
CSS.203.1 COMPUTATIONAL COMPLEXITY (2025-I) PROBLEM SET 1

Problem Set 1

• Due date: 23 Feb, 2025 (released on 08 Feb, 2025).

• The points for each problem is indicated on the side. The total for this set is 70 points

• The problem set has a fair number of questions so please do not wait until close to the
deadline to start on them. Try and do one question every couple of days.

• Turn in your problem sets electronically (PDF; either LATEXed or scanned etc.) via email.
If you submit a LATEXdocument, you will get an additional 10 points.

• Collaboration with other students taking this course is encouraged, but collaboration
with others is not allowed. Irrespective of this, all writeups must be done individually
and must include names of all collaborators (if any).

• Referring to sources other than the text book and class notes is STRONGLY DISCOUR-
AGED. But if you do use an external source (eg.,other text books, lecture notes, or any
material available online), ACKNOWLEDGE all your sources (including collaborators)
in your writeup. This will not affect your grades. However, not acknowledging will be
treated as a serious case of academic dishonesty.

0. [Create homepage] (7)

Create a personal homepage for yourself and give the URL. (It doesn’t have to be hosted
on the STCS / TIFR servers. You are welcome to use Google Sites, or Github Pages, or
Bitbucket Pages.)

1. [Classification of problems] (5)

For each of these problems, mention (with justification) if they are in P, or not (known to
be) in P, or in NP, or in coNP, or is NP-hard, or is coNP-hard etc.

(a) Factoring =
{
(1n, 1k) : n has a prime factor less than k

}
.

(b) Contradiction = {⟨φ⟩ : ⟨φ⟩ encodes a formula that is false for every assignment.}
(For example, ⟨x1 ∧ ¬x1⟩ is in the language.)

(c)

EquivalentFormulas =

{
(⟨φ1⟩ , ⟨φ2⟩) : ⟨φ1⟩ , ⟨φ2⟩ encode two formulas such that

for all x we have φ1(x) = φ2(x).

}
2. [Properties of reductions] (5)

We’ll use L1 ≤poly
m L2 to denote that there is a polynomial-time many-one reduction from

L1 to L2.

Answer each of the questions with True/False with brief justifications.

(a) If L1 ≤poly
m L2, then L2 ≤poly

m L1.

(b) If L1 ≤poly
m L2, then L1 ≤poly

m L2.

(c) If L is NP-hard, then L is coNP-hard.

(d) If L1 ≤lin
m L2 and L2 ≤lin

m L3, then L1 ≤lin
m L3. (Here, ≤lin

m refers to linear-time many-
one reductions).

1 of 3

CSS.203.1 COMPUTATIONAL COMPLEXITY (2025-I) PROBLEM SET 1

(e) If L1 ≤quad
m L2 and L2 ≤quad

m L3, then L1 ≤quad
m L3. (Here, ≤quad

m refers to quadratic-
time many-one reductions).

3. [Verifier perspective of NP] (5)

In class, we gave a machine-based definition of the class NP. Often times, the following
alternate definition is used.

A language L ⊆ Σ∗ is said to be in NP if and only if there is a language VL ∈ P,
and constants c, n0 such that for any x ∈ Σ∗ with |x| > n0, we have x ∈ L if and
only if there is a string w ∈ Σ∗ with |w| ≤ |x|c such that (x, w) ∈ VL.

Formally prove that the above definition is equivalent to the definition we saw in class.
(That is, any language that satisfies the above property is computable by a non-deterministic
TM running in poly(n) time, and vice-versa.)

4. [Operations on languages] (2 + 2 + 2)

(a) If L1, L2 are two languages in NP, show that the languages L1 ∩ L2 and L1 ∪ L2 are
in NP as well.

(b) For any three languages L1, L2, L3,

Maj(L1, L2, L3) = {x : x is in at least two of the Li’s} .

Show that, if L1, L2, L3 ∈ NP, then the language Maj(L1, L2, L3) is also in NP.
(c) For two languages L1, L2, let L1 ⊕ L2 = {x ∈ Σ∗ : x is in exactly one of L1, L2}. If

L1, L2 ∈ NP∩ coNP, show that L1 ⊕ L2 ∈ NP∩ coNP as well.

5. [Not-all-equal-SAT] (5 + 3 + 2)

The ‘not-all-equal’ function NAE(x1, . . . , xk) is the Boolean function that is true when
not all the values of x1, . . . , xk are equal (that is, it is false only on the inputs 000 · · · 0 and
111 · · · 1).

NAE-SAT is the constrait satisfaction problem where each constraint is the above NAE-
function. An instance of NAE-SAT is satisfiable if there is an assignment to the variables
that satisfy all the constraints. (Similar to how CNF-SAT had the contraints as the ‘OR’
function.)

(a) Consider the following purported reduction from CNF-SAT to NAE-SAT:
Consider a new variable z. For each clause of the form, (xi ∨ xj ∨ xk) in the
CNF, add the constraint NAE(xi, xj, xk, z) to the NAE instance.

Prove that this is a legitimate reduction from CNF-SAT to NAE-SAT.
(b) If we begin with an instance of 3 CNF-SAT, then we end up with an instance of

4 NAE-SAT in the above reduction. Give a polynomial-time many-one reduction
from 4 NAE-SAT to 3 NAE-SAT.

(c) What is the 2 NAE-SAT problem? Do you know it by a different name? Is it in P?

6. [Equations that have integer solutions] (5 + 2)

(a) Consider the following language

L =

{
(a, b) : a, b ∈ Z ,

there exists integers x, y
such that x2 + ay + b = 0

}
Here, the inputs a, b are provided in binary.

Prove that L ∈ NP.

2 of 3

CSS.203.1 COMPUTATIONAL COMPLEXITY (2025-I) PROBLEM SET 1

(b) Consider the following language

L′ =

{
(a, b, c) : a, b, c ∈ Z ,

there exists integers x, y, z
such that x3 + ay2 + bz + c = 0

}
.

I don’t know if this problem is in NP. Why do you think that is so?

7. [Block-respecting TMs] (10)

Hat-tip: This problem is from Ryan O’Donnell’s complexity course

Let B : N → N be a “reasonable” function (increasing, time-constructible, yada yada).
A deterministic Turing machine M is said to be B-block-respecting if it has the following
property:

Consider a length n input x. The tape(s) of the Turing machine are split into
contiguous blocks of length B(n) each. Each head of the Turing Machine crosses
a block-boundary only at time-steps that are integer multiples of B(n).
(That is, within each block of B(n) time steps, each head operates only within
a particular block.)

Given a deterministic Turing machine M that runs in time T(n), and a “reasonable” func-
tion B : N → N, construct a deterministic B-block-respecting Turing machine M′ for the
same language while ensuring that the running time of M′ is O(T(n)).

siht hasi ftni htro orpe
this isah intf orth epro blem
hasi ftni htro orpe melb

[Hint:SupposethemachineMusesktapes,youcouldperhapsmakeuse
oftheabovepictureanduse3ktapes.]

8. [Improving the time-hierarchy theorem] (15)

For this problem, you may assume that any ‘reasonable-looking’ function is time-constructible.
And whenever you see functions like n2 log3/4(n), assume that there is an implicit ceiling
to make sure this is an integer etc. (Basically don’t worry about technicalities!)

In class we proved that the deterministic time hierarchy theorem that stated the follow-
ing:

Suppose t1, t2 : N → N are non-decreasing time-constructible functions with
t1(n), t2(n) ≥ n. If we have t1(n) log t1(n) = o(t2(n)), then we have DTIME(t1) ⊊
DTIME(t2).

(a) Let t1, t2, f : N → N be time-constructible non-decreasing functions that satisfy
t1(n), t2(n), f (n) ≥ n. Show that DTIME(t1(n)) = DTIME(t2(n)) implies

DTIME(t1(f (n))) = DTIME(t2(f (n))).

[Hint:Padding.]

(b) Show that DTIME(n2) ⊊ DTIME(n2 log3/4(n)).

[Hint:Youmayhavetousetheabovepartmultipletimes.]

(c) Extend this to show that for any rational number a, ε satisfying a > 1 and 0 < ε < 1,
we have

DTIME(na) ⊊ DTIME(na(log n)ε).

3 of 3

