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Abstract

This is just an exposition of what I understand of Ramanujan Graphs and Ramanujan Com-
plexes from Tali Kaufman’s lectures.

The notes are meant for giving an exposition for people who aren’t too familiar with these
ideas (like me) and are meant to be as elementary as possible. Whenever possible, this expo-
sition will prefer intuition over brevity, even if it is at the cost of taking 3 pages to describe
something that can be stated concisely in a few lines (evident from the fact that this is a 10+
page exposition for something that is typically described in no more than 2 or 3 pages by ex-
perts). But if you are the sorts who is comfortable with statements like “consider a co-compact
torsion free subgroup of PGLn(Qp)/PGLn(Zp)”, then you are looking at the wrong sort of
exposition and you can just read the paper instead.

1 Constructing good expanders

The goal of this exposition is to understand explicit constructions of d-regular graphs (and soon
to be generalized to complexes) that are very good spectral expanders. Recall that a graph G is said
to be a λ-spectral expander if the second largest eigenvalue (in absolute value) of the adjacency
matrix AG, denoted by λ2(G) is at most λ.

The smaller then λ, the better is the expansion properties of this graph. How small can λ be?

Theorem 1.1 (Alon-Boppana (see [Alo86])). Any d-regular graph G satisfies

λ2(G) ≥ 2
√

d− 1 (1− o(1)).

Can we find families of bounded degree graphs that achieve λ2(G) ≈ 2
√

d? This lecture will
outline the construction of Lubotzky, Phillips and Sarnak [LPS88] of an explicit family of bounded
degree graphs that match the above lower bound. This construction is quite involved and this
note hopefully give a reasonable sense of the construction.
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1.1 The TL;DR Version

The main idea of LPS is to start with the best possible expander of degree d — the infinite tree of
degree d. Clearly, one cannot hope for better expansion properties than in the infinite tree, and it is
indeed true that the second largest eigenvalue1 of the infinite tree is indeed 2

√
d− 1. The task then

reduces to somehow folding this tree on to itself with just finitely many vertices, that still remains
d-regular and more or less maintains the spectrum.

How does one perform such a folding? This is where I think the following insight is very useful:

Whenever possible, if you want to study a certain set S (that is typically unstructured),
find a group G that acts transitively on the set S and study that group instead.

This miraculously lets one induce some structure on the set S that can be exploited. Indeed,
often mathematicians then use representation theory of the group G to perform magical operations
on the set S. LPS also do this and perform the miraculous folding that retains the degree of the
graph and the spectrum! To be honest, I don’t know the details of how exactly this is done, but
this as a general philosophy is important to keep in mind.

There are numerous clever ideas used in the LPS construction. Firstly, the infinite d-regular
tree will be constructed in a really counter-intuitive way, in which it would not even be clear at
first that the graph is connected let alone a d-regular tree but we’ll see that it indeed is a d-regular
tree. The point of this counter-intuitive construction is that we can then find a nice group G that
acts on the vertices of the tree.

Once we have a nice group G acting on the vertices, LPS then use representation theory on G
to find ways to perform the folding. But this part is beyond the scope of this write-up.

OK, let’s get started. The whole construction works over what is called a local field and the
p-adic field described below what we shall use in this note.

2 The p-adic field

The Ramanujan graphs and complexes use the p-adic field in the background. Fix a prime p.
The elements of the p-adic integers, denoted by Zp, are infinite sequences [a0, a1, . . .] where each
coordinate ai ∈ {0, · · · , p− 1}. In other words, every element of Zp is a function a : N→ Fp.

Intuitively, this infinite sequences should be thought of as a base-p representation of the num-
ber, compatible with

a mod pi+1 = a0 + a1 p + a2 p2 + · · ·+ ai pi,

1Yes, one can define eigenvalues for infinite graphs etc. but let’s not fret about this now.
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for every i.
For example, the number 17 in Z3 would be expressed as [2, 2, 1, 0, 0, 0, 0, . . .] expected. But the

number −1 would be expressed as [(p− 1), (p− 1), (p− 1), . . .] in Zp, so as to be consistent with
−1 mod pi = pi − 1.

Whenever we have a ring, it is natural to add inverses to every element in it to make it a field
Qp. These are again infinite sequences, but a finite number of negative indices. Formally, each ele-
ment r ∈ Qp is described by a map r : [−m,−m + 1, . . . , 0, 1, 2, . . .] → Fp for some finite m. That
is, there are finitely many negative indices but infinitely many positive indices.

OK, all this is a mouthful and it suffices to say that Zp is a bizarre ring and Qp is a bizarre field.
But the following are most important points to keep in mind (and these are all that we would
need).

• Zp is a ring, and Qp is a field. More importantly, they are characteristic zero objects, namely
adding an element to itself many times does not make it zero (unlike fields like Fp or Fpr ).

• Zp has familiar integers Z as a sub-ring and Qp has the rationals Q as a sub-field. Thus, the
multiplication and addition operations in Qp extend the usual multiplication and addition
operations in Q.

• For every a ∈ Zp such that a0 6= 0, there exists a b ∈ Zp such that a · b = 1. In other words,
all p-adic integers that have a non-zero first coordinate has an inverse within the integers.

Thus, the only non-invertible elements of Zp have multiples of p. This is in stark contrast
with the familiar ring of integers Z, where the only invertible elements (in Z) are 1 and −1.

• For every r ∈ Qp, there is a large enough integer N such that pN · r ∈ Zp.

• If φ is a map on Zp defined so that φ(a) = a0, then this is a homomorphism from Zp to Fp.
That is, φ(a + b) = φ(a) + φ(b) and φ(ab) = φ(a) · φ(b).

We shall use GLd(Qp) to refer to the set of invertible d× d matrices with entries from Qp, and
GLd(Zp) to refer to the set of d× d matrices with entries from Zp that have an inverse with Zp

entries as well. But for what sorts of matrices M with Zp entries have an inverse with integers
entries as well? The following claim exactly characterizes all such M and we leave the proof as an
exercise.

Claim 2.1. Let M ∈ Zd×d
p be a d× d matrix with entries in Zp. Then, M has an inverse in Zd×d

p if and
only if det(M) is not divisible by p.

These are the basic properties of Zp and Qp we will need in this notes. We now proceed to
describe the Ramanujan Graph. The first step in that is the Bruhat-Tits tree construction.
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3 The Bruhat-Tits Tree

We now begin building the regular infinite tree and this is a construction by François Bruhat and
Jacques Tits [BT72]. We first need to understand lattices over Zp.

3.1 Lattices

Definition 3.1 (Lattices over Zp). A lattice L generated by v1, . . . , vd ∈ Qd
p is defined as the set of points

L =
{

a1v1 + · · ·+ advd : ai ∈ Zp for all i ∈ [d]
}

,

the set of all Zp linear combinations of v1, · · · , vd. The dimension of this lattice, denoted by dim(L), is
equal to the rank of {v1, . . . , vd}. ♦

We will only be dealing with lattices in Qd
p of full dimension, that is dim(L) = d. This means

that the generating set forms a basis for Qd
p.

Of course, there are many bases {v1, · · · , vd} that may generate the same lattice, for example
{v1 + v2, v2, · · · , vd}.

Observation 3.2. Let L be generated by {v1, . . . , vd} and L′ be the lattice generated by {u1, . . . , ud}. If
there is a matrix a M ∈ Zd×d

p such that[
v1 · · · vd

]
M =

[
u1 · · · ud

]
,

then L′ ⊆ L. Furthermore if M ∈ GLd(Zp) ,that is M has an inverse in Zd×d
p as well, then L = L′.

Thus, as long as we use elements of GLd(Qp) with integer entries, this stays within the lattice.
Of course, we can move from one lattice to another (of the same dimension) by multiplying with
an element of GLd(Qp). But using the fact that every r ∈ Qp has some N > 0 such that pNr ∈ Zp,
we get the following corollary.

Corollary 3.3. For any pair of lattices L and L′ over Zp of the same dimension, there exists an N > 0 such
that

pN L′ ⊆ L.

In particular, for every lattice L′, there is an N > 0 such that pN L′ is a sub-lattice of the standard lattice
L0 = Zd

p.

Proof. Say L is generated by {v1, . . . , vd} and L′ is generated by {u1, . . . , ud}. Since these are both
lattices of the same dimension, there is a matrix M ∈ GLd(Qp) such that[

v1 · · · vd

]
M =

[
u1 · · · ud

]
.
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But we can always find some N large enough so that M′ := pN M ∈ Zd×d
p . Therefore,[

v1 · · · vd

]
M′ = pN

[
u1 · · · ud

]
.

By Observation 3.2, this implies that pN L′ ⊆ L.

We are now ready to describe the vertices of the Bruhat-Tits tree.

Vertices of the Bruhat-Tits Construction

We shall first describe BT(1), which yields a 1-dimensional simplicial complex a.k.a graphs. These
would involve 2-dimensional lattices over Zp.

We shall say use an equivalence relation ∼ between lattices and say L1 ∼ L2 if there exists an
0 6= α ∈ Qp such that L1 = αL2. That is, we will identify lattices that are scalings of one another
and denote by [L1] the equivalence class that L1 belongs to.

The vertices of BT(1) are these equivalence classes [Li].

Edges of the Bruhat-Tits Construction

We first describe the edge relations formally and we will then understand them in a more hands-
on way.

The graph BT(1) has an edge between two vertices [L1] and [L2] if there exists repre-
sentatives L′1 ∈ [L1] and L′2 ∈ [L2] such that

pL′1 ( L′2 ( L′1.

What does this mean? Specifically, say we have a vertex [L1] that is the equivalence class of the
lattice generated by {v1, v2}. What vertices [L2] are its neighbours?

L1 = v1 · [∗, ∗, ∗, . . .] + v2 · [∗, ∗, ∗, . . .]

p · L1 = v1 · [0, ∗, ∗, . . .] + v2 · [0, ∗, ∗, . . .]

So really, if L2 is to be sandwiched between pL1 and L1, the only freedom we have is in the first
coordinate of the two directions. For example, L2 could contain points of the form

L2 ⊇ {v1 · [a, ∗, ∗, . . .] + v2 · [b, ∗, ∗, . . .]} ,
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but since L2 should be a lattice, this would also force

L2 ⊇
{

v1 · [aλ, ∗, ∗, . . .] + v2 · [bλ, ∗, ∗, . . .] : λ ∈ Fp
}

,

that is, the first coordinates of the two directions form a proper subspace in F2
p, and hence a line.

There are totally p + 1 lines in F2
p that are namely in directions

{
(1, α) : α ∈ Fp

}
∪ {(0, 1)} and

each such direction would yield one neighbour of L1. We formalize this as a lemma.

Lemma 3.4. Let L be a lattice generated by {v1, v2}. For each linear subspace in F2
p, define the following

lattices:

For each a ∈ Fp, define L(1,a) :=
{

v1 · [λ, ∗, ∗, . . .] + v2 · [aλ, ∗, ∗, . . .] : λ ∈ Fp
}

= (v1 + av2) ·Zp + (pv2) ·Zp

=
[

v1 v2

] [ 1
a p

]

and L(0,1) :=
{

v1 · [0, ∗, ∗, . . .] + v2 · [λ, ∗, ∗, . . .] : λ ∈ Fp
}

= (pv1) ·Zp + v2 ·Zp

=
[

v1 v2

] [ p
1

]
.

The equivalence classes of these lattices are precisely the (p + 1) neighbours of [L] in BT(1).

Great! Now we know exactly what the vertices and the edges are. What we would like to show
now is that this graph is connected, and this graph is actually an infinite tree of degree (p+ 1). But
we shall defer the proofs of these two facts to the appendix and instead proceed to generalizing
the above definition to complexes of higher dimension.

This generalization of Ramanujan Graphs to complexes is by Lubotzky, Samuels and Vishne [LSV05].

4 The Bruhat-Tits Building in Higher Dimensions

A graph G = (V, E) is made up of vertices V and edges E between them. We can think of the
vertices as the 0-dimensions cells and edges are 1-dimensional cells, we have the property that for
every edge (u, v) ∈ E, the end points u, v ∈ V.

A natural generalization of this to vertices, edges, triangles, etc. is a simplicial complex. To us,
we simplicial complexes of dimension d is a collection of subsets X = (X (0),X (1), . . . ,X (d− 1)),
where X (i− 1) refers to the cells in X of size i, that satisfies the downward-closed property, i.e. if
A ∈ X (i− 1) of size i and B ⊂ A of size j < i then B ∈ X (j− 1).

So for example, we could have X as a higher dimensional analogue of graphs with vertices (el-
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ements of X (0)), edges (elements of X (1)) and triangles (elements of X (2)). An excellent example
of a higher dimensional simplicial complex is a spherical building.

The Spherical Building

Definition 4.1 (Spherical Building of dimension over Fd). The Spherical Building over a vector space
Fd, denoted by Pd−2(F) is a simplicial complex defined as follows:

• the vertices, or elements of X (0) are proper subspaces of Fd,

• (V1, V2, . . . , Vr) ∈ X (r− 1) if there exists a re-ordering of the r subspaces satisfying

(0) ( Vi1 ( Vi2 ( · · · ( Vir ( Fd.

Such a chain of inclusions is also called a flag.

Since we can have a maximum of d − 1 proper inclusions of non-trivial subspaces of Fd, the simplicial
complex Pd−2 has dimension (d− 2). ♦

Thus in particular, if d = 3, we get Pd−2 to be a 1-dimensional simplicial complex a.k.a. graph.
In P1, vertices are either lines or planes in F3 and you put an edge between a line ` and a plane P
if ` ⊂ P. This is the graph used in many of the line-plane tests in PCP literature.

Let us understand a bit about these spherical buildings over say the field Fp. The number
of vertices in Pd−2 is the number of proper subspaces of Fd−1. A very useful notation to count
subspaces of Fd

p are these gaussian binomial coefficients (just a name!):

For all 0 ≤ k ≤ d,[
d
k

]
p

:=
(pd − 1)(pd − p) · · · (pd − pk−1)

(pk − 1)(pk − p) · · · (pk − pk−1)
≈ pk(d−k)

the number of k-dimensional subspaces in Fd
p

Thus, the number of vertices of Pd−2 is

d−1

∑
k=1

[
d
k

]
p

= pO(d2).

In fact, for any d ≥ 3, the underlying graph of Pd−2 (just taking X (0) and X (1)) is an excellent
expander. The only issue here is that its degree is also D = pO(d2) which is comparable to the
number of vertices. But of course, if we fix p and d, the degree is a constant and so is the number
of vertices.

What we shall now do is construct a simplicial complex where the number of vertices is grow-
ing but somehow ensure that locally it always looks like Pd−2. Once again, we shall construct an
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infinite simplicial complex that is a “tree” and this is then folded using similar tricks to obtain the
finite simplicial complex called the Ramanujan Complex.

4.1 The Bruhat-Tits Building

The Bruhat-Tits building is defined very analogously to Section 3. This shall once again involve
the p-adic field Qp and the p-adic integers Zp and lattices over them.

Vertices of BT(d− 1): The vertices of the Bruhat-Tits building of dimension (d− 1) will be equiv-
alence classes [L] of d-dimensional lattices in Qd

p where L1 ∼ L2 if there is some 0 6= α ∈ Qp such
that L1 = αL2.

Edges of BT(d− 1): Two equivalence classes [L1] and [L2] are connected by an edge if there exists
representatives L′1 ∈ [L1] and L′2 ∈ [L2] such that

pL′1 ( L′2 ( L′1.

Triangles of BT(d− 1): Two equivalence classes [L1], [L2], [L3] are connected by a triangle if there
exists representatives L′1 ∈ [L1], L′2 ∈ [L2] and L′3 ∈ [L3] such that

pL′1 ( L′3 ( L′2 ( L′1.

And in general:

i-cells in BT(d− 1): Equivalence classes [L1], [L2], . . . , [Li] are connected by a i-cell if there exists
representatives L′1 ∈ [L1], . . . , L′i ∈ [Li] such that

pL′1 ( L′i ( · · · ( L′2 ( L′1.

Once again, because the cells are defined by some sandwiching between pL′1 and L′1, just like
earlier, the only freedom we have is in the first coordinate.

Lemma 4.2. Fix a lattice L generated by {v1, . . . , vd}, i.e

L = v1 · [∗, ∗, ∗, . . .] + · · · + vd · [∗, ∗, ∗, . . .].

For any proper subspace W ∈ Fd
p, define the lattice LW as

LW := {v1 · [a1, ∗, ∗, . . .] + · · · + vd · [ad, ∗, ∗, . . .] : (a1, · · · , ad) ∈W} .
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Then, the set of i-cells that [L] is a part of in BT(d− 1) is precisely ([L], [LW1 ], · · · , [LWi−1 ]) that satisfies

(0) ( LW1 ( · · · ( LWi−1 ( Fd
p.

In other words, the i-cells are exactly the flags in the spherical building! In fact, this goes deeper.

Definition 4.3 (Link of a cell in a complex). The link Xσ of any cell σ ∈ X in the complex X is defined
as

Xσ := {τ \ σ : τ ∈ X and τ ⊃ σ} ,

the restriction of X to only the cells containing of σ and removing σ from each of them. ♦

Corollary 4.4. The link Xσ of any cell σ ∈ X (i) in the complex BT(d − 1) is precisely the spherical
building Pd−i−1.

As mentioned earlier, the spherical buildings are excellent expanders (at least the underlying
graphs of them). The Bruhat-Tits building has the remarkable property that every link is a spheri-
cal building!

Once again, it is not hard to show that the underlying graph (X (0) and X (1)) is connected and
is infact a D-ary tree where

D =
d−1

∑
k=1

[
d
k

]
p

.

5 Groups acting on Bruhat-Tits buildings

I do not know too many details about this part but here are some thoughts about this. So far,
we have constructed infinite objects that locally have the desirable properties that we would like
from our complex. As mentioned earlier, the finite step is to somehow fold this infinite object to
one over finitely many vertices but still preserving the important properties like the spectrum and
bounded-degree-ness.

The vertices of the Bruhat-Tits building BT(d− 1) are equivalence classes of lattices in Qd
p. A

natural group that acts on lattices is GLd(Qp), the class of d× d invertible matrices. Is the action
well-defined on equivalence classes as well? Indeed yes. Let L1 be a lattice and M ∈ GLd(Qp) be
a matrix so that L1 ·M = L2. Then for any other L′1 = αL1 ∈ [L1], we have

L′1 ·M = αL1 ·M = αL2 ∈ [L2].

Let us perform the same equivalence operation on the group GLd(Qp).
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Definition 5.1. Define the group PGLd(Qp) as equivalence classes of invertible matrices in Qd×d
p where

M1 ∼ M2 if M1 = αM2 for some 0 6= α ∈ Qp. ♦

This operation of identifying elements with its scalings is rather standard in mathematics and
the P stands for projective.

Thus, we get the following observation.

Observation 5.2. The group PGLd(Qp) acts transitively on the set of vertices of BT(d− 1).

One cool way to associate a group structure on an arbitrary set is to take a transitive group G
acting on it and quotient it by the stabilizer.

Definition 5.3 (Stabilizer of a group action). Suppose a group G acts on a set S and let x0 ∈ S. The
stabilizer of x0, denoted by stabG(x0) is defined as

stabG(x0) = {g ∈ G : g(x0) = x0} ,

the subgroup of G that does not move x0. ♦

Lemma 5.4. If a group G acts transitively on a set S, then the elements of the set S can be identified by the
quotient

G
stabG(x0)

for any x0 ∈ G.

Great! We already have a transitive action on the vertices of BT(d− 1) which is G = GLd(Qp).
What are the elements that fix say the equivalence class of the standard lattice L0 = Zd

p? These are
precisely matrices M that can be written as α ·M′ where M′ ∈ GLd(Zp). Thus,

stabG([L0]) = PGLd(Zp)

defined analogously. Thus, we can identify the vertices of BT(d− 1) with the group quotient

PGLd(Qp)

PGLd(Zp)
.

Once we have such an identification, one can (apparently) use representation theory of this group
quotient to find the right foldings. As confessed earlier, I do not know more about this. But yes,
this involves a co-compact torsion-free subgroup of GLd(Qp)

GLd(Zp)
, whatever that means! But hopefully

this gives the reader something.
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6 Why the Bruhat-Tits tree is indeed a tree

This section would give all the necessary ideas required to prove that the Bruhat-Tits construc-
tions yield a (p + 1)-regular tree. The reader is encouraged to fill in the missing steps of the proof
outlined here.

Let us focus on BT(1) defined in Section 3 but whatever is discussed here would also apply to
the underlying graph of BT(d− 1) in general. In order to show that BT(1) is a (p + 1)-regular tree,
we need to show three things:

• show that it is (p + 1)-regular (we have already done this part),

• show that every vertex [L] has a path to say the standard lattice [L0] = Z2
p,

• show that every vertex [L] has a unique path to [L0].

Before we get to this, we need to be able to answer the following question:

If you are given two lattices L1 and L2 by a basis for each, can you check if L1 and L2

are the same lattice?

The standard way to do this is to convert the given basis to some normal form such that two
lattices L1 and L2 are identical if and only if their normal forms are identical. This is precisely what
the Hermite Normal Form achieves.

6.1 Hermite Normal Form

We first describe the Hermite Normal form for lattices over the rationals Q with integers being the
familiar integers Z, and then list the definition to Qp and Zp.

Definition 6.1 (Hermite Normal Form, for Z-lattices). A d × d matrix non-singular matrix M with
integers is said to be in Hermite Normal Form (HNF) if it satisfies the following properties:

• M is lower-triangular, that is Mi,j = 0 whenever j > i,

• every entry of M is non-negative,

• in each row i, the largest entry is Mii, the diagonal entry. ♦

Lemma 6.2 (Uniqueness of Hermite Normal Form). For any d× d non-singular matrix M with integer
entries, there is a unique matrix H in Hermite Normal Form such that M ·U = H for some U ∈ Zd×d

that has an inverse in Zd×d.

Thus, to check if two lattices are equal we can just compute the HNF of the basis and check if
they are identical. The proof of the above lemma quite easy. The interested reader is encouraged
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to prove it by themselves.

There is a natural generalization for Zp lattices as well but we would need the following def-
inition. For some a = [a0, a1, . . .] ∈ Zp, we shall say that a ≺ pr if ai = 0 for every i ≥ r. That is,
a ∈ Z ⊂ Zp and a < pr as an integer.

Definition 6.3 (Hermite Normal Form, for Zp-lattices). A d× d matrix non-singular matrix M with
Zp entries is said to be in Hermite Normal Form (HNF) if it satisfies the following properties:

• M is lower-triangular, that is Mi,j = 0 whenever j > i,

• each diagonal entry of M is a power of p,

• in each row i, if the diagonal entry Mii = pr for some r, then each Mij ≺ pr for all j < i. ♦

Lemma 6.4 (Uniqueness of Hermite Normal Form, over Zp). For any d× d non-singular matrix M
with Zp entries, there is a unique matrix H in Hermite Normal Form such that M · U = H for some
U ∈ GLd(Zp).

We are now ready to show that the Bruhat-Tits tree BT(1) is indeed a tree.

Theorem 6.5. The BT(1) is a (p + 1)-ary infinite tree.

Proof. It suffices to show that any vertex [L] has a unique path to the vertex corresponding to the
standard basis [L0]. Consider the HNF of the lattice L and suppose it is

H =

[
pr

a ps

]

with a = a0 + a1 p + · · · as−1 ps−1. Then observe that

H =

[
p

1

]r [
1
a0 p

] [
1
a1 p

]
· · ·
[

1
as−1 p

]
.

And note that these are precisely the edges in BT(1). Furthermore, this is also unique in the sense
that if a < ps then [

1
a ps

]
uniquely

=

[
1
a0 p

] [
1
a1 p

]
· · ·
[

1
as−1 p

]
.

But why are we not considering taking an edge such as

[
1
a p

]
and then

[
p

1

]
? The reason

is that [
1
ai p

] [
p

1

]
=

[
p

ai p p

]
HNF≡

[
p

p

]
.
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In other words if you start with a vertex, take the edge corresponding to the subspace (1, a)Fp in
BT(1) and then take the edge corresponding to the subspace (0, 1)Fp, you end up with the lattice
that is just a scaled version of the original lattice. In other words, you returned to the same vertex
in BT(1).

Thus, every vertex [L] has a unique path to [L0] in BT(1) and hence we have that BT(1) is
indeed a (p + 1)-regular tree.

The same proof essentially works for the graph of BT(d− 1) in general. Try it for BT(2) and
convince yourself that the graph of BT(d− 1) is indeed a D-regular tree for

D =
d−1

∑
k=1

[
d
k

]
p

.
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