
[CSS.413.1] Pseudorandomness 6 Oct, 2025

Problem Set 2

• Due Date: 19th October 2025

• The points for each problem is indicated on the side. The total for this set is 90 points.

• Turn in your problem sets electronically (PDF; either LATEXed or scanned etc.) via email.

• Collaboration is encouraged, but all writeups must be done individually and must include
names of all collaborators.

• Unless explicitly stated (like in question 1 in this set), you are not allowed to use the LLMs
for this problem set.

• Referring to sources other than the text book and class notes is strongly discouraged. But if
you do use an external source (eg., other text books, lecture notes, or any material available
online), ACKNOWLEDGE all your sources (including collaborators) in your writeup. This
will not affect your grades. However, not acknowledging will be treated as a serious case of
academic dishonesty.

• Be clear in your writing.

Throughout this problem set, we would be working with the inner-product ⟨f, g⟩ = E[f(v)g(v)]. All
norms, orthogonality etc. are with respect to this inner-product.

1. [Writing code for zig-zag products] (15)

This Google Colaboratory notebook provides a generic implementation of strongly explicit
graphs via rotation maps. Create a copy of this notebook, and use Gemini to write code for
the tensor product of two graphs, and the zig-zag product of two (compatible) graphs. (Please
add your prompts as comments in the code block).

2. [The Affine Line graph] (1 + 4 + 2 + 3)

Let F be a finite field. Consider the following graph G whose vertex set is F2 and edges set E
defined as

E = {((a, b), (c, d)) : ac = b+ d} .
One way to interpret this is the point (a, b) is connected to all points (c, d) on the line y = ax−b.

(a) Show that G is |F|-regular.
(b) Compute the adjacency matrix of the graph G2. What are its eigenvalues?

(c) Use the above to show that λ(G) ≤ 1√
|F|

.

(d) Starting with this, and using the graph operations seen in class, show that you can
construct a (D8, D, 1/8)-spectral expander for some suitably large constant D.

3. [Spectral gap for the replacement product] (3 + 4 + 3)

In class, we also briefly discussed the replacement product of two compatible graphs. If G is a
(N,D) graph and H is an (D, d) graph, then the replacement product G r○H is a (ND, d+1)
graph. In this question, we will prove some non-trivial spectral gap bound for G r○H if we
know G,H have non-trivial spectral gaps.
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(a) Show that the random walk matrix M of G r○H is a convex combination of RotG and
I ⊗MH

(b) Write M3 as a convex combination some operator A and the random walk matrix of
G z○H, with ∥A∥ ≤ 1.

(c) Use the above to argue that λ(G r○H) ≥ (p + (1 − p) · λ(G z○H))1/3 for some p ∈ (0, 1)
that depends only on d.

4. [Spectral gap for regular, connected, non-bipartite graphs] (15)

Let G be a D-regular undirected graph on N vertices and let M be the random walk matrix.
Suppose 1 = λ1 ≥ λ2 ≥ · · · ≥ λN ≥ −1 are the eigenvalues of M .

(a) Show that λ2 = maxf⊥1,∥f∥=1⟨f,Mf⟩. (Note that λ2 here refers to the second-largest
eigenvalue, not necessarily in absolute value).

(b) For any f such that ∥f∥ = 1, prove that ⟨f,Mf⟩ = 1− 1
2 E(u,v)∈E [(f(u)− f(v))2].

(c) Let f ⊥ 1 and ∥f∥ = 1. Suppose G is connected, and f attains its maximum value at a
and its minimum value at b, show that

1 ≤ (f(a)− f(b))2 ≤ poly(N,D) · (1− λ2)

This immediately provides a lower bound for 1− λ2.

[Hint:f(a)−f(b)=(f(a)−f(u1))+(f(u1)−f(u2))+···(f(ut)−f(b))where
everytermcorrespondstosomeedge.]

(d) Suppose G is a D-regular, connected, non-bipartite undirected graph on N vertices and
let γ := 1−max(λ2, |λN |). Show that γ ≥ 1

poly(N,D)

[Hint:ConsiderG′:=G
2
andusetheboundsprovedabove.]

5. [Spectrum of complete k-partite graphs] (5 + 5)

A graph G is said to be a complete k-partite graph if there is a partition of [N ] = V1 ⊔ · · · ⊔Vk

into k non-empty sets of vertices with the edge set being all possible edges between vertices in
two different parts. That is,

E = {(u, v) : ∃i ̸= j ∈ [k] , u ∈ Vi and v ∈ Vj}

(a) Assume that all k parts have exactly N/k vertices each. Show that all non-trivial eigen-
values of the random walk matrix is non-positive.

(b) Prove that even in the general case (where the sizes of Vi need not be the same), all
non-trivial eigenvalues of the random walk matrix are non-positive.

6. [An optimal non-averaging sampler] (5 + 10)

Suppose f : {0, 1}m → {0, 1} is some function and µ = Ex[f(x)]. A (δ, ε)-sampler is a
randomized algorithm that queries f at various points and outputs some estimate µ̂ with the
property that

Pr[|µ̂− µ| > ε] ≤ δ.

We are primarily interested in two parameters of such samplers — how many queries did it
make, and how many random bits did it use. For this entire problem, assume that we have a
strongly-explicit (2m, d, 0.5)-spectral expander for some constant d.
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(a) Using expanders, show how one can obtain a (δ, ε)-sampler that makes at most
O
(

1
ε2 log

1
δ

)
queries and uses at most

m+O

(
log(1/ε)

ε2
· log 1

δ

)
random bits.

(You may assume Theorem 4.22 from Vadhan’s manuscript, which is a stronger form of
the Question 2 in this set, for this problem. You may also assume that there are strongly
explicit constant-degree expanders on 2m vertices.)

(b) Suppose we have a ((1/8), ε)-sampler S that makes Q queries and uses R random bits.
In the last problem set, you studied the “median of averages sampler” built from S:

Run the sampler S for t independent trials to obtain µ̂1, . . . , µ̂t. Output the
median of these estimates.

You should have shown that this new sampler will be an (δ, ε)-sampler if t = O
(
log 1

δ

)
and instantiated S using pairwise independence.

Use expander random walks to now construct an (δ, ε)-sampler that makes at most
O
(

1
ε2 log

1
δ

)
queries and uses at most

O

(
m+ log

1

ε
+ log

1

δ

)
random bits.

You have now seen a sampler that has optimal number of queries and random bits used (up to constants) but is NOT

an averaging sampler! Obtaining an averaging sampler with the same performance is an open problem.

7. Expander walks for bias reduction (2 + 2 + 8 + 3)

For a random variable X taking values in {0, 1}, define

bias(X) := |Pr[X = 0]− Pr[X = 1]| =
∣∣E[(−1)X ]

∣∣.
(2 points) If X is the parity of t independent ε-biased random variables X1, . . . , Xt (i.e.
X = X1 ⊕ · · · ⊕Xt), show that bias(X) ≤ εt.

The rest of the problem would be to avoid taking independent XORs and using an expander
random walk to reduce bias.

For a function f : [N ] → {0, 1}, let Xf be the associated random variable that takes value 1
with probability Prv[f(v) = 1] and 0 with probability Prv[f(v) = 0]. Suppose bias(Xf ) ≤ ε.

Consider a D-regular, λ-spectral expander G on [N ] and let M be the random walk matrix.
Define the new random variable X defined by the following sampling process:

Pick a random walk v1, . . . , vt in the graph G. Output f(v1)⊕ · · · ⊕ f(vt).

(a) Find an appropriate N ×N matrix F such that you can express bias(X) as

bias(X) =
∣∣⟨1, (FM)t1⟩

∣∣
(b) What upper bound can you give for ∥FM∥? What about ∥FMFM∥?
(c) Show that bias(X) ≤ (ε+ λ)t/2.

General note: Take a moment to appreciate the above claim. Parity / XOR is a really sensitive function and even a

single correlated bit can mess up the parity. It is quite surprising that samples obtained via expander random walks

behave like independent samples for parity, even though expander walks are certainly correlated!
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