
CSS.203.1 COMPUTATIONAL COMPLEXITY (2025-I) PROBLEM SET 3

Problem Set 3

• Due date: 25 Apr, 2025 (released on 5 Apr, 2025).

• The points for each problem is indicated on the side. The total for this set is 85 points

• The problem set has a fair number of questions so please do not wait until close to the
deadline to start on them. Try and do one question every couple of days.

• Turn in your problem sets electronically (PDF; either LATEXed or scanned etc.) via email.
If you submit a LATEX document, you will get an additional 10 points.

• Collaboration with other students taking this course is encouraged, but collaboration
with others is not allowed. Irrespective of this, all writeups must be done individually
and must include names of all collaborators (if any).

• Referring to sources other than the text book and class notes is STRONGLY DISCOUR-
AGED. But if you do use an external source (eg.,other text books, lecture notes, or any
material available online), ACKNOWLEDGE all your sources (including collaborators)
in your writeup. This will not affect your grades. However, not acknowledging will be
treated as a serious case of academic dishonesty.

1. [Self-reducibility] (10)

A language L is said to be length-self-reducible if there is a polynomial time computable
functions F, G with the following properties:

F takes as input a string x of length n, and outputs m = n2 strings y1, . . . , ym
with the property that each yi satisfies |yi| < |x| (that is, each yi is a string
of smaller length than x). The function G takes inputs as bits b1, . . . , bm and
returns 0 or 1.

For any string x, let bi = 1[yi ∈ L] for i ∈ [m] where F(x) = (y1, . . . , ym). Then,
x ∈ L if and only if G(b1, . . . , bm) = 1.

In other words, we have a function F that takes x and returns many smaller length
strings, and G tells you how to check if x ∈ L from the information of which of the
m strings given by F were in L.

Show that any length-self-reducible language L is in PSPACE.

Bonus: Suppose you instead worked with lex-self-reducible, where each yi is lexicograph-
ically smaller than x. What class can you put those languages?

2. [Consequences of improving Ryan Williams’ recent result] (10)

Suppose we are able to show that DTIME(t) ⊆ DSPACE(tε) for every ε > 0. Prove that
this would imply P ̸= PSPACE.

3. [Kannan’s theorem] (7 + 5 + 3)

(i) Fix any constant c ≥ 1. Show that there is a language L ∈ PH that is not in SIZE(nc).

1 of 3

CSS.203.1 COMPUTATIONAL COMPLEXITY (2025-I) PROBLEM SET 3

[Hint:Canyoutryandencode“thelexicographicallysmallestcircuitof
sizencthatisnotcomputablebycircuitsofsizenc/2”asaquantifiedex-
pression?]

(ii) Show that, for any constant c ≥ 1, there is a language in L ∈ ΣP
2 that is not in

SIZE(nc).

[Hint:EitherNP⊆SIZE(poly)ornot...]

(iii) Note that this means in particular that, for any constant c > 0, we know NP is not
computable by circuits of size nc. Why does this not show that NP ⊈ SIZE(poly)
(which, if you recall, is stronger than saying P ̸= NP)?

4. [Generalising Karp-Lipton] (10 + 5)

A non-deterministic circuit family is a sequence of circuits {Ci(x, y)}i∈N where Ci is on two
sets of inputs with |x| = i and |y| = poly(i). We will say that the non-deterministic
circuit family compute a language L ⊆ {0, 1} if for every x ∈ {0, 1}∗ we have

x ∈ L ⇐⇒ ∃y : C|x|(x, y) = 1.

Let NSIZE(poly) be the class of all languages that are computable by a non-deterministic
circuit family of size poly(n).

Turns out, NSIZE(poly) = NP/ poly.

(a) Show that if coNP ⊆ NSIZE(poly), then Π3 = Σ3 = PH. (In other words, it is
unlikely that coNP ⊆ NP/ poly.)

(b) To contrast this, prove that coNEXP ⊆ NEXP/ poly.

[Hint:MighthelptorecallthekeyideainNL=coNLtofigureoutwhat
adviceyouwouldlike.]

5. [Input oblivious NP] (10)

The complexity class ONP (also referred to as ‘oblivious NP’) is defined as follows:

A language L is in ONP if and only there is a deterministic polynomial time
machine M such that for all lengths n, there exists wn ∈ {0, 1}poly(n) such that
any n-length string x is in the language if and only if M accepts (x, wn).

The difference between NP and ONP is that for NP, the ‘witness’ w can depend on x, but
in ONP the witness is the same for all string of that length.

Prove that ONP = NP if and only if NP ⊆ SIZE(poly).

[Hint:(⇒)shouldbetheobviousdirection.Asfortheotherdirection,use
Karp-Lipton.]

6. [Circuit complexity of multiplication] (3 + 3 + 6 + 3)

We say in class that given two n-bit numbers, we can compute their sum in AC0. In this
problem we will understand the complexity of multiplying two n-bit numbers.

2 of 3

CSS.203.1 COMPUTATIONAL COMPLEXITY (2025-I) PROBLEM SET 3

(a) Show that multiplying two given n-bit numbers cannot be done in AC0 by reducing
Paritym to it.
(Since we are dealing with really low-level classes such as AC0, your reduction has to
be super-low-level. Use this problem to come up with a suitable definition for such
a “class” of reductions.)

[Hint:b200b100b0×1001001=?]

(b) Build an NC0 circuit (fan-in 2, constant depth; each output bit can therefore depend
on just constantly many input bits!) that takes three n-bit numbers x, y, z and output
an n-bit number u and an (n + 1)-bit number v such that x + y + z = u + v.

[Hint:

110101
011010
101100
000011

1111000

]

(c) Show that given n numbers that are n-bits long each, we can compute their sum
using an NC1 circuit (fan-in two, O(log n)-depth circuits).

(d) Conclude the product of two given n-bit numbers can be computed in NC1.

7. [Randomised log-space] (4 + 6)

In this problem, we are going to try and define the class RL just like we defined the class
RP. But we will have to handle a few subtleties.

Just like in the witness definition of NL, we can think of a log-space machine M that is
given a special ‘random tape’ that will be filled with a uniformly random string. Like in
the witness definition, this tape will be read-once. We will think of this as a definition of
the class RL but we need to address one subtlety.

An important subtlety is what is the halting requirement for an RX (for X replaced by
your favourite class)? There are two possible definitions we could think of:

• The machine M must halt on every input and every setting of the random tape.

• The machine M must halt on every input with probability 1 with respect to the ran-
dom tape contents.

(a) Show that for any time-bounded class X (such as P, or EXP etc.) both the above
variants of RX coincide. That is, the distinction is not important when talking about
classes such as RP or RE etc.

(b) For space-bounded classes, this becomes an important distinction. Define RL1 to be
the variant where we require the TM to halt on each input with probability 1 over
the the random tape contents. Show that RL1 is infact equal to NL.

Thus, the right definition for RL is one where we should insist that every computational
path is halting (and not just with probability 1).

3 of 3

