Cohomologies for dummies

Ramprasad Saptharishi
Tel Aviv University

ramprasad@cmi.ac.in

July 27, 2016

The goal of this exposition is to explain some of the basics in cohomology tailored specifically
towards understanding simplicial complexes and higher dimensional expanders. There is surely
going to be massive over-simplification. Many of the terms used here have a broader meaning but
throughout this exposition I would focus one just the goal of establishing just enough terminology
to understand higher dimensional expanders.

1 Simplicial Complexes

In many areas of theoretical computer science, it is useful to model objects we study by associated
graphs. Edges between vertices capture relations between various elements of the structure. A
simplicial complex, to me, is a generalization of this where relations need not just be between two
vertices but maybe even between larger number of them.

Definition 1.1 (Simplicial Complex). A simplicial complex X is a collection of finite subsets of a base

set X that is down-closed, that is it has the property that if A € X and B C A then B € X.
The elements of X are called cells and the base set X is called the vertices of X

We shall denote by X (i) the set of elements of X of size (i + 1) (yes... [ know... but if you think about it, it
makes sense):

X)) = {AeX :|Al=i+1}.
The dimension of X, denoted by dim (X)), is the largest i such that X (i) # @. In other words, dim(X’)
is the size of the largest cell in X minus one. O

Recall graphs as a running example. We have vertices V and edges E between them. This
is just a 1-dimensional simplicial complex X with X'(0) = V and X(1) = E. A 2-dimensional
simplicial complex will have vertices, edges and triangles. And so on.



It is useful to have a picture like the following in mind when thinking about simplicial com-
plexes.
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Figure 1: Layered representation of simplicial complexes

Throughout this discussion, we shall fix our field [F to be I, as it has the very useful property
that 1 = —1; this would greatly simplify the exposition here.

1.1 Co-chains := Functions on layers

The next object that we should know are called co-chains, which are just functions from a layer to
IF,.

Definition 1.2. A co-chain on level i is a function A : X (i) — Fp. We shall use C; to denote the set of all
co-chains on level i:
C,‘ = {A : X(l) — IFQ} .

We will often think of a co-chain A € C; as a subset of X (i) (that are “accepted” by A). O

Q: Why are they called ‘co-chains’?

A:1don’t know of a satisfactory answer for why they are like chains. But I do know
what the ‘co-" means; it is to point out that this is contra-variant. Let me explain.

Say you have a map ® : G — H between two graphs. Now say you want to under-
stand Cy(G), the functions on the vertices of G, and Cy(H), the functions on vertices of
H. Then, the map ® induces amap ® : Co(H) — Cy(G) as follows:

Givenan f € Co(H), map g € Co(G) defined by g(v) = f(P(v)).
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The fact that a map from G — H induced a map between Cy(H) — Co(G) is what is
referred to as contra-variant. That’s what the ‘co-" is for.

Another way to interpret a co-chain at level-i as just labeling each element of slice i (in Figure 1)
by an element of IF. The next thing we would want to do is if we can lift a function on vertices to
another function on edges, or vice-versa.

1.2 Boundary and co-boundaries

Definition 1.3 (Boundary operator). The boundary operator, denoted by 9, maps co-chains in C; to co-
chains in C;_q in the following way: if A : X (i) — T then the function dA : X (i — 1) — F is defined
by
(0A)(0) := Y A(o) foreveryo € X(i—1). O
TeX;
oCT
(Generally, there is a subscript on the 0 to denote the layer but I am going to ignore it. There is a bigger
chance of me putting the wrong index and confusing the reader than not putting it at all.)
For example, if we have a function A on the edges of a graph, then the function dA is defined
on vertices by just adding the values on the edges incident on it.

Similarly, one can [ift functions on vertices to functions on edges.

Definition 1.4 (Co-boundary operator). The co-boundary operator, denoted by 6, maps co-chains in
C; to co-chains in C;1q in the following way: if A : X (i) — T then the function A : X(i+1) — Fis
defined by
(6A)(0) =) A(o) foreveryo € X(i+1). O
TEA]
[k

For example, if we have a function A on the vertices of a graph, then the function J A is defined
on edges by just adding the values on the end-points.

I always keep getting confused between which way d and § operate. Irit Dinur suggested this:

Keep Figure 1 in mind. The top of J curves to the right, so it maps elements of C; to
Cit1. And the top of d curves to the left, so it maps C; to C;_;.

We have already seen that the co-boundary operator 4 “lifts” functions from C; to C;11. If we
think of i = 0, we are lifting functions on vertices to functions on edges. Intuitively, any function
on edges that is derived this way is in some sense “simple” as it really comes from a level below.
In this language, the range of the co-boundary operator is synonymous to “simple”. These are
called co-boundaries and denoted by B;.

B, := {(5(f) : f € Ci—l} .
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Almost there! Just one more definition and we can define cohomologies.

1.3 Co-cycles and cohomologies

Recall co-boundary operator 6 maps elements of C; to C;;1. There may be functions f € C; such
that ¢ f is the zero function on X (i 4+ 1). These are called co-cycles.

Definition 1.5 (Co-cycles). The co-cycles at level i, denoted by Z;, is defined as the kernel of 6 at level i.
That is,

Zi = {feC:éf=0} 0
Now for the first theorem.
Theorem 1.6 (“06 = 0”). For any function f € C;, we have §(6(f)) € Cjyo is the zero function.
Proof. Important exercise! Don’t go beyond this point without working this out! O

Note that B; and Z; are spaces of functions over [F, and are in fact vector spaces. The above theorem
shows that B; is a subspace of Z;. The whole point of cohomologies is to study if Z; is bigger than
B; or not.

Definition 1.7 (Cohomologies). The i-th cohomology, denoted by H;, is defined as the group quotient
Hi = —_— <>

These are quite a few definitions and they are best understood by taking examples.

2 Examples

Let us just work with graphs for now. A graph G = (V,E) is just a 1-dimensional simplicial
complex X with X(0) = Vand X (1) = E (and X (1) = {D}).

Question. What is By, the set of functions on vertices that are co-boundaries?

Recall that By = {6(f) : f € C_1}. But what is C_1? These are functions on X' (—1) = {@}
and there are just two of them — the function fj that maps @ to zero, and the function f; that maps
@ to one.

What is 6fy? By defintion, dfp on {v} is equal to }r (o) fo(T) = fo(@) = 0. Thus, 5fy is just
the all zero function on the vertices, and similarly éf; is the all ones function on vertices.

In other words, the co-boundaries at level-0 are the constant functions.

Question 2.1. What is By, the set of functions on edges that are co-boundaries?



Recall that By = {d(f) : f € Co} and functions from V to [F, can just be thought of as choosing
a subset of vertices via S = {v : f(v) = 1}. Whatis 6f? Fix an edge (#,v). Then by definition,
(6f)({u,v}) = f(u) + f(v). Since we are working over IF,, this would be one if and only if exactly
one of {u,v} € S. Hence, the function (6 f) “accepts” only those edges (u, v) such that exactly one
of its end-points is in S, which is just the cut-edges induced by S.

In other words, a subset A C E of edges is a co-boundary if and only if A = E(S, S) for some
SCV.

Question 2.2. What is Z,, the set of functions f on vertices such that 6f = 0? And what is Hy, the 0-th
cohomology?

Recall that (6f)({u,v}) = f(u) + f(v). Hence, if §f = 0, we must have f(u) = f(v) for every
edge (1,v) € E. Certainly the constant functions satisfy this property. Is that all? Or are there
non-constant functions that also satisfy f(u) + f(v) = 0 for every (u,v) € E?

This answer depends on whether or not the graph G is connected. If the graph has two dis-
connected components G; and G, we could take a function f that is 1 on all the vertices in G; and
0 on all vertices of Gy. That would still satisfy the f(u) + f(v) = 0 for every (u,v) € E. Itis not
hard to see that these are precisely all the functions that satisfy this property.

Therefore, Z is just the set of functions that are constant on each connected component of G.

We therefore get the following observation.

Lemma 2.3. For any graph G, the dimension of the 0-th cohomology Hy is exactly the number of connected
components of G. O

Now suppose we have a 2-dimensional simplicial complex X = (V,E, T) (where T is a set of
triangles), we can also try and understand Z;.

Question 2.4. What is Z, the set of functions f on edges such that §f = 0?7

If 6f = 0, then for any triangle {#, v, w} € T wemusthave f({u,v})+ f({v,w}) + f({u, w}) =
0. Thus, if we were to interpret f as asubset A = {(u,v) : f({u,v}) =1} of edges, we must have
the property that each triangle in T must either include exactly two edges from A or no edges
from A.

Note that if A = E(S,g) for some S C V, then indeed each triangle will include either two or
no edges from A. But are there other subsets of edges that have this property? Once again, this
depends on the underlying structure of the simplicial complex. For now, we shall give an example
of a simplicial complex where there are indeed subsets that are in Z; but are not cuts.



Figure 2: Mobius triangulation — An example where Z; # B;

Consider the above example where X (2) = {{1,2,3},{2,3,4},{3,4,5},{4,5,1},{5,1,2}}, and
X (1) and X (0) are just subsets of these triangles. If

A = {{12},{2,3},{3,4},{4,5},{51}},

observe that every triangle in X'(2) includes exactly two edges in A and hence A = 0. But A is
not a cut.

2.1 Cohomologies as property testing of “simple” functions

Although we defined cohomologies in an abstract setting, it is important to understand the un-
derlying philosophy that it captures. We are interested in a certain class of simple objects, which
in this case was co-boundaries. What we have are tests that all co-boundaries satisfy. A neces-
sary condition for a function to be a co-boundary is that they must become zero when hit with
co-boundary operator again since we know that 60 = 0 (by Theorem 1.6). The question is whether
this is a sufficient condition as well. The cohomology being trivial is just saying that this is indeed
a sufficient condition.

3 Connectivity and co-boundary expansion

Since connectivity of a graph is captured by the 0-th cohomology being trivial, we shall generalize
this notion to complexes and define homological connectivity in the following natural way.

Definition 3.1 (Homological Connectivity). A simplicial complex X is said to be homologically con-
nected if Z; = B; for every i > 0 (or in other words, H; is trivial for all i > 0). O

In other words, a function f € C; is a co-boundary if and only if it becomes zero when hit with
the co-boundary operator again. Thus 6 f = 0 is a necessary and sufficient test for f = dg for some
ge Ci—l-



We now want to generalize the notion of expansion to higher dimensional simplicial complexes.
Let us first revisit the notion of expansion in graphs and try to state things in terms of cohomolo-

gies.

3.1 Revisiting Cheeger

Expanders graphs are captured by what is known as the Cheeger constant.

Definition 3.2 (Cheeger Constant and vertex expansion). For a graph G, define the parameter h(G) to
be _
LECS,S)]]

hG) = S
(G) 2252V min([S], [S])

where ||E(S,S)|| = |E(S,S)| /|E| and ||min(]S|, |S])|| = min(|S|,|S])/|V].

A graph G is said to be an e-vertex-expander if h(G) > e. O

Let us try to write this in terms of notation from cohomologies so that we can generalize it to higher
dimensional simplicial complexes. The Cheeger constant is a minimum over sets of vertices that
are neither empty nor full. If we were to think of such a subset S as a function fs on vertices,
then we are essentially excluding the constant functions. Note that the constant functions were
precisely By, the co-boundaries at level 0. Hence, we can think of the minimum as being over all
functions fs € Cp \ By.

Let us now focus on the numerator. For a set S C V, can we express |E(S, S)| in the language
of cohomologies? Indeed we can. This is precisely the hamming weight of §S, that is the number
of edge (1,v) € E such that (65)({u,v}) = 1. Therefore, ||E(S, S)|| is the normalized weight of 6S
defined as

_ Hoeex@ : (@6S)() =1} _ <
ls| = ) — |EGs9)

Now for the denominator. How can min(|S|, |S|) be expressed in the language of cohomolo-
gies? This is precisely the distance of the function fs from By, the constant functions. Normalizing

it again, we have

dist(fs, By) = ?éiBr}‘{Ue X(0) : fs(o) =g(0)}
= min(|S|,|S])
) dist(fs, By)
|dist(fs, Bo)|| AT



Therefore, the expression for /(G) can be rewritten as

: 165l
h(G) = min  —— .
T st B
In other words, G is an e-vertex-expander if the normalized weight of d fs is proportionally large
compared to the distance of fs from By. This expression is now in a form that can certainly be

lifted to higher dimensional simplicial complexes as well.

Definition 3.3 (Co-boundary expanders). Let X" be a simplicial complex. We shall say that X is an
e-coboundary expander if for all i > 0, we have

e e min lof .

LN
In the case of connectivity, we said that a function f is a co-boundary if and only if 5f = 0.
Co-boundary expansion is a robust version of this statement where we are saying that if f is far
from being a co-boundary, then Jf is far from zero.
For example, consider a 2-dimensional simplicial complex that is an e-coboundary expander.
Then this implies that if we have a subset A of edges such that we need to change a-fraction of the
total number of edges to transform A to a cut, then there must be an ea-fraction of all triangles in

X (2) that involve and odd number of edges from A.

What are some explicit simplicial complexes that are co-boundary expanders? Certainly the
first complex to try is Ay, the complete d-dimensional simplicial complex that involves all possible
subsets of size at most d + 1 over a vertex set. Indeed, it is known that A; is a 1-coboundary
expander. The proof is not hard, apparently but I don’t yet know how to prove it.

Theorem 3.4 (Gromov). Forany d > 0, Ay is a 1-coboundary expander.

What about other examples? Are there low-degree co-boundary expanders? We do not have
explicit families of bounded degree co-boundary expanders yet! But we do have some candidates
of bounded degree simplicial complexes that are conjectured to be co-boundary expanders. These
are the Ramanujan Complexes (which will be dealt with in a different exposition).
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