∈ F[x1, . . . , xn]), the computational model could be
algebraic circuits / formulas. The resource we care about could be the number of basic
operations, depth, etc.

Broadly speaking, Complexity theory deals with classifying ‘objects’ based on ‘resource
required’ by certain ‘computational models’. Here ‘classifying’ means creating a gradation of
complexity (hardness) among objects/tasks.
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1.2 Examples of problems and Reduction

We will mostly be dealing with computational tasks that have a yes/no answer (or 0/1).

1. Graph reachability (undirected / directed): Given a graph G, and two vertices s and t,
check if there is a path from s and t.

2. Perfect matching: Given a graph G on an even number of vertices, check if there is a
perfect matching in the graph.

3. Primality: Given a number N, check if it is prime.

4. Linear programming. Given a matrix A and a vector b, check if there is a vector x satis-
fying Ax ≤ b (component-wise) with every entry of x being non-negative.

5. Integer programming. Given a matrix A and a vector b, check if there is a vector x satis-
fying Ax ≤ b (component-wise) with every entry of x being a non-negative integer.

6. Vertex cover: Given a graph G and a number k, check if G has a vertex cover of size at
most k.

7. Chess: Given a chess position (on a generalised n× n chess board), check if white has a
winning strategy.

It seems that Problem 1 is the easiest and Problem 7 is the hardest. In fact, the problems
seem to be gradually increasing in hardness with some problems having similar levels of com-
plexity. Our aim in this course would be to quantify these notions of complexity.

Definition. For an alphabet Σ, a language is just a subset of Σ∗. Equivalently, one could consider the
‘membership function’ f : Σ∗ → {0, 1} such that f (x) = 1 if and only if x ∈ L.

Given an arbitrary function f : Σ∗ → {0, 1}, we may sometimes use L f to denote the language
associated with it. (i.e., L f = {x ∈ Σ∗ : f (x) = 1}) ♢

1.3 Automata

Automata are primitive computational models.

qinitstart qacc

1
0

1
0

Figure 1.1: Example of an automata
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An automata is specified by providing a set of states Q, a specified start state qinit, a set of
accepting states F ⊆ Q, and a transition function:

Γ : Q× Σ→ Q

that specifies what state to move to after consuming one letter in the given string. If at the end
of consuming the entire string the automata is in any fo the states in F, the automata is said to
have accepted the string (and rejected otherwise).
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Lecture 2

Introduction to Turing Machines
Scribe: Nishant Das

2.1 Deterministic Turing Machine

A Deterministic Turing Machine (DTM) is essentially a Deterministic Finite Automata (DFA)
with a piece of (infinitely long) paper. It is defined by

1. Tape alphabet Σ: The tape alphabet is an extension of the input alphabet with some extra
symbols such as start (�), stop (#) and blank space (⊔). We will abuse the notation and
represent both the input and the tape alphabet as Σ.

2. Work Tapes: The work tapes are like scratch sheets for the DTM. It can read and write
on these tapes to store information that might be helpful later.

3. Transition function: The transition function for a DFA tells it which state to go to as a
function of it’s current state and the input symbol. DTM also has the following additional
freedom:

(a) change the values of the tapes at the position the DTM is currently reading.

(b) A DFA only has an input tape and after reading a symbol, it transitions to its next
state and reads the next symbol. We can picturize this as a DFA having a “head"
which moves right one step forcefully after reading a symbol. A DTM has a head
for each of the tapes, and it can keep the head at place or move it left or right by a
step.

Hence, the Transition Function, denoted by Γ, is a function of the following kind

Γ : Q× Σk+1 → Q× Σk+1 × {−1, 0, 1}k+1

Here, Q denotes the state space of the DTM and the set {−1, 0, 1} denotes the commands
“move head left", “stay at place" and “move head right".
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4. Start, Accept and Reject States. A unique element of Q is the start state. It should have
at least one accept state. A DTM can also have some reject states, which is essentially like
a sink in a DFA.

2.1.1 Halting TMs

A Turing machine (TM) M is said to be a halting TM if for every input x in Σ∗, M halts (accepts
or rejects) on x. Henceforth, we will only work with halting TMs.

Given a TM M and an input x, does M halt on x? This is known as the halting problem and
it is undecidable.

2.1.2 Time Complexity of a TM

Let M be a TM. Consider the function TM : N → N |

TM(n) = max
x∈Σ∗,|x|=n

{number of steps for M to halt on x}.

This function is called the time complexity of M.

2.2 Alphabet and Tape Reduction

Whenever we are trying to build a TM, we can work with as many tapes and as many symbols
as we like. The following two theorems guarantee us that there is an equivalent TM with only
2 tapes and 5 letters. Moreover, their proofs are constructive, providing an explicit method for
constructing such an equivalent machine.

1. Alphabet Reduction: Suppose M is a halting TM with alphabet Σ and time complexity
TM. Then, ∃ an equivalent TM M̃ with alphabet Σ̃ = {�, #,⊔, 0, 1} such that TM̃ =

O(TM).

2. Tape Reduction: Suppose M is a halting TM with k tapes. Then we can build an equiva-
lent TM M̃ with 2 tapes such that TM = O(TM log TM).

2.2.1 Proof Sketches

The main idea to prove alphabet reduction is to encode all letters in the alphabet as strings of
0s and 1s. This introduces a factor of at most log2 |Σ| in the computation time. Since the new
machine operates on a smaller alphabet, to simulate each step of the original machine, it may
have to read or write multiple bits sequentially. This can be achieved by introducing additional
states and a few special symbols.

For the proof of tape reduction, the key idea is to interweave all the working tapes into a
single tape in a structured manner. Perhaps the first idea that comes to mind is to store all k
tapes on a single tape by interleaving them into fixed-size blocks, where each block contains
one symbol from each tape in sequence. However, a slightly more efficient way is to stick all
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of the working tapes end-to-end into a single working tape and introduce new symbols to the
alphabet to mark the beginning of each working tape. This gives us a TM that runs in O(T2

M),
but a more clever way of interweaving exists which improves this bound to O(TM ln TM).

2.3 Universal Turing Machine

Let ⟨M⟩ denote some string encoding of the TM M. This can be interpreted as the “code" of
M. Note that M has infinitely many string encodings. A Universal Turing Machine, U, is a
machine that simulates any Turing machine M given its encoding ⟨M⟩. It takes (⟨M⟩, x, 1t) as
input and accepts the input if M accepts x in at most t steps and rejects otherwise. To simulate
M, U needs to store and look up ⟨M⟩. The time taken by U on (⟨M⟩, x, 1t) ≤ O|M|(t log t)
where the symbol O|M|( f ) means “O( f ) upto constants depending on M".

Remark. An important point (that would be useful later on in the course) is that the the constant in the
above bound depends on the machine M and not the encoding. In particular, if we are given a really
long encoding of the same machine M, the constant does not change (i.e., it doesn’t scale if the encoding
of the machine is made longer as long as we are dealing with the same machine). ♢
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Lecture 3

Non-determinism
Scribe: Soumyadeep Paul

3.1 Nondeterministic Finite Automata

Definition 3.1 (NFA). A Nondeterministic Finite Automaton (NFA) is a tuple of the form (Q, Σ, δ, s, F),
where Q is a finite set of states, Σ is a finite set of alphabets, δ : Q× Σ→ 2Q is the transition function,
s is the start state and F is the set of final states.

A word is accepted by an NFA if a final state can be reached via valid transitions, on reading the
word. ♢

The difference from deterministic automata is that now, on reading a symbol the automaton
can "guess" and move to any of the states in its transition function.

Figure 3.1: An NFA that accepts all words ending with 010.

Definition 3.2 (ε-transition). In an NFA with ε-transition, there are some transitions labelled with ε

and the automaton is allowed to take this transition without reading a symbol. ♢

3.2 Regular Expressions

Definition 3.3. A regular expression is a pattern of symbols from Σ ∪ {ε,+, ·, ∗}. Where Σ is a finite
set of symbols, + stands for “or", · is for concatenation and ∗ is Kleene star. ♢

Example 3.4. {0 + 1}∗01{0 + 1}∗ is the regular expression for the language of all words which con-
tains 01 as a substring. ♢
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It is known, for every regular expression there is an NFA that accepts the same language as
the regular expression. This enables us to check if a given word satisfies a regular expression,
in O(n2) time, by simulating run of that word on the corresponding automaton.

3.3 Nondeterministic Turing Machine

Definition 3.5 (NTM). A Nondeterministic Turing Machine is the same as a deterministic Turing
machine, except it now has two transition functions Γ0, Γ1.

A word is x accepted if there exists a sequence of transitions that results in qaccept state. ♢

Definition 3.6 (Halting TM). A Turing machine is said to be halting if for every input and every
computational path, the TM accepts/rejects in finite steps. ♢

We only consider halting Turing machines from hereon. We define the time taken by a
Turing machine M,

TM(x) := max
all computational paths P

TM(x, P)

TM(n) := max
|x|=n

TM(x)

For any halting machine, the above definitions are well-defined as we are guaranteed to halt
on every computational path.

Definition 3.7 (Circuit-SAT). Circuit-SAT = {C | C is a boolean circuit and ∃x such that C(x) =

1}. ♢

Definition 3.8 (Circuit-Eval). Circuit-Eval = {(C, x) | C is a boolean circuit and C(x) = 1}. ♢

We notice that there is an efficient algorithm, for Circuit-Eval, by simply simulating x on C.
Now, we can get an NTM for CictuitSAT that runs in polynomial time by “guessing" the input
for the circuit and then running Circuit-Eval.

Definition 3.9 (DTIME). For a function t(n) : N→ N, we will denote by DTIME(t(n)) the class of
languages that can be computed by deterministic TMs in O(t(n)) time. Formally,

DTIME(t(n)) :=

{
L :

there is a deterministic halting TM M with
L(M) = L that runs in time O(t(n))

}

♢

Definition 3.10 (NTIME). For a function t(n) : N → N, we will denote by NTIME(t(n)) the class
of languages that can be computed by non-deterministic TMs in O(t(n)) time. Formally,

NTIME(t(n)) :=

{
L :

there is a non-deterministic halting TM M with
L(M) = L that runs in time O(t(n))

}

♢

Therefore, Circuit-SAT ∈ NTIME(poly(n)).
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Definition 3.11.

P :=
⋃
c≥1

DTIME(nc)

NP :=
⋃
c≥1

NTIME(nc)

♢

Definition 3.12 (Co-nondeterministic TM). A co-nondeterministic Turing machine is a machine
with the same syntax as a non-deterministic TM (i.e., has two transition functions Γ0 and Γ1), but
with the acceptance criteria modified. A word x is said to be acccepted by the TM if and only if every
computational path accepts. ♢

We can similarly define coNTIME and coNP by replacing non-deterministic TMs with co-
nondeterministic TMs. Furthermore, it can be easily seen that

L ∈ NTIME(t(n))⇔ L ∈ coNTIME(t(n)).
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Lecture 4

Many-One Reductions
Scribe: Soham Chatterjee

We will mainly focus on polynomial time reductions and the one reduction which we will
use most of the time is Many-One Reduction

Definition 4.1 (Many-One Reduction). L1, L2 ⊆ Σ∗ are two languages. Then L1 is reducible to L2

under many-one reduction if and only if ∃ f : Σ∗ → Σ∗ such that ∀ x ∈ Σ∗

x ∈ L1 ⇐⇒ f (x) ∈ L2

If f is polynomial time computable function then we say L1 is reducible to L2 under polynomial time
many-one reduction and denote it as L1 ≤

poly
m . ♢

4.1 Vertex Cover ≡ Independent Set ≡ Clique

4.1.1 Vertex Cover ≤poly
m Ind Set ≤poly

m Vertex Cover

Want: (G, k) 7→ (H, k′)

Observation 4.2. For any S ⊆ V vertex cover in G ⇐⇒ S = V \ S is independent set in G

So f : Σ∗ → Σ∗ will be f (G, k) = (G, n− k).

Remark 4.3. Here f is a bijection between independent sets and vertex cover. That may not be the case
always while constructing the reductions. ♢

Therefore we actually obtain both Vertex Cover ≤poly
m Ind Set and Ind Set ≤poly

m Vertex
Cover. So

Vertex Cover ≡poly
m IndSet

4.1.2 Ind Set ≤poly
m Clique ≤poly

m Ind Set

Want: (G, k) 7→ (H, k′)

Observation 4.4. For any S ⊆ V, S is independent set of G ⇐⇒ S is a clique in G = (V, E).
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So f : Σ∗ → Σ∗ will be f (G, k) = (G, k). Here also notice that f is a bijection between
independent sets and cliques. Therefore we obtain Ind Set ≤poly

m Clique and Clique ≤poly
m Ind

Set. Hence
IndSet ≡poly

m Clique

4.2 Circuit-SAT ≡ 3 CNF-Sat

We already have 3 CNF-Sat ≤poly
m Circuit-SAT by the identity function.

The idea is to convert the function of each gate into a clause and then take a AND over all
of them to ensure all the gates are working as they are supposed to.

So from a given circuit C of size s whose input variables are x1, . . . , xn we will construct a
3CNF with n + s variables and s + 1 constraints. The variables will be

{xi | i ∈ [n]} ∪ {yi | i ∈ [s]}

For each gate g in C, yg is the variable which corresponds to g. We will design the con-
straints in the following way:

• g = g1 ∨ g2 or g = g1 ∧ g2: Then yg = yg1 ∨ yg2 or yg = yg1 ∧ yg2 respectively.

• g = xi ∨ xj or g = xi ∧ xj: Then y = xi ∨ xj or yg = xi ∧ xj respectively.

• yroot

We do this for all gates and take a big
∧

over all these constraints. Each of the equality can be
converted to a constant size 3 CNF-Sat formula by comparing the answers from the truth table.
This conversion of the C to the 3 CNF-Sat formula φ is polynomial time doable. Therefore
Circuit-SAT ≤poly

m 3 CNF-Sat

4.3 NP-hardness

Lemma 4.5. Suppose f is a polynomial time many-one reduction from A to B where A, B ⊆ Σ∗ and
B ∈ NP (B ∈ coNP). Then A ∈ NP (A ∈ coNP).

Proof. B ∈ NP =⇒ ∃ nondeterministic machine MB for B. Since f is polynomial time com-
putable function ∃ a polynomial time deterministic turing machine M f computing f . Then
construct MA which on input x first runs M f on x and then runs MB on output of M f . So

MA = MB ◦M f

Therefore MA is an nondeterministic turing machine whose language is A ∈ NP. Similar proof
works for A ∈ coNP.

Definition 4.6 (NP-hardness and completeness). A language L ⊆ Σ∗ is said to be NP-hard if for
any language L′ ∈ NP there is a polynomial time many-one reduction fL′ : Σ∗ → Σ∗ from L′ to L i.e.
x ∈ L′ ⇐⇒ fL′(x) ∈ L

The language L is said to be NP-complete if it is NP-hard and also in NP. ♢
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The same definition extends to any complexity class and you can similarly define coNP-
completeness etc.
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Lecture 5

Cook-Levin Theorem and
NP-Completeness
Scribe: Shubham A. Bhardwaj

Remark. In this lecture, Reduction will always mean "Polynomial Time-Many One" Reduction. ♢

We defined Many-One Reductions and the notion of NP-Complete problems in the last lec-
ture. Circuit-SAT was the first problem to be proven NP-Complete, independently by Stephen
Cook and Leonid Levin in 1970s. This result is known as Cook-Levin Theorem.

5.1 Cook-Levin Theorem

Theorem 5.1. Circuit-SAT is NP-Complete.

Proof. To prove that Circuit-SAT is NP-Complete, we need to prove that there exist reductions
from all languages in NP to Circuit-SAT. Let L be some language in NP. We need to show that
there exist a polynomial time computable function f , which on input x, will output a circuit Cx such
that x ∈ L if and only if Cx ∈ Circuit-SAT.

To accomplish the above, we somehow need to simulate the NTM in our circuit. Observe
that at any point of time, the configuration of a TM can be completely characterised by follow-
ing 3 things - the contents of tape, current state of the TM, and the location of head. Now, let
M be the NTM for language L that runs in cnk time. Let Ri(x) be the configuration of M after i
steps. Now, x ∈ L if and only if there exist sequence of configurations R1(x), R2(x), . . . , Rcnk(x)
such that Rcnk(x) is an accepting configuration and ∀i ≤ cnk, Ri(x) follows from Ri(x). All
these configurations can be arranged in a cnk × cnk table that we call "computational tableau".
Thus, our circuit just need to check whether such a tableau exist or not.

Now, observe that a maximum of 3 entries change from one row to the next of a tableau and
these 3 entries are consecutive, thus we can have a sliding window of size 2× 3 and only need
to check the entries in the window are valid or not. For this, our circuit can have a constant
number of clause for each position of sliding window to check whether the entries in window
are valid or not. As the tableau is of size cnk × cnk, there are a total of O(n2k) position for the
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sliding window. Thus our circuit will have O(n2k) clauses with each clause having a constant
no of literals (since the window is of constant size). Check the tableau first row coorespond
to input x and a valid configuration and the last row of tableau correspond to an accepting
configuration can be done in a constant number of clauses of size O(nk). Thus, the circuit
needed to simulate NTM is of polynomial size. Thus given the description of machine M, we
can build the TM N that outputs Cx on input x which runs in polynomial time. This proves
there exist reductions from all languages L ∈ NP to Circuit-SAT.

5.2 More NP-Complete Problems

It turns out that not just Circuit-SAT, but a whole bunch of problem are NP-Complete. And
having already proved that Circuit-SAT being NP-Complete, To prove that some language
L ∈ NP is NP-Complete, we just need to give a reduction from Circuit-SAT to L.

We saw an simple reduction from 3-CNF-Sat to Ind-Set proving that Ind-Set is NP-Complete.
We also defined the language Int-Program as follows:

Int-Program = {(A, b)|A ∈ {0, 1}n×n, b ∈ {0, 1}n and ∃x ∈ {0, 1}n such that Ax ≤ b}

There exist a simple reduction from 3-CNF-Sat to Int-Program. For each clause in the 3-
CNF, we can write an corresponding linear inequality. For example, for the clause, x1 ∨ ¬x2 ∨
x3, the corresponding linear inequality will be x1 + (1− x2) + x3 ≥ 1. This way we’ll get a
system of linear inequality which will have a feasible solution if and only if the formula is
satisfied. This shows that Int-Program is NP-Complete.
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Lecture 6

Time Hierarchy Theorem
Scribe: Vivek Karunakaran

6.1 Deterministic Time Hierarchy Theorem

Theorem 6.1 (Deterministic time hierarchy theorem). If f , g : N → N are nice functions (time-
constructible) satisfying f (n) log f (n) = o(g(n)), then

DTIME( f ) ⊊ DTIME(g).

Proof. We prove this for the particular case when f (n) = n3 and g(n) = n4 for the notational
convenience and the general argument follows the same. Note that DTIME(n3) ⊂ DTIME(n4).
In order to prove that they are not equal, We construct a Turing machine whose Language
belongs to DTIME(n5) but does not belong to DTIME(n3).

Let the Turing machine that we construct be D. On an input input x,the machine D does
the following:

1. If the input x is not of the form “⟨M⟩#0t” where t is an arbitrary integer and ⟨M⟩ is a
valid machine description, it rejects x.

2. We may now assume that x = ⟨M⟩#0t; let its length be n.

3. Create a counter with value n4 on a worktape.

4. Using the UTM for at most n4 steps to simulate the machine M on input x (do one step of
simulation, decrement counter etc.). If the simulation did not complete within n4 steps
of the UTM, then reject x. Else,

• If M accepted x, then the machine D rejects x.

• If M rejected x, then the machine D accepts x.

Let the language defined by this Turing machine D be LD. Clearly LD ∈ DTIME(n4) since
the simulation ends in n4 steps and the other steps are negligible. Suppose LD ∈ DTIME(n3).
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Then, There exists a Turing machine M which runs in O(n3) time and M(x) = D(x), ∀x. For
the UTM to completely simulate M on any input x of length n, the UTM would require at most
cn3 log n for some constant c (that could depend on some parameters of M such as number
of tapes, alphabet size etc.). Consider x = ⟨M⟩ #0t with t chosen large enough so that n4 >

cn3 log n for n = |x|. This always possible since n3 log n = o(n4).
Now, note that D accepts x if and only if M rejects x (since we have ensured that n4 steps

is sufficient to simulate M on x completely). Thus, clearly L(M) ̸= L(D)

Remark. This method of proving is called the Diagonalization Technique. Consider the tableau where
the turing machines corresponding to DTIME( f (n)) are listed out in the rows and their corresponding
string representation in the columns. Each cell represents the result when the corresponding machine is
run on the corresponding string. So, Each row represents the language accepted by the corresponding
turing machine. Now, If we form a language by flipping all the values along the diagonal, then There
cannot be any machine in this list which can accept this language. We construct a machine that accepts
this language, which is also in DTIME(g(n)), thus proving the time hierarchy. The outline for the
Non-deterministic Time Hierarchy theorem was given in this lecture. However, The details are deferred
to the next. ♢
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Lecture 7

Non-deterministic time hierarchy
theorem and Oracle Turing Machines
Scribe: Aindrila Rakshit

Topics covered in this lecture

1. Non-deterministic time hierarchy theorem

2. Oracle Turing Machines

3. The Baker-Gill-Solovay theorem

7.1 Time hierarchy theorems

Definition 7.1 (Time-constructible functions). A function f : N→N is said to be time-constructible
if g can be computed by a deterministic Turing machine in time O( f (n)) on input 1n. ♢

Theorem 7.2 (Deterministic time hierarchy theorem). Let f , g : N→N be two time-constructible
functions satisfying f (n) log f (n) = o(g(n)). Then, DTIME( f (n)) ⊊ DTIME(g(n)).

Theorem 7.3 (Non-deterministic time hierarchy theorem). Let f , g : N→N be time-constructible
functions with f (n) = o(g(n)). Then, NTIME( f (n)) ⊊ NTIME(g(n)).

We present the following proof of the non-deterministic time hierarchy theorem which is
due to Lance Fortnow and Rahul Santhanam.

Proof. For simplicity let us assume that f (n) = n3 and g(n) = n4. Consider the description of
M via a non-deterministic Turing Machine D computing it.

All strings in the language L(D) are of the form (⟨M⟩ , x, p) for input x and compu-
tational path p with the following constraints: let n = |⟨M⟩|+ |x|

• ⟨M⟩ represents the encoding of a non-deterministic TM.
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• If |p| < n4, then we accept the input (⟨M⟩ , x, p) if and only if M accepts both
(⟨M⟩ , x, p0) and (⟨M⟩ , x, p1).

• If |p| ≥ n4, then we accept the input (⟨M⟩ , x, p) if and only if M on input
(⟨M⟩ , x, ε) rejects on the computational path p.

Claim 7.4. L(D) ∈ NTIME(n4).

Proof. If |p| < n4, we only need to simulate M on two strings (⟨M⟩ , x, p0) and (⟨M⟩ , x, p1).
Using non-determinism, we can guess computational paths for both subproblems and accept
only if both those simulations resulted in an accept. The overall running time is at most O(n4).

If |p| ≥ n4, then we simulate M deterministically which can be done in O( f (n)) time.

Claim 7.5. L(D) /∈ NTIME(n3).

Proof. Suppose on the contrary that there was a non-deterministic machine M with running
time O(n3) satisfying L(M) = L(D). Consider the input

(
⟨M⟩ , 0k, ε

)

M accepts
(
⟨M⟩ , 0k, ε

)
⇔

(
⟨M⟩ , 1ℓ, ε

)
∈ L(D)

⇔ M accepts
(
⟨M⟩ , 0k, 0

)
and

(
⟨M⟩ , 0k, 1

)
⇔

(
⟨M⟩ , 0k, 0

)
,
(
⟨M⟩ , 0k, 1

)
∈ L(D)

⇔ M accepts
(
⟨M⟩ , 0k, 00

)
, . . . ,

(
⟨M⟩ , 0k, 11

)
...

⇔ M accepts
(
⟨M⟩ , 0k, p

)
for all p ∈ Σn3

⇔
(
⟨M⟩ , 0k, ε

)
/∈ L(D)

⇔ M rejects
(
⟨M⟩ , 0k, ε

)

yielding the required contradiction.

7.2 Oracle Turing Machines

This is a formalization of the option of TMs that have access to a subroutine for member-
ship in a specific language. Now, the TM has a special “oracle tape”, and three special states
qoracle

query , qoracle
yes , qoracle

no , along with the ususal input tape and work tape. Whenever we look at MA,
where A is some language, we will have the following functionality — when the TM enters the
state qoracle

query , the machine is moved to the state qoracle
yes if the string currently on the oracle tape is

in A, and moved to the state qoracle
no if the string is not in A.

Definition 7.6 (DTIMEA( f (n)) :). DTIMEA( f (n)) = L(MA) : A is a deterministic Oracle TM
running in O( f (n)) time. ♢
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Similarly define NTIMEA( f (n)) etc.
So, time hierarchy theorem holds with oracles, i.e. for an arbitrary language A, DTIMEA( f (n)) ⊊

DTIMEA(g(n)), for f , g : N→N time-constructible functions satisfying f (n) log f (n) = o(g(n))
and the proof is almost the same, since the technique of diagonalisation continues to work even
in this setting as all we needed for our proof was some way encoding the TMs (or oracle TMs),
and having some way of simulating such a machine on an input (which in case of oracle TMs,
the simulator has access to A and can make the necessary oracle queries). Therefore, the time
hierarcy theorems continue to hold for any language A. That is, the technique of diagonalisa-
tion is insensitive to the presence of oracles.

7.3 The Baker-Gill-Solovay theorem

The fact that the technique is insensitive to the presence of oracles also points out the weakness
of this technique. The following theorem by Baker, Gill and Solovay shows that the ” P vs NP
” is not oblivious to the presence of oracles.

Theorem 7.7 (Baker, Gill and Solovay). There are two languages A, B ⊆ Σ∗ such that

1. PA = NPA,

2. PB ̸= NPB

So, the diagonalization technique alone cannot help us prove a result, which is sensitive to
the presence of oracles.

Proof. Take A as an EXP-complete language. We will show that PA = NPA.
PA ⊆ NPA: Trivial, since every deterministic machine is also a non-deterministic machine.
NPA ⊆ PA: We will show that EXP ⊆ PA and NPA ⊆ EXP.

Claim 7.8. Fix any non-deterministic oracle TM M. Then, L(MA) ∈ EXP.

NPA ⊆ EXP : On each poly length path, whenever NPA machine makes a query, EXP solves
A, on all possible paths.

EXP ⊆ PA : : Since A is EXP-complete, there is a poly-time reduction f such that x ∈ EXP

iff f (x) ∈ A.
Thus, PA = NPA.
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Lecture 8

Oracle machines, and
Baker-Gill-Solovay Theorem
Scribe: Nishant Das

In this lecture, the proof of Baker-Gill-Solovay was completed and the complexity classes
PNP and NPNP were introduced and analyzed.

8.1 Baker-Gill-Solovay continued

Theorem 8.1 (Baker-Gill-Solovay). There are two languages A and B such that PA = NPA but PB

̸= NPB.

In the previous lecture we saw the proof for the existence of the language A. Now we will
give a proof sketch for the existence of the language B.

8.1.1 Proof Sketch

For any language B, we can extract its lengths set defined as LB := {1n : ∃y ∈ B, |y| = n}.
Notice that LB ∈ NPB for any B. We will now construct a language B such that LB /∈ PB.

• First, we will enumerate all the encodings of deterministic oracle TMs as M1, M2, ... . We
initialize B as an empty language and strings will be added to it as this procedure runs.

• We will divide our construction of B into phases. In phase i, we pick a length ni such that

– no string of length ni has been added to or removed from the language.

– 2ni > ni
i

The goal of the ith phase is to ensure that Mi is wrong on 1ni .

• We run Mi on 1ni for ni
i steps. Whenever Mi queries B about a string which B has already

decided upon (whether it’s in the language or not), B answers honestly. This ensures
consistency of B. However, if a query is made regarding a string whose presence in the
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language has not yet been decided, B rejects it from the language (and answers “NO”).
At best, Mi will be able to make ni

i queries to the oracle but there are a total of 2ni strings
of length ni.

• If Mi accepts 1ni , B rejects all strings of length ni. However, if Mi rejects 1ni , B accepts one
of the un-queried strings.

• We run this procedure for the entire list M1, M2, ... to successfully construct B.

Claim 8.2. LB /∈ PB

For the sake of contradiction, let us assume there exists some deterministic oracle TM MB such
that LB ∈ L(MB). Say it’s runtime is nk. Choose Mi which is an encoding of MB which also
satisfies ni

i > nk. Since Mi faulted on 1ni , MB which is the same machine only running for a
fewer steps will necessarily fault on 1ni .

Remark 8.3. Diagonalization based arguments are agnostic of oracles. Because of Baker-Gill-Solovay,
the P vs NP problem cannot be solved via Diagonalization. ♢

8.2 The classes PNP and NPNP

Recall, PA stands for the class of problems that can be solved by a TM in polynomial time using
an oracle of the language A. When a complexity class (e.g. NP) is in the superscript, we mean
a complete problem from that complexity class is given as an oracle. So, PNP ≡ PCircuit-SAT ≡
PVertex-Cover ≡ PYour-Favourite-NP-Complete-Problem.

Observation 8.4. NP ⊆ PNP, coNP ⊆ PNP and PNP = PcoNP

NPNP

PNP

NP coNP

P

coNPNP

Figure 8.1: A sneak peak into the polynomial heirarchy

A complete problem in NPNP is the Σ2 -SAT := {C : ∃x∀y, C(x, y) = 1}. It is easy to
see that it is in NPNP because the correct x, if it exists, can be guessed and then oracle can be
queried “¬C(x, _) in SAT?” and finally, we flip the oracle’s response. Similarly, Π2 -SAT :=
{C : ∀x∃y, C(x, y) = 1} is a complete problem for coNPNP.
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Lecture 9

NPNP and the Polynomial Hierarchy
Scribe: Soumyadeep Paul

In this lecture, we saw how to construct an NTM for every language in NPNP which queries
the oracle only once. We also constructed the polynomial hierarchy.

9.1 More on NPNP

Theorem 9.1. Let L ∈ NPNP. Then there is an NTIME(poly(n)) machine for L that makes a single
query to oracle on any computational path.

9.1.1 Proof sketch

Let M be a NPNP machine for L. Given an input x and a path P we construct a new machine
M′ which guesses what oracle queries are made.

C1, C2, · · · , Cr

b1, b2, · · · , br

σ1, σ2, · · · , σr

where Ci is the machine’s guess of the ith query, bi is the machines’s guess for the answer of the
query Ci and σi is a guess for a satisfying assignment for Ci if bi = true. Then the machine M′

runs the following check:

• If bi = 1 then check if Ci(σi) = ture.

• Check that Ci’s were indeed the right queries provided the bi’s are correct.

• Confirm that

r∨
i=1,bi=0

Ci is UNSAT
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using 1 oracle query.

9.2 Polynomial Hierarchy

Σ0 = Π0 = P

Σ1
NP

Π1
coNP

Σ2

Π2

. . .

. . .

Figure 9.1: Polynomial Hierarchy

Definition 9.2 (Polynomial Hierarchy). We define the class Σ2 as the class NPSAT which we also
denote by the notation NPNP. Similarly, we define Π2 = coNPNP. In general we define

Σi = NPΣi−1 -SAT = NPΣi−1

Πi = NPΣi−1 -SAT = NPΣi−1

We define the the polynomial Hierarchy as

PH =
∞⋃

i=0

Σi =
∞⋃

i=0

Πi

♢

Lemma 9.3. If Σ1 = Π1 then

PH = Σ1 = Π1.

Proof. Let L ∈ PH. Thus L ∈ Σi for some i.
Now we prove by induction on i that Σi ⊆ Σ1 and Πi ⊆ Π1.
The base case for i = 1 is trivially true. We assume the statement is true for i− 1.
Now let L ∈ Σi. Then, by definition x ∈ L ⇔ ∃y1∀y2 · · ·ψx(y1, · · · , yi). We show a reduc-

tion from L to Σi−1 -SAT.
Given x and a fixed y1 we map it to the instance ∀y2∃y3 · · ·ψx(y1, · · · , yi). This is in Πi−1

and therefore by our assumption, in Π1 = Σ1 and therefore reduces to a formula ∃zψ′(x, y1, z).
Therefore, we are able to construct a machine in Σ1 by considering ∃y1∃zM′(x, y1, z).

We now look at the language
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TQBF = {All formulas of the form ∃x1∀x2 · · ·Qnxn φ(x1, · · · , xn) that are True }.

We note that TQBF is PH-hard and we believe that TQBF /∈ PH as we believe the PH doesn’t
collapse.

We note that P = NP =⇒ PH collapses.
But this doesn’t mean Σ2 -SAT ∈ PNP since for the reduction it is important that we know

the source code of the machine while with oracle access we only get access to the answers of
specific queries and not the source code of the machine.
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Lecture 10

Self-Reducibility of NP & Implications
for P vs. NP
Scribe: Soham Chatterjee

10.1 Self-Reducibility of NP

Since SAT is NP-complete it is enough to show that we can find a satisfying assignment given
access to a SAT oracle. So given any formula φ we will run the following algorithm:

Step 0: First we ask oracle on the given boolean formula φ. If it accepts then φ is in SAT.
Otherwise reject because it is not satisfiable, hence no satisfying assignment exists. Suppose it
accepts.

Step 1: Then fix x1 = 1. Now putting the value of x1 in φ we have a new boolean formula
φ′(x2, . . . , xn) = φ(1, x2, . . . , xn). We ask the oracle on φ′, if it accepts then keep x1 = 1. Other-
wise keep x1 = 0 since we know there is a satisfying assignment from step 0 and each variable
can have only two values 0 or 1.

Step 2: Now in φ′ fix x2 = 1 and repeat the same process as step 1. Then again keep the
value for x2 and fix x3 Repeat then process for all variables x1, . . . , xn till every variable is fixed.

Step 3: At the end of the recursive process of step 2 we have a satisfying assignment x for
the boolean formula φ.

10.2 EXP ̸= NEXP⇒ P ̸= NP

Theorem 10.1. If P = NP then EXP = NEXP

Idea. Padding ♢

Proof. Suppose L ∈ NEXP =⇒ ∃ c ∈ N such that L ∈ NTIME
(
2nc)

. Suppose ML be the
turing machine. Then consider the language

LPAD = {(x, 1m) | x ∈ L, m = 2|x|
c}
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Claim 10.2. LPAD ∈ NP

Proof.
∣∣∣(x, 12|x|

c)∣∣∣ = 2O(|x|c). Consider the turing machine M′L

ML: Input x̃.
If input is not of the form (x, 1m) where m = 2|x|

c
reject.

Run ML on x and return the same answer.

This M′L takes the same answer as ML but with respect to
(

x, 12|x|
c)

it takes linear time.

Since P = NP, LPAD ∈ P. Hence there exists a deterministic turing machine MPAD such that
LPAD ∈ DTIME(nc′) for some c′ ∈N. Then consider the turing machine M:

M: Input x
Compute m = 2|x|

c
and build x̃ = (x, 1m).

Run MPAD on x̃ and return the same answer.

The second step takes 2|x|
c

time at most. Hence M takes 2O(|x|c) time. So L ∈ EXP.

10.3 Unary NP-Complete⇒ P = NP

Theorem 10.3. If an unary language is NP-hard then P = NP

Idea. Keep a bag of satisfiable smaller formulas such that φ ∈ SAT if and only if there is a formula in
the bag satisfiable. ♢

Proof. Let L is an unary language which is NP-hard. Let f is a reduction from SAT to L. Sup-
pose ∃ c ∈N such that f is computed in nc time.

Let B be a bag of formulas following the invariant that:

φ ∈ SAT ⇐⇒ /B ∩ SAT ̸= ∅

We can do two operations in B: EXPAND or PRUNE. EXPAND returns a bigger B and PRUNE

returns a smaller.

EXPAND(B) = {φ(xi = 0), φ(xi = 1) | φ ∈ B}
Now PRUNE returns a smaller B′ such that

B ∩ SAT ̸= ∅ ⇐⇒ B′ ∩ SAT ̸= ∅

So PRUNEB is applied when size of B is bigger, |B| > n2c. Now let B = {φ1, . . . , φt}. Let
yi = f (φi). So if any of the yi is not of the form 1k then PRUNE throws them away. If yi = yj

for i ̸= j then both are satisfiable or both not. So we can throw one of them away.

PRUNE:(B): Put φ in it if f (φ) is of the form 1k for some k ∈ N and if for φ, φ′ ∈ B, f (φ) =

f (φ′) put only one of them.
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So upon repeated EXPAND and PRUNE after n steps B only contains literals and if one of
them is true then we can return true. So the algorithm is

Algorithm 1: SAT-Fast-Algo
Input: n-variate boolean formula φ

Output: Is φ satisfiable.
1 begin
2 B ←− {φ}
3 for i = 1, . . . , n do
4 B ←− EXPAND(B)
5 if |B| > n2c then
6 PRUNE(B)

7 if any element of B is true then
8 return True

9 return False

This algorithm is a polynomial time algorithm. Therefore L ∈ P. Hence P = NP.

10.4 Sparse NP-Complete⇒ P = NP

Definition 10.4 (Sparse Language). L is nc-sparse if |L ∩ {0, 1}n| ≤ nc. Hence L is nc-cosparse if L
is nc-sparse. ♢

Proposition 10.5 (Mahaney’s Theorem). If a nc-cosparse language is NP-hard then P = NP.

Idea. Same idea as unary language with modifications. ♢

Proof. Let L is an nc-cosparse language which is NP-hard. Let f is a reduction from SAT to L.
Suppose ∃ k ∈N such that f is computed in nk time. Let φ is a given formula.

Suppose B be the bag of smaller formulas. And we define the EXPAND operation like in the
unary case. The PRUNE operation if for any φ ∈ B, f (φ) is not of the form 1l for some l ∈ N

throw it away. And if for some φ, φ′ ∈ B if f (φ) = f (φ′) then we can throw one of them. So
suppose all f (φ) for all φ ∈ B are different.

Now suppose φ is unsatisfied =⇒ B only has unsatisfied formulas. Suppose for all φ ∈ B,
| f (φ)| ≤ nl for some l ∈ N. Then |L ∩ {0, 1}≤nl ≤ (nl)c+1 = nl(c+1). So if |B| = t > n(c+1)l

then we are getting t many f (φ)’s to be in L. But L can not have that many entries. So we reject
immediately.
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Lecture 11

Introduction to Space Complexity
Scribe: Shubham A. Bhardwaj

In this lecture, we defined space complexity and various complexity classes associated with
space and investigated some basic relationship between these classes.

11.1 Space Complexity

One way to define space used by a Turing Machine M on input x is to count the total number
of distict cells used during computation by M on x, but since we want to make sense of com-
putation using sublinear space and the input itself is of linear size, we need to slightly modify
our approach. We do this by having a distinguished input tape which is ’read only’ and the
cells used in this read only tape do not count toward space used by TM. With this in mind, we
give some basic definitions.

SPACE(M, x) := # cells used by M on x in non input tapes

SPACE(M, n) := max
x:|x|=n

SPACE(M, x)

DSPACE(s(n)) := {L : L = L(M) for some DTM with SPACE(M, n) = O(s(n))}

NSPACE(s(n)) := {L : L = L(M) for some NTM with SPACE(M, n) = O(s(n))}

PSPACE := DSPACE(poly(n))

NPSPACE := NSPACE(poly(n))

L := DSPACE(log(n))

NL := NSPACE(log(n))

11.2 Space Hierarchy Theorem

Theorem 11.1. If f and g are space constructible functions, such that f (n) = o(g(n)), then

DSPACE( f (n)) ⊊ DSPACE(g(n))

NSPACE( f (n)) ⊊ NSPACE(g(n))
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Proof. We skip the proof as it is similar to the proof of Time Hierarchy theorems.

11.3 Basic Observations

Observation 11.2. P ⊆ PSPACE and NP ⊆ PSPACE

Since any machine running in polynomial time can use atmost polynomial space, we have
P ⊆ PSPACE. Also, for any Circuit-SAT instance, we can check all possible assignments in lex-
icographic order. To do this, we just need to store a counter to keep track of which assignment
we are currently checking and the current assignment. Clearly, this can be done in O(n) space,
this implies NP ⊆ PSPACE.

Observation 11.3. Σ2 -SAT ∈ PSPACE

Σ2 -SAT = {φ |∃x, ∀y φ(x, y) = 1} Again similar to Circuit-SAT, we just iterate over all
possible assignments of x and check if φ(x,) becomes tautology. Also, we can extend this to
show that Σi -SAT ∈ PSPACE. Thus, we have the following

Observation 11.4. PH ∈ PSPACE

11.4 Configuration Graph

We introduce the notion of configuration graphs. Let M be a TM running in space s(n). At
any step, we need to store the current state, head positions and content of the tape, thus con-
figuration of M at any step is a subset of Q× s(n)k × n× 2s(n) where k is the number of tapes.
The configuration graph of M then consist of all configurations as nodes and edges between
configurations c1 and c2 if we can take a transition from c1 to go to c2. Notice that configuration
graph for DTM will have outgoing degree atmost 1 whereas for NTMs, outgoing degree can
be upto 2.

Now, to check if x ∈ L(M), we can just check whether there exist a path from initial con-
figuration c1 to some accept configuration, and since the number of vertices and edges in the
graph are of order 2O(s(n)), we can check whether there exists such a path in 2O(s(n)) time.
Thus,we have the following lemmas:

Lemma 11.5. NSPACE(s(n)) ⊆ NTIME(2O(s(n))).

Lemma 11.6. NPSPACE ⊆ EXP.
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Lecture 12

PSPACE Completeness
Scribe: Vivek Karunakaran

In this lecture, We proved that TQBF is PSPACE-complete and used the proof to see the Sav-
itch’s Theorem. And We proved that the Generalized Geography is PSPACE-complete by the
reduction from TQBF to Generalized Geography.

12.1 TQBF is PSPACE-complete

The TQBF problem can be solved using a recursive algorithm that evaluates the formula based
on the quantifiers:

• If the formula is a Boolean constant (e.g., true or false), return its value.

• If the formula is of the form “∃x : φ”, recursively evaluate φ for both x = 0 and x = 1,
returning true if at least one satisfies φ.

• If the formula is of the form “∀x : φ”, recursively evaluate φ for both x = 0 and x = 1,
returning true only if both cases satisfy φ.

The recursive evaluation does not require storing all variable assignments simultaneously.
Instead, the algorithm uses depth-first search (DFS) with backtracking, as in recursive function
calls. Since there are at most n variables, the recursion depth is at most n. Thus, the function
call stack has at most O(n) depth, which is reused for all branches. If the expression is of length
m, the total space used is O(m · n). Hence, TQBF ∈ PSPACE.

Now let us prove that TQBF is PSPACE-hard. Let L ∈ PSPACE and let M be its correspond-
ing machine that takes space S(n). In the corresponding configuration graph, there are at most
2O(S(n)) states. Given an input x, we aim to construct a TQBF instance Ψ(s, t) such that:

x ∈ L ⇐⇒ Ψ(Cstart, Caccept) = TRUE

That is, Ψ(Cstart, Caccept) has to encode the statement that there exists a path of length at most
2O(S(n)) between the start state Cstart and the accepting state Caccept in the configuration graph,
GM,x.
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Let Ψl(C1, C2) be the statement that there exists a path of length at most l from C1 to C2 in
GM,x. Consider Ψ2l(C1, C2). This means that there exists another node Cmid such that both the
path from C1 to Cmid and the path from Cmid to C2 are of length at most l. That is:

Ψ2l(C1, C2) = ∃Cmid : Ψl(C1, Cmid) ∧Ψl(Cmid, C2).

However, this leads to an exponential increase in the size of the formula. To avoid this, we use
a universal quantifier to capture the same statement as follows:

Ψ2l(C1, C2) = ∃Cmid ∀(α, β) ∈ {(C1, Cmid), (Cmid, C2)} : Ψl(α, β).

The base cases Ψ1(C1, C2) can be expressed similarly to the proof of the Cook-Levin theorem.
Therefore, the formula size satisfies:

size(Ψ2l) ≤ size(Ψl) + O(S).

This implies that the final quantified formula has size O(S2). This completes the reduction,
proving that TQBF is PSPACE-complete.

12.1.1 PSPACE = NPSPACE

Note that nowhere in the reduction do we require that each node in the configuration graph has
degree one. This means that the same reduction applies to nondeterministic Turing machines as
well. Consequently, TQBF is NPSPACE-hard too, leading to the conclusion:

PSPACE = NPSPACE.

12.1.2 Savitch’s Theorem

Theorem 12.1. For any space-constructible function S(n) ≥ log n,

NSPACE(S(n)) ⊆ DSPACE(S(n)2).

Consider L ∈ NSPACE(S(n)). By following the above reduction, We can reduce the in-
stance of L to the equivalent instance of TQBF of size O(S2). We know that TQBF is in PSPACE

and precisely this TQBF ∈ DSPACE(S2). Therefore, NSPACE(S(n)) ⊆ DSPACE(S(n)2).

12.2 Generalized Geography is PSPACE-complete

We have a directed graph G with the starting vertex given. There are two players: Player1 and
Player2. The game starts with the Player1 and they take turns choosing vertices from G such
that the vertices form a simple path (no vertices repeated) from the starting vertex. A player
loses when they are unable to continue the path. We want to decide if Player1 has a winning
strategy for geography on G starting at some initial vertex s.
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Generalized Geography is in PSPACE. We can do the recursive algorithm as we have done
with TQBF. We start with the start vertex. Let A(u) be the function that returns True if the
player starting with u has a winning strategy. Suppose u has edges to v1, v2, .., vk. Then, A(u)
is True iff ∃v ∈ {v1, v2, ..., vk} such that A(v) is False after removing u and the corresponding
edges from the graph. This is the recursive algorithm with the recursion stack getting at most
n (number of vertices) levels. So, The space consumed by the recursive stack is polynomial
and hence, GenGeog is in PSPACE.

Now we construct a reduction TQBF ≤ GenGeog. Assume without loss of generality that
we have an equal number of quantifiers, and the formula is a 3CNF-formula. That is, φ =

∃x1∀x2...∀xn : c1 ∧ c2 ∧ ...∧ cm where ci is a 3-clause. Then, the construction is as follows:

Note that the first diamond is played by Player1 and the second diamond is played by
Player2 and so on. So, at last, the diamond corresponding to the variable xn is played by
Player2. So, Eventually Player2 chooses some clause and Player1 has to choose some literal in
order to end the game if φ is True.

If φ is True, then, Player1 has to choose accordingly at his turns during the existential
quantifier so as to make the expression True with the chosen values for the variables. Finally
when his turn is to choose the literal, he has to choose the literal chosen by him which turned
out to be true which is always possible, if φ is True. This ensures Player1 can win always. If φ

is False, Player2 can choose the clause in which all the 3 literals end up as False. So, whichever
literal chosen by Player1, Player2 can always end the game and hence winning. Similarly if
the Player1 has the winning strategy,then that corresponds to the values of the variables with
the existential quantifier that will make φ True and If the Player2 has the winning strategy, that
corresponds to the values of the variables with the forall quantifier that will make φ False.

Therefore, Generalized Geography is PSPACE-hard and hence, PSPACE-complete.
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Lecture 13

Logspace Reductions and
NL-Completeness
Scribe: Aindrila Rakshit

Topics covered in this lecture

1. Logspace Reductions

2. NL-Completeness of directed s-t connectivity

13.1 Logspace Reductions

We would like to know problems that are complete for NL, and thus would like to define a type
of reduction for that class. We cannot use polynomial-time reduction since L is a weaker class
and the notion of reduction shouldn’t be more powerful than the class. So we will introduce
logspace reductions, which are computable my a deterministic TM running in logarithmic
space.

Definition 13.1 (Logspace reduction). A function f : Σ∗ → Σ∗ is logspace computable, if f is
polynomially bounded and the languages L f = {⟨x, i⟩ : f (x)i = 1} and L′f = {⟨x, i⟩ : i ≤ | f (x)|}
are in L.

A language A is logspace reducible to language B, i.e, A ≤L B, if there exists a logspace computable
function f such that x ∈ A if and only if f (x) ∈ B. ♢

Some properties of logspace reductions:

1. A ≤L B and B ≤L C, then A ≤L C.

Proof. We have machines M1 and M2 that compute the reductions A ≤L B and B ≤L C
respectively. M2 needs access to its input tape which M1 writes to and it cannot store the
output of M1 in a work tape since that would exceed the space available to us. Instead,
we assume M2 has access to the output of M1. Each time M2 needs to read a bit from the
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input tape, we execute M1 and output the requested bit. This can be done in logspace
(since we aren’t storing the whole output at any point). Hence, A ≤L C.

2. A ≤L B and B ∈ L, then A ∈ L.

Proof. Suppose f : Σ∗ → Σ∗ is the log-space computable reduction from A to B. The
main issue with the naive approach is again that the final machine cannot afford to write
down the output of f (x) entirely. However, we can always re-compute it as and when
we need. Essentially, we begin running M (that accepts B) on “ f (x)” but whenever this
machine needs to read the i-th bit of f (x), we run the reduction f , maintain a counter for
output bits, and wait for the i-th bit of f (x) to be computed (discarding all other bits).

Definition 13.2 (NL-Completeness). A language L is NL-hard under logspace reductions if for every
language L′ ∈ NL there is a logspace reduction f such that L′ ≤L L. L is NL-complete if it is NL-hard
and L ∈ NL. ♢

13.2 NL-Completeness of directed s-t connectivity

Definition 13.3 (Dir-Path). The language Dir-Path is defined as

{⟨G, s, t⟩ : G is a directed graph and there is a directed path from s to t} .

♢

Theorem 13.4. Dir-Path is NL-Complete under logspace reductions.

Proof. Showing Dir-Path ∈ NL:

A nondeterministic log-space Turing machine can solve the directed s-t connectivity prob-
lem as follows:

• It starts at the source vertex s and maintains the index of the current vertex.

• Using nondeterminism, it guesses a neighbor of the current vertex and moves to it.

• If it reaches t within at most n steps (where n is the number of nodes), it accepts.

• If it has taken n steps and has not reached t, it rejects.

The machine only needs to store:

• The current vertex index (requiring O(log n) bits).

• A counter for the number of steps taken (also requiring O(log n) bits).

Since the total space used is O(log n), we conclude that Dir-Path ∈ NL.

Showing Dir-Path is NL-hard.
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To show that every language L ∈ NL reduces to Dir-Path, let M be an NL-machine that
decides L in O(log n) space. We define a log-space computable function f that maps an input
x of size n to a directed graph GM,x, called the configuration graph.

• The vertices of GM,x correspond to all possible configurations of M on input x.

• The number of possible configurations is at most 2O(log n) = poly(n).

• There is an edge from configuration C1 to C2 if and only if C2 is one of the (at most two)
possible next configurations of C1 according to M’s transition function.

• The special start node Cstart represents the initial configuration of M on x.

• The special accept node Cacc represents any accepting configuration of M.

Thus, x ∈ L if and only if there exists a directed path from Cstart to Cacc in GM,x.
The Reduction is Log-Space Computable. The adjacency matrix of GM,x can be computed

using O(log n) space. Specifically, given two configurations (C1, C2), a deterministic machine
can:

• Verify whether C2 is a valid next configuration of C1 using O(log n) space.

• Construct the adjacency matrix entry for (C1, C2) in log-space.

Since we only generate edges dynamically without storing the entire graph, the reduction uses
at most O(log n) space.

Since Dir-Path is both in NL and NL-hard, we conclude that Dir-Path is NL-complete.

Other complete problems for NL include 2-SAT, checking if a graph is bipartite.

Theorem 13.5 (Reingold). Undir-Path ∈ L.
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Lecture 14

The Immerman-Szelepcsényi theorem
Scribe: Nishant Das

14.1 Read-Once Certificates for NL

In the case of NP, we can characterize membership using a deterministic polynomial-time ver-
ifier with access to a certificate (or witness). A natural question is whether a similar charac-
terization holds for NL. However, a direct adaptation of the NP definition fails and incorrectly
place problems such as SAT within NL, which is unlikely. To address this, we impose the re-
striction that the witness is read-once and read-only.

Definition 14.1 (Read-Once Certificates for NL). A language L is a polynomially-sized read-once
certifiable in log-space if there exists a deterministic log-space verifier V such that x ∈ L if and only if:

The input x is provided to V on a read-only input tape.
There exists a certificate w ∈ {0, 1}m with m = |x|c (for some constant c), provided on a separate

read-once, read-only witness tape to V.
V has access to an additional work tape of size O(log |x|).
V accepts (x, w).

♢

This definition precisely captures NL, as formalized in the following lemma.

Lemma 14.2. A language L is polynomially-sized read-once certifiable in log-space if and only if L ∈
NL.

Example: Directed Path Problem For the language Dir-Path, where (G, s, t) is in the lan-
guage if there exists a path from s to t in the directed graph G, a valid certificate is simply the
sequence of vertices along such a path. The log-space verifier reads this path once, checking
validity by storing only the current and previous vertex.

14.2 Immerman-Szelepcsényi Theorem

Theorem 14.3. Dir-Path ∈ NL.
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In the previous lecture, we established that the directed path problem (DirPath) is NL-
complete. Consequently, its complement, Dir-Path, must be coNL-complete. If we can show
that Dir-Path is in NL, then we establish that NL = coNL.

To achieve this, we use the technique of inductive counting, which enables us to track the
number of reachable vertices in a structured manner while staying within NL.

Define a sequence of sets Bi, representing the vertices reachable from a source node s within
distance i:

Bi = {u | dist(s, u) ≤ i} = Bi−1 ∪ {v | (u, v) ∈ E, u ∈ Bi−1}.

That is, each layer consists of the previous layer plus all nodes that can be reached in one
more step. Our goal is to certify that a target node t does not belong to Bn, meaning that t is
not reachable from s.

Suppose we already know the size of each reachability layer, denoted ri = |Bi|. We con-
struct a certificate proving that t /∈ Bi as follows:

1. List the ri vertices in Bi, say u1, u2, . . . , uri in lexicographically increasing order.

2. For each vertex uk in Bi, provide an explicit path from s to uk with length at most i.

3. The verifier, using only logspace, checks each path to confirm that these vertices belong
to Bi.

Since the certificate explicitly lists all reachable vertices, if t is not included, we can conclude
that t /∈ Bi. Now, let’s see how given ri = |Bi|, we can certify ri+1 = |Bi+1| by providing
certificates for all vertices:

• If u ∈ Bi+1, provide a path from s to u of length at most i + 1.

• If u /∈ Bi+1, enumerate all vertices in Bi along with their paths and verify that u is not
reachable from any of them in one step.

This ensures that the verifier can check the correctness of each Bi, leading to a final certifi-
cate that confirms t /∈ Bn, thereby proving that t is not reachable from s.

The complete certificate consists of the base case: B0 = {s} and certificates for each layer
|B1|, |B2|, . . . , |Bn|. The verifier, working in logspace, checks the validity of these certificates. If
t is not in Bn, it concludes that there is no path from s to t, proving that Dir-Path is in NL. This
establishes the fundamental result that NL = coNL.
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Lecture 15

Catalytic computation
Scribe: Soumyadeep Paul

15.1 Catalytic computation

Definition 15.1 (Catalytic computation). We consider that in addition to the work tape of size w(n)
the machine is given larger catalytic tape of size c(n). The catalytic tape must be returned to its original
state at the end of the computation. ♢

Definition 15.2 (CSPACE). We let CSPACE(w(n), c(n)) be the set of languages which are computable
by catalytic machines with catalytic tape size c(n) and work tape size c(n). ♢

We generally work with the convention CSPACE(w(n)) = CSPACE(w(n), 2w(n)). We ovserve
that

L ⊆ CL .

15.2 Reversible computation

We are given n registers R1, R2, · · · , Rn ∈ RwhereR is a ring. We are allowed the instructions
of the form

Ri ← Ri ± ujuk,

where uj, uk are either constants or other registers.

Definition 15.3 (Transparent computation). A reversible program P transparently computes a func-
tion f (x1, · · · , xn) on register R1 if for all τ1, · · · , τn, they get taken to τ′1, · · · , τ′n where τ′1 = f (x) +
τ1. ♢

Definition 15.4. We say a reversible program computes f cleanly on register R1 if if τ′1 = f (x) + τ1

and τ′i = τi for all 2 ≤ i ≤ n. ♢

Theorem 15.5. Suppose there is an m register program P that transparently computes f (x), then there
is an m + 1 register program P′ that cleanly computes f and |P′| ≤ 2|P|+ 2.

Proof. Suppose R0 is a new register, and P is a program that transparently compute f (x) on
R1, then consider the following program.
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• R0 ← R0 − R1

• Run P

• R0 ← R0 + R1

• Run P−1

It is easy to see that this program cleanly computes f on register R0.

Lemma 15.6. Suppose f (x) can be transparently computed by Pf , and g(x) can be transparently
computed by Pg then we can transparently compute f + g by P = Pr

f · Pr
g.

Lemma 15.7. Assume that we have at least 3 registers. If Pf cleanly computes f , and Pg cleanly
computes g, then we can also cleanly compute f g.

Proof. Let σ be the instruction R1 ← R1 − R2R3. We can cleanly compute f g via the following
program:

P(2)
f · σ · P

(3)
g · σ−1 · (P(2)

f )−1 · σ · (P(3)
g )−1 · σ−1.

Once can easily check that this program clearly compute f g on register R1. The length of the
program is at most 4 max(|Pf |, |Pg|) + 4.

Theorem 15.8 (Ben-Or & Cleve). If f is computable by a fan-in 2 depth d formula, then we can
cleanly compute f via a program of length ≤ 4d using 3 registers.

From the above proof, we can make a simple observation — Theorem 15.8 also works when
R is not commutative.

Theorem 15.9 (Brent, Spira). If f is computable by a formula of size s, then it is also computable by a
formula of size poly(s) and depth O(log s).

Theorem 15.10. If f (x) = (M1 · · ·Ms)1,1 and each Mi ∈ Rk×k, then f can be cleanly computed by a
program of length O(s2k3) with O(k2) registers.

Proof sketch. Assume each super-register now holds a matrix rather than an element of the
underlying ring. Each super-register is will be internally thought of as k2 registers, one for
each entry. Clearly, each super-register instruction can be translated to O(poly(k)) instructions
on the standard registers, and this eventually yields a program of length O(s2 · poly(k)) with
O(k2) registers.

Theorem 15.11. DirPath ∈ CL, implying NL ⊆ CL.

Proof sketch. Checking if there is a directed path from s to t can be obtained by inspecting the
(s, t)-entry of An where A is the adjacency matrix of the graph (with self-loops on each vertex)
and n is the number of vertices in G.

One catch is that since we have to deal with registers holding integer values and that might
make their size unbounded (and potentially the entries of the matrix An could be as large as
nn and we can’t store that in our workspace). This can be fixed via Chinese Remaindering.
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The above proof actually extends to show that a class called GapL ⊆ CL.
With more work, one can not just work with f computable by small formulas or branching

programs, but in fact by any polynomial-sized log-depth circuits. This yields the following
theorem.

Theorem 15.12. LOGCFL ⊆ CL.

(Check the handwritten notes for the proof).

In fact, the largest class that is currently known to be in CL is the class TC1.

Theorem 15.13 (BCKLS). Uniform TC1 ⊆ CL.

In terms of upper-bounds for CL, the best we know of currently is the following result.

Theorem 15.14 (BCKLS). CL ⊆ ZPP.
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Lecture 16

Tree Evaluation Problem
Scribe: Soham Chatterjee

Definition 16.1 (Tree Evaluation Problem (TEPh,k)). Given a tree of height h and alphabet size k
where every leaf vu ∈ {0, 1}k for all u ∈ {0, 1}h is an element of {0, 1}k and every internal node is a
function fu : {0, 1}k × {0, 1}k → {0, 1}k and the ouput of the tree is the value at the root where the
tree is evaluated bottom-up. We denote it by TEPh,k. ♢

The input size is 2h · k + (2h − 1)22k · k = 2O(k+h).

Observation 16.2. TEPh,k ∈ P

A naive low-space algorithm for TEPh,k will be to evaluate each subtree of the root sepa-
rately and the return the value of the root based on the value of the subtrees:

TEPh,k :

αL = TEPh−1,k(Left Subtree)

αR = TEPh−1,k(Right Subtree)

Return froot(αL, αR)

The space used by this algorithm is

Space(h, k) = Space(h− 1, k) + O(k) = O(h · k) = O(log2 n)

The interesting case for us is where h, k = O(log n). So for this case we will reference it as
TEP from now on.

Theorem 16.3 ([CM21]). TEP ∈ DSPACE
(

log2 n
log log n

)
Theorem 16.4 ([CM24]). TEPh,k ∈ DSPACE((h + k) log k)

The recent result by Cook and Mertz gives us the result

Corollary 16.5. TEP ∈ DSPACE(log n log log n)

Idea. Do the naive algorithm using catalytic computation ♢
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For all f : {0, 1}k × {0, 1}k → {0, 1}k we can find a polynomial F(x1, . . . , xk, y1, . . . , yk) ∈
F[x1, . . . , xk, y1, . . . , yk] such that F(a1, . . . , ak, b1, . . . , bk) = f (a1, . . . , ak, b1, . . . , bk) for ai, bj ∈
{0, 1}where F(x, y) = ∑

a,b∈{0,1}k
f (a, b) · δa,b(x, y) where δa,b(x, y) = ∏k

i=1(aixi +(1− ai)(1−

xi))(biyi + (1− bi)(1− yi)). deg F ≤ 2k

Observation 16.6. Given f : {0, 1}k × {0, 1}k → {0, 1}k and α1, . . . , αk, β1, . . . , βk ∈ F we can
compute F(α1, . . . , αk, β1, . . . , βk) in DSPACE(k + log |F|) space.

Now we will discuss the Cook and Mertz algorithm. The program memory model is 4
memories: (u, τ1, τ2, τ3) where u is of size h, τi is of size k which stores values Fk. Goal is the
build a Pu that does

(u, τ1, τ2, τ3)→ (u, τ1, τ2, τ3 + vu)

where vu = fu(vu0, vu1) for all u ∈ {0, 1}<h. Our inductive assumption is we have Pu0, Pu1

which does the following jobs respectively

(u, τ1, τ2, τ3)
Pu0−→ (u, τ1 + vu0, τ2, τ3)

and

(u, τ1, τ2, τ3)
Pu1−→ (u, τ1, τ2 + vu1, τ3)

Attempt 1: ▷ Run Pu0

▷ Run Pu1

▷ R(i)
3 ←− R3 + F(i)

u (R1, R2)

▷ Run P−1
u0

▷ Run P−1
u1

But we end with τ3 + Fu(τ1 + vu0, τ2 + vu1) in R3 where as we wanted τ3 + Fu(vu0, vu1).

Attempt 2: ▷ Scale R1 and R2 by α ∈ F \ {0}
▷ Run Pu0, Pu1

▷ R(i)
3 ←− R3 + F(i)

u (R1, R2)

▷ Run P−1
u0 , P−1

u1

▷ Scale R1 and R2 by α−1

Now R3 holds τ3 + Fu(ατ1 + vu0, ατ2 + vu1). G(t) = Fu(t · τ1 + t, t · τ2 + t). Therefore G(0) =
2k
∑

i=0
γiG(αi) =

2k
∑

i=0
γiFu(αiτ1 + vu0, αiτ2 + vu1). Now interpolate. So we do the above process

2k + 1 times for distinct αi ∈ F.
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Algorithm 2: Program Pu for register R3

1 for i = 1, . . . , 2k + 1 do
2 Scale R1 and R2 by αi ∈ F \ {0}
3 Run Pu0 for register R1.
4 Run Pu1 for register R2.
5 R3 ← R3 + γi · Fu(R1, R2)

6 Run P−1
u0 for register R1.

7 Run P−1
u1 for register R2.

8 Scale R1 and R2 by α−1
i .

The local space that the above algorithm needs to maintain is just the current value of i
(which requires O(log k) bits), and any space needed to computes Fu, the value of αi, γi, can be
during the recursion. Thus,

LocalSpace(Pu) = LocalSpace(Pub) + O(log k) =⇒ Space = O((h + k) log k)

Therefore for h, k = O(log n) we have Space = O(log n log log n).

Remark. With some additional ideas (using multivariate interpolation), the above bound can be im-
proved to O(k + h log k). ♢
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Lecture 17

Simulating Time With Square-Root
Space
Scribe: Shubham A. Bhardwaj

In this lecture, we went over the recent result of Ryan Williams on the relation between
time and space. We’ll prove the following theorem

Theorem 17.1 ([Wil25]). DTIME(t(n)) ⊆ DSPACE(
√

t(n) log t(n))

17.1 Proof Outline

Very Broadly, the idea is to reduce simulation of a time t(n) TM to a tree evaluation problem
and then use the recent result of [CM24] to get the theorem. Let M be a TM running in time
t(n). We now go over the basic ideas of the proof.

• Divide the space t(n) into epochs of size B each. Now, if we know the "configuration" of
the TM at the end of the i-th epoch, we can figue out the configuration of the TM at the
end of the (i + 1)-th epoch. The space needed to compute the configuration of the TM at
the end of the (i + 1)-th epoch from i-th epoch is O(B) since we just need to do a time B
simulation of the TM. So, we can store the configuration of the TM at the end of the i-th
epoch in O(B) space.

• Observe that we do not need to know the complete configuration of the TM at the end
of the i-th epoch, Since, in B time, only B cells of the tape can change, if we just know
the local configuration at the end of i-th epoch , we can simulate B steps of the TM and
give the "local configuration" at the end of (i + 1)-th epoch. Content of the rest of tape
remains same.

• We divide the tape into blocks of size B each. From the Assignment, we know that we
can construct a block respecting TM with the same language with only a constant factor
increase in time. Thus, we can assume that our machibe is Block respecting. With this,
local configuration at the end of i-th epoch is just the content of the blocks in which our
heads are at the end of i-th epoch.
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• Define the following functions:

TapeBlock(h, i) = block in which head of tape h is

Content(h, i) = content of the TapeBlock(h, i) after epoch i

LocalConfig(i) = Local Configuration after epoch i

last(h, i) = max{j < i : TapeBlock(h, j) = TapeBlock(h, i)}

• If the head does not change block from between (i − 1)-th epoch and i-th epoch, then
LocalConfig(i− 1) suffices to compute LocalConfig(i). Otherwise, we also need to know
the content of the curent block after the last time the TM operated on the block, which is
LocalConfig(last(h, i)).

• Now, observe that now we have the following DAG to compute LocalConfig(i):

LocalConfig(i)

LocalConfig(i− 1)

· · ·

· · · LocalConfig(jk)

· · ·

We can open up the DAG to get a tree and then it is a tree evaluation problem TEPh,k,d.
The parameters for TEP instance are h = O(t/B),d = #tapes + 1 and k = O(B). But, we
don’t know the tree. So, now we need to find a way to compute the tree.

• Instead of computing the tree, we’ll guess the tree. Define the following function:

m(h, i) =


1 head h moves one block right in epoch i

−1 head h moves one block left in epoch i

0 head h stays in same block in epoch i

Now, if we have the value of m(h, i) for all h and i, we can compute TapeBlock(h, i) as

TapeBlock(h, i) = ∑
j<i

mh,j + 1

last(h, i) = max{k : ∑
j≤k

m(h, j) = i}

Computing TapeBlock(h, i) and last(h, i) requires space O(log(t/b)) only. Thus, once we
know the value of m(h, i), we can compute the tree easily

• Now, we need to compute M = {mh,i}. Instead of computing M, we can guess M
and then check if the guess is correct. We’ll also guess a state sequence (q1, q2, . . . , qt/B) ∈
Qt/B. Also, observe that the leaves will be the leaves corresponding to nodes where some
block is being accessed for the first time.
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• Now, the only thing we need to check is that the guess is correct. To do this, at each node,
we add a check for consistency between consecutive states and heads, if at any point, the
guess is inconsistent, we abort. Also, it’s easy to see that this check catches all the wrong
guess and cab be done in O(B) time.

The above points give us an algorithm in which we guessM and the state sequence and
then check if the guess is correct. During every guess, we need to solve an instance of the tree
evaluation problem. Thus, accounting for the total space used, we get the following result:

Total Space = O(t/B) + O(B) + O(log
t
B
) + O(B +

t
B

log B) = O(B +
t
B

log B)

Setting B =
√

t log t, we get:

Total Space = O(
√

t log t)

This completes the proof of theorem.
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Lecture 18

Introduction to Circuits
Scribe: Vivek Karunakaran

18.1 Boolean circuits

A Boolean circuit is the directed acyclic graph with n sources (leaves), one unique sink repre-
senting the output. The leaves represent variables and constants and the inner nodes are gates
- ∧,∨ and ¬ and each inner node has 1 or 2 in-degrees depending on the gate. The circuit can
hence be viewed as the function f : {0, 1}n → {0, 1}.

18.2 Circuit family

A Circuit family C is the sequence of circuits C1, C2, C3... where Ci is the circuit on i bits and
together they compute f : {0, 1}∗ → {0, 1}. That is, for all x ∈ {0, 1}∗, we have f (x) = C|x|(x).

Size of the circuit Ci is denoted by |Ci| which is the number of vertices in the circuit.
We say that the circuit family C decides the language L if for all lengths n and x ∈ {0, 1}n,

we have x ∈ L ⇐⇒ Cn(x) = 1.

18.3 Circuit size classes

SIZE(S(n)) = {L : There exists a circuit f amily {Ci} that computes L and |Cn| = O(S(n))}.

In words, SIZE(S(n)) refers to the set of languages that are computable by some circuit family
of size S(n).

SIZE(poly(n)) is also called as P/ poly (we will justify this notation later).

Note that P ⊆ SIZE(poly(n)). This is because the Turing machine that runs in O(S(n))
time has O(S(n)) configuration sequence which can be encoded as the logical circuit as we
have done in Cook-Levin Theorem.

SIZE(poly(n)) however recognizes some undecidable languages as well. Note that all
unary languages are in SIZE(poly(n)) as each circuit Cn just indicates whether 1n exists in
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the language. We can encode the halting problem as the unary language which then belongs
to SIZE(poly(n)) as well. That is, LUHALT = {1n : Mn halts when run on a blank input tape}
belongs to SIZE(poly(n)).

18.4 Size Hierarchy Theorem

Consider the function f : {0, 1}n → {0, 1}. The circuit that can compute this, can be of size at
most 2n · n. So, Any function can be computed using the circuit family of size 2n · n.

Let us calculate the number of circuits of size S. Note that the circuit can be represented as
the adjacency list and each node has at most two incoming edges. So, This can be represented
as the string of size O(S · log S). So, Number of circuits of size S ≤ 2O(S·log S). In fact, This does
not exceed 210(S·log S).
Suppose 22n

> 210(S·log S) => 10S · log S < 2n => S < 2n/(10n).
So, There are functions f which are computed by the circuits of size 2n ∗ n but not com-

puted by the circuits of size 2n/(10n). Therefore, SIZE(2n/(10n)) ⊊ SIZE(2n · n).

One can actually easily extend (left as an exercise) the above observation to show the fol-
lowing:

Theorem 18.1 (Size hierarchy theorem). For all s : N → N such that s(n) = ω(1) and s(n) =

o(2n/n2) we have

SIZE(s(n)) ⊊ SIZE(s(n) · (log s)2).

18.5 Karp-Lipton-Sipser Theorem

Could it be the case that SIZE(poly) contains all of NP? The following theorem says that this is
quite unlikely.

Theorem 18.2 (Karp-Lipton-Sipser theorem). If NP ⊆ SIZE(poly), then PH = ∑2
⋂

∏2.

Proof. The rough idea of the proof is as follows. Assume that NP ⊆ SIZE(poly). So, SAT can
be computed by a circuit family C of polynomial size. By self-reducibility of SAT, we can get
the exact satisfying assignment with polynomial overhead when given access to the circuit
family C. Hence, we have circuit family C′ that outputs the satisfying assignment given the
SAT instance. Note that C′ is also of poly size.

Suppose L ∈ ∏2. So, x ∈ L ⇐⇒ ∀y∃zM(x, y, z) ⇐⇒ ∀y∃z φx(y, z). Note that ∃zφx(y, z)
is the NP problem and z is the satisfying assignment for φx(y, z). We can get the satisfying
assignment z using the circuit family C′. That is, C′|z|(φx, y) = z. So, ∀y∃z : φx(y, z) ⇐⇒ ∀y :
φx(y, C′|z|(φx, y)). Now we can simply guess the circuit C′|z| itself as it is also of polynomial
size. That is, ∀y∃z : φx(y, z) ⇐⇒ ∃C′|z|∀y : φx(y, C′|z|(φx, y)). So, We got the equivalent Σ2

statement.
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Since we assumed that there does indeed exist a circuit family for SAT, the above formula
is true when x ∈ L since we can instantiate C with the right circuit family.

On the other hand, if the Σ2 statement is true for some instantiation of C, eventhough that
may not be the right circuit family, it did nevertheless yield a satisfying assignment for φx(y).
Therefore we must have that x ∈ L.

Overall, we have shown that every L ∈ Π2 can also be shown to be in Σ2. Thus, the
polynomial hierarchy collapses to the second level.

The above proof can infact be generalised to show the following:

Theorem 18.3 (Meyer’s theorem). If EXP ⊆ SIZE(poly(n)), then EXP = ΣP
2 .

18.6 Some common circuit classes

NCi: A language is in NCi if there exists a poly size circuit with two fan-ins and O(logi n) depth
that decides it.
ACi: A language is in ACi if there exists a poly size circuit with unbounded fan-ins and and
O(logi n) depth that decides it.
Since unbounded polynomial fan-in can be simulated using a tree of ORs/ANDs of depth
O(log n), NCi ⊆ ACi ⊆ NCi+1.
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Lecture 19

What AC0 can and cannot do
Scribe: Aindrila Rakshit

Topics covered in this lecture

1. ADD2 ∈ AC0

2. Parityn /∈ AC0

In this lecture, we saw what the complexity class AC0 (constant depth, polynomial size,
unbounded fan-in) can and cannot do. Recall that the size of a circuit refers to the number of
gates in it, the depth corresponds to the length of the longest path from an input gate to the
output gate and the fan-in of a gate is the number of input wires coming into it.

19.1 Some functions in AC0

Obvious functions in AC0: OR, AND, CNF. We will first see a slightly surprising function in
AC0, namely the task of adding two n-bit numbers.

ADD2: Adds two binary numbers, i.e. ADD2 : (X, Y)→ X +Y, where X, Y are numbers in
binary.

Addition of two numbers at first glance seems to be not in AC0, since it appears to require
a sequential operation wherein the ith bit of both X and Y are added to find both the ith bit of
the output and the carry needed for the addition of the (i + 1)th bits. The circuit made using
this sequential algorithm would have O(n) depth.

Proposition 19.1. ADD2 ∈ AC0.

Proof. We will construct an AC0 circuit for ADD2 using a carry-lookahead generator. Define for
each bit position i:

gi = Xi ∧Yi (generate a carry at position i if Xi = Yi = 1)

pi = Xi ∨Yi (propagate a carry through position i if at least one of Xi or Yi is 1)
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Ci is the carry coming into position i

Assume C0 = 0 is the initial carry.
The carry into position i is 1 iff:

• Some lower position j < i generated a carry (gj = 1), and

• All bits from j + 1 to i− 1 propagate the carry (pk = 1 for j + 1 ≤ k ≤ i− 1)

Then, for i = 1, . . . , n:

Ci =
i−1∨
j=0

gj ∧
i−1∧

k=j+1

pk


The ith bit of the output can now be easily computed from Xi, Yi and Ci giving an AC0 circuit

for addition.

Turns out, we can infact add O(log n) numbers in AC0 as well (this is a non-trivial theorem).

Theorem 19.2. ADDlog n ∈ AC0.

Other surprising functions in AC0 are “small thresholds”.

Theorem 19.3. Thlog n ∈ AC0, where Thlog n is the task of checking if the number of ones in the input
is at least log n.

19.2 Parityn /∈ AC0

We now move on to showing a function that cannot be computed by AC0 circuits. This was
first proved by Furst-Saxe-Sipser and there have been many subsequent proofs (by Håstad,
Razborov, Smolensky, etc.). We will see the proof by Razborov and Smolensky.

Parityn: Computes the parity of the n input bits.

Theorem 19.4 (Razborov-Smolensky). Parityn /∈ AC0: Any depth ∆ circuit computing PARITY
must have size ≥ 2Ω(n1/2∆).

Håstad proved the optimal lower bound for Parity: Any depth ∆ circuit computing Parityn

must have size ≥ 2Ω(n1/∆−1).

Intuition: Parityn is a sensitive function, changing any input bit changes the output.
To prove the theorem, we will rely on the classic method of approximating a function

f : {0, 1}n → {0, 1} by a polynomial. E.g., the function OR(x1, . . . , xn) is computed by the
polynomial 1−∏n

i=1(1− xi) of degree n, but we would want it to be described by a polyno-
mial of degree less than n. It can be approximated by the polynomial which is identically 1 on
all inputs, and thus is correct on every input except on the one where all xi’s are 0’s. Similarly,
the function AND(x1, . . . , xn) = ∏n

i=1(xi) ≈ 0, which is correct on every input except on the
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one where all xi’s are 1’s. Given any circuit C which is polynomially approximated by f , ¬C
can be polynomially approximated by 1− f .

But instead of asking for the polynomial to be correct on “most” inputs, we will ask for
the stronger requirement that we want to be right on every input with high probability. For
this, it would be imperative that the polynomial is chosen from some distribution (what do we
take the probability over otherwise?). This leads us to the following notion of approximating
polynomials (which is actually a distribution on polynomials).

Definition 19.5 (Approximating polynomials). Approximating polynomial is a distribution D on
a set of polynomials over F that ε-approximates a Boolean function f : {0, 1}n → {0, 1} if for all
X ∈ {0, 1}n:

Pr
P∼D

[P(X) ̸= f (X)] ≤ ε.

In words, for every input x, if P is picked according to the distribution then P(X) agrees with f (x) with
probability at least 1− ε.

We shall say that this approximating polynomial has degree d if every P in the support of D has
degree at most d. ♢

Here, we will be working over the field F3 consisting of three elements {0, 1, 2} (or {0, 1,−1}).

The main theorem would follow from the following two lemmas:

Lemma 19.6. If f is computable by a size s, depth ∆ circuit, then for any ε there is an ε-approximating
polynomial of degree ≤ O((log s/ε)2∆).

Lemma 19.7. Suppose D is an approximating polynomial family that 0.1-approximates Parityn, then
degree of P ≥

√
n/100.

This would immediately yield that (10 log s)2∆ =
√

n/100 which implies that s = 2Ω(n1/2∆).

19.2.1 Approximating polynomial for OR(X1, . . . , Xn)

We begin by providing a 2/3-approximating polynomial for OR (fan-in n).
The sampling process for the polynomials would be by choosing some elements ri ∈ F

uniformly at random.

Pr(x) = (r1x1 + . . . + rnxn)
2, where ri ∈R F

If all xi = 0, then Pr(x) = 0 irrespective of r, so it correctly computes OR with probability 1.

Observation 19.8. If some OR(x) = 1, then Prr∈RF [r1x1 + . . . + rnxn = 0] = 1/3.
In particular, for all x, Prr∈RF [(r1x1 + . . . + rnxn)2 = OR(x)] ≥ 2/3.

Amplifying the success: This can be amplified by taking t samples of r instead of 1.

Pr1,...,rt(x) = 1−
t

∏
i=1

(1− Pri(x)
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(each ri ∈ Fn
3 )

Observation 19.9. Pr1,...,rt(x) approximates OR(x1, . . . , xn) with error ε ≤ (1/3)t.

Note that deg(Pr1,...,rt(x)) = 2t.

Handling NOT gates NOT gates have fixed fan in 1. It is easy to see that if P is an approxi-
mating polynomial for f , then 1− P is an approximating polynomial for ¬ f

19.2.2 Approximating polynomial for AND(x1, . . . , xn)

Using De Morgan’s law, we know that AND(x1, . . . , xn) = ¬OR(¬x1, . . . ,¬xn). Therefore, the
following is the natural polynomial that approximates AND(x1, . . . , xn):

Qr(X) = 1− Pr(1− x1, . . . , 1− xn).

Thus, AND can be (1/3)t approximated by the degree 2t polynomial Qr1,...,rt .

19.2.3 Composing approximating polynomials

Suppose we now have a circuit that is an AND of OR’s, we can just compose the polynomials
for the corresponding gates.

T(x) = Qr(Pr(x), . . . , Pr(x))

Observation 19.10. Error of T(x)) ≤ number of gates × error at any gate

To approximate an depth ∆ circuit, use the same construction for OR, AND, NOT and
compose Q′(x). If we have s gates, the total error we may incur (if each P or Q has error (1/3)t)
is bounded by s · (1/3)t. To ensure that this is at most ε, we can instantiate t = O(log(s/ε)).

Furthermore, if we have a circuit of depth ∆, then the degree of T is at most (O(log s/ε))2∆.
This completes the proof of Lemma 19.6. We will see the proof of Lemma 19.7 in the next

lecture.
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Lecture 20

Randomized Complexity Classes
Scribe: Nishant Das

20.1 Randomized Computation

Recall nondeterministic computation, where the machine has two transition functions Γ0 and
Γ1. At each step, it either guesses which path to take or follows both transitions simultaneously.
The machine accepts if at least one computational path leads to acceptance (depending on your
view of nondeterministic Turing machines).

In randomized computation, instead of guessing, the machine chooses between Γ0 and Γ1

uniformly at random. Thus, each computational path has a probability associated with it.
We now ask: what is the probability that the machine reaches an accepting state?
Alternatively, we can model randomized computation as having access to an additional

random tape filled with independent random bits. The machine then determines its transition
based on this random tape.

20.2 Randomized Complexity Classes

Depending on the acceptance criteria, we define different complexity classes:

Definition 20.1 (Bounder-error probabilistic polynomial time (BPP)). Let 0 < s < c < 1. Then

BPPc,s =


L | ∃ a randomized polynomial-time machine M such that:
x ∈ L⇒ Pr[M(x, r) accepts] ≥ c
x /∈ L⇒ Pr[M(x, r) accepts] ≤ s


♢

Definition 20.2 (Randomised polynomial time (RP)). Let 0 < c < 1. Then

RPc =


L | ∃ a randomized polynomial-time machine M such that:
x ∈ L⇒ Pr[M(x, r) accepts] ≥ c
x /∈ L⇒ Pr[M(x, r) accepts] = 0


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♢

Definition 20.3 (co-randomized polynomial time (coRP)). Let 0 < s < 1. Then

coRPs =


L | ∃ a randomized polynomial-time machine M such that:
x ∈ L⇒ Pr[M(x, r) accepts] = 1
x /∈ L⇒ Pr[M(x, r) accepts] ≤ s


♢

Inclusion Relations

• P ⊆ BPP∩RP∩coRP ⊆ PSPACE

• RP ⊆ NP, since NP only requires one accepting path

• coRP ⊆ coNP

Conjecture: The prevailing belief in the community is that BPP = P and we will see why
towards the end of the course. .

20.3 Error Reduction

Randomized algorithms allow a small probability of error, but we can reduce this error expo-
nentially through repetition.

Error Reduction in RP

Recall: L ∈ RPc if there exists a randomized poly-time machine M such that:

• If x ∈ L, then Pr[M(x) accepts] ≥ c

• If x /∈ L, then Pr[M(x) accepts] = 0

To reduce error, define M′ that runs M independently t times and accepts if any run accepts.

• If x ∈ L, success probability is at least 1− (1− c)t

• If x /∈ L, all runs reject

To achieve error δ, it suffices to set t = O( 1
c log 1

δ ). Hence, RP 1
2
= RP1− 1

2nc
for any constant

c, and we simply refer to the class as RP.

Error Reduction in BPP

In contrast to RP, the class BPPc,s allows two-sided error:

• If x ∈ L, Pr[M(x) accepts] ≥ c

• If x /∈ L, Pr[M(x) accepts] ≤ s, with c > s
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We reduce error by repeating M independently t times and accepting if the majority of runs
accept. Let Xi ∈ {0, 1} be indicators for acceptance in the i-th run, and define X = ∑ Xi. The
expected value µ = E[X] will differ depending on whether x ∈ L or x /∈ L. To bound the
probability that the majority vote is wrong, we use the Chernoff bound:

Pr [|X− µ| ≥ εµ] ≤ exp
(
− ε2µ

3

)
For instance, suppose c = 2

3 , s = 1
3 , and t is the number of repetitions. Then:

• If x ∈ L, µ ≥ 2t
3 , and error occurs if X < t

2 , i.e., deviation ≥ t
6

• By Chernoff, this error is ≤ exp
(
− t

24

)
To reduce error to δ, we need:

t = O
(

1
(c− s)2 log

1
δ

)
Hence, even with a very small initial advantage (e.g., c = 1

2 +
1
n ), we can amplify the gap

to reach extremely small error like 1/2nc
. Therefore:

BPP 1
2+

1
poly(n) , 1

2−
1

poly(n)
= BPP1− 1

2nc , 1
2nc

= BPP
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Lecture 21

More on randomised classes
Scribe: Soumyadeep Paul

21.1 Zero-error probability polynomial time (ZPP)

Definition 21.1 (ZPP). ZPP is the class of all such languages which can be accepted by a randomised
Turing Machine such that it makes no mistake in its output and the expected runtime is polynomial in
the size of input. ♢

Lemma 21.2. ZPP = RP∩ coRP.

Proof. (⇒)

• ZPP ⊆ RP.

Let M be a ZPP machine for L with expected runtime f (n).

We make a new machine M′ which simulates M for 100 f (n) steps. If it gets an output
from M, M′ also outputs that. Otherwise, it outputs reject.

• ZPP ⊆ coRP.

Let M be a ZPP machine for L with expected runtime f (n).

We make a new machine M′ which simulates M for 100 f (n) steps. If it gets an output
from M, M′ also outputs that. Otherwise, it outputs accept.

The correctness of the algorithms can be seen by using the Markov inequality, M makes
an error only when it took more than 100 f (n) steps. The probability of this happening is
less than 1

100 .

(⇐) To show the other direction, let M1 be an RP machine for L and M2 be a coRP ma-
chine for L. (We assume that the probability of error is 1

2 and the runtime of both of them
is f (n)).

We make a new machine M that does the following:

– Run M1 and M2 on x.
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– If M1 accepts, then we accept.

– If M2 rejects, we reject.

– Otherwise, we just try again.

In other words, the machine will continue to run until either M1 ends up accepting x, or
M2 rejects x (and in either case, we know our answer is correct).

The expected runtime of this machine would be

E[runtime] ≤ f (n) + 2 f (n)
1
2
+ 3 f (n)

1
4
+ · · · = O( f (n))

21.2 BPP and circuits

Theorem 21.3 (Adleman). BPP ⊆ SIZE(poly).

Proof. We consider the table of all possible pairs of inputs x and random strings r used by the
BPP machine. We mark the index with a ✓ if the machine on the random bits r, computed x
correctly and we mark it with a × otherwise.

x

r ✓/×

Let P[error] ≤ δ and, say, the BPP machine uses m random bits and the input size be n.
By the probability of error,

Each column has ≤ δ2m crosses

Therefore, number of crosses ≤ δ2m2n.
If each of the rows had a cross,

Number of crosses ≥ 2m

Therefore, if we set δ < 1
2n , we would have a row with all checkmarks, that is, a string r for

which the machine is correct on all inputs of size n. We can hardwire this random string to get
a circuit.

Remark: This string can be hardcoded into the circuit and only depends on the size of the
input but might be hard to find.
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21.2.1 Machines with advice

L ∈ C/n2 if there is a C−machine M and a sequence {zi}i∈N , zi ∈ {0, 1}∗, ∀i such that

x ∈ L⇔ M(x, z|x|)accepts

and len(zi) = O(n2).
Therefore, P/poly = SIZE(poly).
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Lecture 22

Relation of BPP with Other Classes
Scribe: Soham Chatterjee

22.1 BPP in Polynomial Hierarchy

Theorem 22.1 (Gacs-Sipser, Lautteman). BPP ⊆ Σ2 ∩Π2

Proof. Suppose L ∈ BPP and let M is a randomized machine for L. On input x suppose M
uses m random bits and δ be the error. We’ll choose δ later as required. Now consider the set
S = {r : M(x, r) = Accept}. Now

x ∈ =⇒ |S| ≥ (1− δ) · 2m and x /∈ L =⇒ |S| ≤ δ · 2m

Since if x ∈ L then size of S is very large if we shift all the elements of S by some a ∈ {0, 1}m.
Let we denote the set {b⊕ a | b ∈ a} by S⊕ a. Then with very few shifts we can cover all the
{0, 1}m i.e. ∃ t ∈ {0, 1}poly(n) and ∃ a1, . . . , at ∈ {0, 1}m such that

{0, 1}n =
t⋃

i=1

S⊕ ai

Therefore we can construct the following quantified boolean formula

∃ a1, . . . , at ∈ {0, 1}m ∀ y ∈ {0, 1}t
t∨

i=1

(M(x, ai + y) = Accept)

Let the boolean formula Ψ(x) :=
t∨

i=1
(M(x, ai + y) = Accept). Then our gaol is to show Ψ(x) =

True ⇐⇒ x ∈ L.

Suppose x /∈ L. Then we should have Ψ(x) = False. Hence we should have
t⋃

i=1
S⊕ ai ⊊

{0, 1}m. Now ∣∣∣∣∣ t⋃
i=1

S⊕ ai

∣∣∣∣∣ ≤ t · δ · 2m
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Hence if we choose δ such that t · δ · 2m < 2m ⇐⇒ t · δ < 1 we are done. So it suffices to have
t · δ < 1

Suppose x ∈ L. Then we should get Ψ(x) = True. Now,

x ∈ L =⇒ P
a
[a + y /∈ S] ≤ δ [Since |S| ≥ (1− δ)2m and a + y is uniform]

=⇒ P
a1,...,at

[ai + y /∈ S, ∀ i ∈ [t]] ≤ δt

=⇒ P
a1,...,at

[ai + y /∈ S, ∀ i ∈ [t]][∃ y : ai + y /∈ S, ∀ i ∈ [t]] ≤ 2mδt

Hence it suffices to have 2m · δ < 1 .
So if we choose δ = 2−n and t = m

n + 1 then both the inequalities are satisfied. Hence we
got BPP ⊆ Σ2. Since BPP is closed under complementation and complement of Σ2 is Π2 we
also have BPP ⊆ Π2. Therefore we have BPP ⊆ Σ2 ∩Π2.

22.2 Randomized Analogue of NP

We can think that NP is basically P with a ∃ quantifier before it, i.e. NP essentially ∃P. Similarly
we can think of BPP as BP ·P where it means there is a BP quantifier before P which introduces
the randomized computation. So L ∈ BP · P if

x ∈ L =⇒ P
r
[M(x, r) = Accept] ≥ 2

3
and x /∈ L =⇒ P

r
[M(x, r) = Accept] ≤ 1

3

So in this view we can also define BP · ∃P and ∃ · BPP.

Definition 22.2 (BP · ∃P). A language L ⊆ Σ∗, L ∈ BP · ∃P if there is a deterministic turing machine
M such that

x ∈ L =⇒ P
r

[
∃ w ∈ {0, 1}poly(|x|), M(x, w, r) = Accept

]
≥ 2

3

x /∈ L =⇒ P
r

[
∃ w ∈ {0, 1}poly(|x|), M(x, w, r) = Accept

]
≤ 1

3

♢

Definition 22.3 (∃ ·BPP). A language L ⊆ Σ∗, L ∈ ∃ ·BPP if there is a deterministic turing machine
M such that

x ∈ L =⇒ ∃ w ∈ {0, 1}poly(|x|) P
r
[M(x, w, r) = Accept] ≥ 2

3

x /∈ L =⇒ ∀ w ∈ {0, 1}poly(|x|) P
r
[M(x, w, r) = Accept] ≤ 1

3

♢

Remark 22.4. The class ∃ · BPP is also known as MA and BP · ∃P also known as AM ♢

Consider a matrix where the rows are indexed by all possible n length input strings and
the columns are indexed by the all possible random strings of length poly(n). At (w, x) index
of the matrix there is a 1 if w gets accepted on the random string r and 0 otherwise.

65



Then L ∈ MA means if x ∈ L there exists a row where most entries have 1 and x /∈ L means
all the rows have very few entries with 1.

Similarly L ∈ AM means if x ∈ L most of the columns have an entries with 1 and x /∈ L
means very few columns have an entry 1.
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Lecture 23

GraphNonIso ∈ AM
Scribe: Shubham A. Bhardwaj

In this lecture, we explore the complexity class AM (Arthur-Merlin) and the problem of
graph non-isomorphism (GraphNonIso). We will show that GraphNonIso is in AM and discuss
the implications of this result.

The graph non-isomorphism problem (GraphNonIso) is the problem of determining whether
two given graphs G1 and G2 are not isomorphic. Two graphs are said to be isomorphic if there
exists a bijection between their vertex sets that preserves adjacency. Formally, G1 and G2 are
isomorphic if there exists a permutation π of the vertices such that (u, v) ∈ E(G1) if and only
if (π(u), π(v)) ∈ E(G2).

23.1 Private-Coin protocol for GraphNonIso

There exists a simple private-coin protocol for GraphNonIso. Let the input graphs be G1 and
G2, both on n vertices. The protocol proceeds as follows:

1. Arthur randomly selects 2 ‘bits’ b1, b2 ∈ {1, 2} and 2 random permutation π1, π2 of the
vertices of Gb1 and Gb2 .

2. Arthur sends the permuted graph π1(Gb1) and π2(Gb2) to Merlin.
3. Merlin, who knows G1 and G2, must determine whether the received graphs corresponds

to G1 or G2. Merlin sends back a guess (b′1, b′2) to Arthur.
4. Arthur accepts if and only if (b′1, b′2) = (b1, b2).

Observe that the above protocol works since if the graphs are non-isomorphic, then merlin
can determine whether πi(Gbi) are isomorphic to G1 or G2 and then can return the correct bits.
If the graphs are isomorphic, then merlin has no way to figure out which graph Arthur chose
and thus at best can return a random guess. Thus, the probability of Arthur accepting is 1/4
in this case.
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23.2 Public-Coin protocol for GraphNonIso

The above protocol does not work if the random bits selected by Arthur are public. Thus, we
need to modify the protocol to work with public coins.

Consider the following set:

S = {(H, σ)|H ∼= G1 or H ∼= G2 and σ ∈ aut(H)} .

Observe that if G1
∼= G2, then |S| = n! and if G1 ̸∼= G2, then |S| = 2(n!). Also, note that

membership in S can be certified in polynomial time.

Let S ⊆ {0, 1}m and N = 2(n!) and k be such that 2k−2 ≤ N < 2k−1. Let p = N/2k.
Let H be the family of all functions from {0, 1}m to {0, 1}k. Now, suppose Arthur sends a

random function h fromH and a random string from {0, 1}k to Merlin. Merlin is now supposed
to return z such that h(z) = y and a certificate c(z) to certify that x ∈ S. Arthur accepts if and
only if h(z) = y and c(z) is a valid certificate for z.

The following lemmas will help us prove that the above protocol works.

Lemma 23.1. If |S| = N/2, then for any y ∈ {0, 1}k, we have

Pr
h∈H

[∃z ∈ S, h(z) = y] ≤ 1
2

p

Proof. Since |S| = N/2, the size of the image of S under h is at most |S|. Thus, the probability
that y is an element of this image is at most N/2

2k = p
2 .

Lemma 23.2. If |S| = N, then for any y ∈ {0, 1}k, we have

Pr
h∈H

[∃z ∈ S, h(z) = y] ≥ 3
4

p

Proof. Using the lower bound from principle of inclusion-exclusion, we have

Pr
h∈H

[∃z ∈ S, h(z) = y] ≥ ∑
z∈S

Pr
h∈H

[h(z) = y]− ∑
z ̸=z′

Pr
h∈H

[h(z) = y ∧ h(z′) = y]

= ∑
z∈S

1
2k − ∑

z ̸=z′

1
22k

=
|S|
2k −

(|S|2 )

22k

≥ |S|
2k −

|S|2
22k+1

= p
(

1− p
2

)
≥ 3

4
p since p ≤ 1

2
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Thus, above lemmas implies:

Pr[Arthur accepts] =

≥ 3
4 p if G1

∼= G2

≤ 1
2 p if G1 ̸∼= G2

But there’s a problem with this approach. To send a random hash function h from H,
Arthur needs to send full description of h to Merlin. This is not possible since |H| = 2k2m

and
hence even the size of the description of h is exponential in m. But observe that we only used
the following two properties ofH:

• For any z ∈ {0, 1}m and y ∈ {0, 1}k, we have Prh∈H[h(z) = y] = 1
2k .

• For any z, z′ ∈ {0, 1}m with z ̸= z′, and y, y′ ∈ {0, 1}k we have

Pr
h∈H

[h(z) = y ∧ h(z′) = y′] =
1

22k .

The above two properties are called pairwise independence and any family H that satisfies
the above two properties is called a pairwise independent hash family. Fortunately, there exists
succinct families of hash functions that are pairwise independent. Consider the following
family of hash functions:

G = {hA,b : {0, 1}m → {0, 1}k| A ∈ {0, 1}k×m, b ∈ {0, 1}k and hA,b(x) = (Ax + b) mod 2}

It us easy to see that the above family of hash functions is pairwise independent. Also, to
send a hash function from G, Arthur only needs to send A and b which is of size O(km). Thus,
with this family of hash functions, the above protocol works. Also note that the probability of
error can be amplified by sending multiple hash functions and taking the majority vote. Thus,
we get the following theorem:

Theorem 23.3 (Goldwasser-Sipser). GraphNonIso ∈ AM.
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Lecture 24

Pseudorandomness
Scribe: Vivek Karunakaran

Randomness is a powerful tool in computation. For instance, finding the MAXCUT in a
graph is an NP-hard problem. However, we can obtain a 1

2 -approximation using a simple
randomized algorithm: Given a graph G = (V, E), assign each vertex independently and
uniformly at random to either V1 or V2. This process yields a cut whose expected value is at
least 1

2 the number of edges (and hence at least 1
2 the MAXCUT).

The central idea of pseudorandomness is to generate strings using deterministic algorithms
that “look” random.

24.1 Pseudorandom Generator

Suppose we have randomized algorithm A(x, y) where x is the input to the algorithm and y is
the random bits It uses, y = (r1, r2, ..., rm).

We call S ⊆ {0, 1}m is ε-pseudorandom for A if for any x, we have

|Pr
r
[A(x, r) = accept]− Pr

r∈S
[A(x, r) = accept]| ≤ ε.

Definition 24.1 (Pseudorandom generators (PRGs) for size s circuits). A map G : {0, 1}ℓ →
{0, 1}m is ε-PRG for size s circuits on m bits, if for every circuit C of size s, we have∣∣∣∣ Pr

x∈{0,1}m
[C(x) = 1]− Pr

z∈{0,1}l
[C(G(z)) = 1]

∣∣∣∣ ≤ ε.

The PRG is said to be efficient if G(y1, . . . , yℓ) can be computed in poly(ℓ, m) time. ♢

Note that if we have an efficient PRG, G : {0, 1}ℓ → {0, 1}m, then, we can find the value
of Prx∈{0,1}m [C(x) = 1] approximately (up to an additive error of ε) poly(s, 2ℓ) time (by simply
running over all G(y1, . . . , yℓ)).

The main question is of course, are there such pseudorandom generators?

70



24.2 PRGs from hardness assumptions

The following theorem (that we will not prove in this course) shows that PRGs exist under
some very believable hardness assumptions.

Theorem 24.2 (Impagliazzo-Wigderson). Suppose there exists a language L ∈ E = DTIME(2O(n))

and a constant ε > 0 such that L /∈ SIZE(2εn), then P = BPP.
That is, unless every language computable in 2O(n) time is also computable by sub-exponential-sized

(2o(n)) circuits families, P = BPP.

The above theorem builds over a differnet theorem of Nisan and Wigderson that we will
see in this lecture and next.

Definition 24.3 ((s, ε)-average-case hard function). A boolean function f : {0, 1}n −→ {0, 1} is
(s, ε)-average-case hard if for every circuit C of size s, we have

∣∣Prx∈{0,1}n [C(x) = f (x)]− 1/2
∣∣ ≤ ε.

That is, no circuit of size s does much better at than blindly guessing to find the value of f at a random
input x. ♢

Theorem 24.4 (Nisan and Wigderson (informal)). Given a family { fn} of boolean functions that
is average-case hard, we can use { fn} to build PRG’s (whose seed-length will depend on the hardness
provided).

We will see a formal statement of the theorem in the next lecture but to begin with, let us
try to construct some non-trivial PRG.

Let us define a generator G as follows (albeit stretching just one additional bit)

G(z1, z2, ..., zℓ) = (z1, z2, ..., zℓ, fℓ(z)) where z = (z1, z2, ..., zℓ).

Claim 24.5. If fℓ is (s, ε)-average-case-hard, then G is indeed an ε-PRG for size s/2 circuits.

Proof sketch. Suppose G is not a PRG. Then, there exists a circuit of size s that distinguishes the
output of G from uniform. That is,

|Pr[C(z1, z2, ..., zℓ, zℓ+1) = accept]− Pr[C(z1, z2, ..., zℓ, fℓ(z)) = accept]| > ε

Without loss of generality, we may assume that

Pr[C(z1, z2, ..., zℓ, zℓ+1) = accept]− Pr[C(z1, z2, ..., zℓ, fℓ(z)) = accept] > ε

by replacing C with ¬C if required.
Let us build a circuit D : {0, 1}n → {0, 1} that guesses the value of fℓ significantly better

than random-guessing.
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D on input (z1, . . . , zℓ):

• Compute b0 = C(z1, z2, ..., zℓ, 0) and b1 = C(z1, . . . , zℓ, 1).

• If b0 = b1, then just guess the output randomly.

• Else, output i such that bi = 0. (That is, output the value of zℓ+1 that resulted in the
circuit rejecting)

It is not hard to see that the circuit D guesses the value of f correctly on at least 1/2 + ε

fraction of inputs, contradicting the assumption that fℓ is (s, ε) average-case hard. Although
the above is a randomized circuit, we can freeze random bits to obtain a standard circuit with
the same guarantee.

Therefore, G is indeed a PRG for size s/2 circuits.

The above is a generator that just provides one additional random bit. But we will see how
to generate way more random bits and thereby create a generator with a large stretch. We will
see that in the next lecture.
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Lecture 25

Nisan-Wigderson pseudorandom
generators
Scribe: Aindrila Rakshit

Topics covered in this lecture

1. Nisan-Wigderson theorem: PRGs from average-case hard functions

2. Average-case hardness, combinatorial designs

25.1 The Nisan-Wigderson theorem

For the sake of simplicity, we will refer to the following notion of hardness (which is essentially
Definition 24.3 but with ε = 1/s).

Definition 25.1 (s-hardness). A function f : 0, 1n → 0, 1 is s-hard to guess if for every circuit of size
at most s, satisfies Prx[C(x) = f (x)]− 1/2 ≤ 1/s. ♢

Theorem 25.2 (Nisan-Wigderson). Suppose there is a L ∈ EXP that is s(n)-hard to guess then BPP

can be derandomized as per the following table:

Hardness Consequence
s(n) = 2n/100 BPP = P

s(n) = 2
√

n BPP ⊆ DTIME(npoly log n)

s(n) = nω(1) BPP ⊆ DTIME(2no(1)
)

Table 25.1: Hardness and its consequences

25.1.1 How to build PRGs

Idea: Stretch a small number of bits to many-many bits. How many bits you start with (seed-
length) depends on the hardness.
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Toy example of a PRG: Assume that f is hard to guess, then a PRG that stretches by just 1
bit:

G : (z1, . . . , zn) 7→ (z1, . . . , zn, f (z))

Suppose there is some circuit C that distinguishes the output of the PRG from the uniform
distribution, that is

Pr
x∼U

[C(x) = 1]− Prz∼U [C(z, f (z)) = 1] > ε(∗)

Note: We might as well assume that there is no absolute quantity, since we can just work
with ¬C if the above quantity is negative.

The goal now is essentially to show that if the above happened, the assumption that f is
hard to guess is false. We wish to build D : 0, 1n → 0, 1 be a randomized circuit that guesses
the value of f .

Intuition: The above condition says that it is slightly more likely for the circuit to accept if
the last bit was random as opposed to if the last bit was actually f (z)

• Compute b0 = C(z1, . . . , zn, 0), and b1 = (z1, . . . , zn, 1)

• If b1 = b0, then guess randomly.

• Else, lean on the side of rejection. That is, return i such that bi = 0.

Claim 25.3. Prx,D[D(x) = f (x)] > 1/2 + ε

Proportion of strings C(z1, . . . , zn, f (z)) C(z1, . . . , zn,¬ f (z))
α1 Accept Accept
α2 Accept Reject
α3 Reject Accept
α4 Reject Reject

Table 25.2: Table for what C does on the input strings and the percentage of input strings in
each category

Proof. We can write each of the relevant probabilities based on α1, . . . , α4.

α1 + α2 + α3 + α4 = 1

Pr
x∼U

[C(x) = 1] = α1 +
α2

2
+

α3

2

Pr
z∼U

[C(z, f (z)) = 1] = α1 + α2

Pr
z∼U

[C(z, f (z)) = 1]− Pr
x∼U

[C(x) = 1] =
α3 − α2

2
> ε.

Pr
x,D

[D(x) = f (x)] =
α1

2
+

α4

2
+ α3
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= α3 +
1− α2 − α3

2
=

1
2
+

α3 − α2

2

>
1
2
+ ε.

25.2 Towards greater stretch

The above gave us a stretch of one additional bit. There is a natural way to get a stretch of a
few more bits via the following:

G : (z(1), . . . , z(k))→ (z(1), . . . , z(k), f (z(1)), . . . , f (z(k)))

This doesn’t improve the ‘rate of stretch’. If f is acting on disjoint subset of seed bits, then
output length/input length ≤ (n + 1)/n

Key idea: What if f acts on "almost disjoint" subsets.

Definition 25.4 (Combinatorial designs: (n, ℓ, k, a)). A collection of subsets S1, . . . , Sn ⊆ [l] is an
(n, ℓ, k, a)-combinatorial design if they satisfy the following:

• |Si| = k

•
∣∣Si ∩ Sj

∣∣ ≤ a, whenever i ̸= j. ♢

There are such designs with efficient constructions as well.

Lemma 25.5. For any k, a satisfying n ≤ 2a, k ≥ 2a, there are (n, ℓ, k, a) designs with ℓ = k2/a.

Think of a = log n, k = 100 log n and the above says that are designs consisting of n sets
from a universe with ℓ = O(log n) elements.

Nisan-Wigderson PRGs
Let us fix an (nℓ, k, a)-combinatorial design S1, . . . , Sn. Given a function f : {0, 1}k → {0, 1},

we define the following generator:

G(NW)
f : {0, 1}ℓ → {0, 1}n

G(NW)
f : (z1, . . . , zl) 7→ ( f (z|S1), . . . , f (z|Sn))

Lemma 25.6. Suppose C is an ε-distinguisher for G(NW)
f . Then there is a circuit D of size ≤ 2(|C|+

n · 2a) such that Pry[D(y) = f (y)] > 1/2 + ε/n.

Therefore, if f was hard-to-guess, then the above is indeed a pseudorandom generator.

Proof. If C is an ε-distinguisher then

Pr
x∼Un

[C(x) = 1]− Pr
z∼Ul

[C(G(z)) = 1] > ε.
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Define a sequence of hybrid distributions: Such that initially it is a bunch of uniform bits
xi ∼ U , then it gets prefixed by i outputs of NW generator.

D0 :(x1, . . . , xn)

D1 :( f (z|S1), . . . , xn)

...

Di :( f (z|S1), . . . , f (z|Si), xi+1, . . . , xn)

...

Dn :( f (z|S1), . . . , f (z|Sn)).

By averaging argument, since the total distinguishing advantage is ε there must be some i such
that

Pr
x∼Di

[C(x) = 1]− Pr
x∼Di+1

[C(x) = 1] > ε/n

Recall,

Di :( f (z|S1), . . . , f (z|Si), xi+1, . . . , xn)

Di+1 :( f (z|S1), . . . , f (z|Si), f (z|Si+1), xi+2, . . . , xn)

The only difference between Di and Di+1 is the bit at position i + 1: uniform vs. f (z|Si+1).
Let us set all variables outside z|Si+1 to some values while preserving

Pr
x∼Di

[C(x) = 1]− Pr
x∼Di+1

[C(x) = 1] > ε/n

Now, we wish to use C to construct a guesser for f . Consider an input y1, . . . , yk (which is
identified with the variables z|Si+1). In order to feed this into C, we also need to provide to C
with z|Sj for all j ≤ i. Fortunately, since we have frozen all bits outside Si+1, for each j ≤ i
we have at most a variables in Sj that are unset. Hence, we can always compute the function
f (z|Sj) after freezing the other bits by circuits of size at most 2a.

Overall, we are able to build a circuit D of size 2(|C|+ n · 2a) that guesses f with non-trivial
advantage.

Theorem 25.7 (Nisan-Wigderson). If f is (s + n2a)/2 -hard to guess, then G(NW)
f : 0, 1l → 0, 1n is

a PRG for size s circuits.

A strengthening of the above theorem is the following result of Impagliazzo and Wigderson
that construct PRGs from worst-case hardness rather than average-case hardness.

Theorem 25.8 (Impagliazzo-Wigderson). If ∃ε ≥ 0 such that some L ∈ EXP is not in SIZE(2εn).
Then P = BPP.
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