
CSS.203.1 COMPUTATIONAL COMPLEXITY (2025-I) END-SEM: TAKE-HOME PART

End-semester exam: Take-home part

• The points for each problem is indicated on the side. The total for this set is 80 points.
You are expected to answer any 60 points for full credit.

• The deadline for Thursday, 15th May 2025, 7pm (IST). This is a hard deadline! Turn in
your solutions as PDFs (LATEXed or scanned/hand-written etc.) via email.

• Collaboration with other students is not allowed!

• You can refer to the scribe notes or any other notes you have from the class. All other
sources are disallowed (except one question that explicitly asks you to use ChatGPT).

• Even if you do not manage to solve some questions, explain your attempts and partial
thoughts for partial credit.

• Be clear in your writing.

1. A polynomial-time single-query Turing reduction from a language L1 ⊆ {0, 1}∗ to L2 ⊆
{0, 1}∗ is given by a polynomial time computable function f : {0, 1}∗ → {0, 1}∗ × {0, 1}
with the following guarantee:

For any x ∈ {0, 1}∗, let f (x) = (y, b). Then,

x ∈ L1 ⇐⇒
{

y ∈ L2 if b = 0
y /∈ L2 if b = 1

In other words, you can solve an instance of L1 by making a single oracle query to L2 and
possibly flipping the answer (the first coordinate tells you what you should query, and
the second coordinate tells you whether you should flip the final answer).

(a) (10 points) Generalise the proof of Mahoney’s theorem and show the following:

Suppose L is a sparse-language that is NP-hard under polynomial-time
single-query Turing reductions, show that P = NP.

[Hint:Supposeyouhaveabagofformulasφ1,...,φm,runthereduction
onφ1∨φifori=2,...,mandprune.]

(b) (10 points) Suppose we have deterministic polynomial time TM M that almost solves
SAT in the following sense — L(M)∆ SAT is a sparse set (where A∆B refers to the
symmetric difference, namely (A \ B) ∪ (B \ A)). Prove that this implies P = NP.

1 of 3

CSS.203.1 COMPUTATIONAL COMPLEXITY (2025-I) END-SEM: TAKE-HOME PART

[Hint:Thereisanobvioussparsesettoconsider.Canyoushowthatitis
NP-hardunderpolynomialtimesingle-queryreductions?]

2. Recall that CSPACE(w(n), c(n)) is the set of languages that can be computed by cat-
alytic TMs with O(w(n))-sized work tape and O(c(n))-sized catalytic tape; and CL =
CSPACE(log n, poly(n)). The goal of this question is to show that CL ⊆ ZPP.

(a) (3 points) Fix a catalytic TM M and an input x of length n. Let the size of the catalytic
tape used by the machine M on x be s and let the size of the work tape used be w.
Assume that the tape alphabet (for both work and catalytic tapes) is Γ.
Compute the total number vertices in the configuration graph (where configura-
tions include the contents of the catalytic tape also) as a function of n, w, s, |Γ| and
any other relevant parameters. (Get the right dependence in s; you can be loose
with the other parameters).

(b) (12 points)
For any τ ∈ Γs, let Sτ be the sequence of configurations when the machine M is run
on input x with catalytic tape initialised to τ.
Prove that E

τ∈Γs
[|Sτ|] = poly(n, 2w).

[Hint:WhatcanyousayaboutSτandS′
τwhenτ̸=τ′?]

(c) (5 points) Construct a ZPP-algorithm for L(M).

3. Let T be a tree. A pebbling-game on T proceeds as follows:

• You may place a pebble on a leaf at any point.
• You may remove a pebble from any node at any point.
• For an internal node, if all its children have a pebble on them, then you may move

a pebble from one of its children to that node.

The goal is to pebble the root of the tree using as few pebbles as possible.

Let Th be a binary tree of height h (with 2h leaves).

(a) (3 points) Construct a pebbling strategy to pebble the root of Th using at most h + 1
pebbles. (That is, at no point in the sequence should the tree have more than h + 1
pebbles placed on it.)

(b) (2 points) How many pebbles do you need to pebble a d-ary tree of height h (which
has dh leaves)?

(c) (10 points) Formally prove that any strategy to pebble the root of Th will require at
least h + 1 pebbles.

[Hint:Considerthelasttimetheleftchildoftherootwaspebbled(ifthat
wastheearlierone)andtrytoinduct.]

(d) (5 points) Using the above, can elaborate on why it was conjectured that TEPh,k
requires space Ω(hk)? (until Cook and Mertz proved otherwise, of course!)

2 of 3

CSS.203.1 COMPUTATIONAL COMPLEXITY (2025-I) END-SEM: TAKE-HOME PART

4. A function f : {0, 1}n → {0, 1} is said to be a monotone function if flipping an input bit
from 0 to 1 can only increase the function value. Formally, if x ⪰ y (which denotes that
xi ≥ yi for all i) then f (x) ≥ f (y). Clearly, Majorityn : {0, 1}n → {0, 1} is a monotone
function.

As a result of one of the questions in problem set 3, you could construct an NC1 circuit for
Majority using iterated addition, however the circuit uses ¬ gates even though Majority
is a monotone function. This question aims at showing that Majority has a monotone NC1

circuit (i.e., an NC1 circuit without any ¬ gates) using the probabilistic method.

Here is a partial sketch.

Let x1, . . . , xn be bits in a certain layer (to begin with, say these are the in-
puts). We will build a new set of n bits y1, . . . , yn as follows — each yi is
Majority3(xi1 , xi2 , xi3) where each i1, i2, i3 are independently and uniformly at
random chosen from [n].
We repeat the above for O(log n) layers, and assign one of the bits of the last
layer as the output.

Intuitively, the majority value of x1, . . . , xn is more pronounced in y1, . . . , yn.

(a) (2 points) Construct a monotone constant-depth fan-in 2 circuit for Majority3.

(b) (3 points) Consider Majority3 : {0, 1}3 → {0, 1}. Suppose each xi was set to 1 inde-
pendently with probability p. Compute Pr[Majority3(x1, x2, x3) = 1] as a function
of p. (For example, if it was AND3 instead, this function would have been p3).

(c) (5 points) Let F(p) be the function in the above part. Suppose you are told that
F(k)(p) (which is F applied to itself k times) has the following property for k =
O(log n):

F(k)(p) =

{
≥ 1 − 1

2O(n) if p ≥ 1
2 +

1
n ,

≤ 1
2O(n) if p ≤ 1

2 −
1
n

.

Use this to show that Majorityn indeed has a monotone circuit of fan-in 2 and depth
O(log n).

(d) (10 points) Prove the above property with the help of ChatGPT. Start with a prompt
as follows:

Consider the function F(p) = (fill this in). I am trying to show that, if I
start with p = 1/2 + eps and repeatedly keep applying F to it, then it very
quickly approaches 1. And if I start with p = 1/2 - eps, then it very quickly
approaches 0. I need your help in proving this formally.

It will give you a response that isn’t quite correct, but is half-way there. Find out
what ChatGPT missed, let it know and nudge it towards a complete solution. Use
these conversations to give a formal proof of the above. (Please also submit the
transcript of your conversation with ChatGPT.)

■

3 of 3

