GCD in nearly linear time

Ramprasad Saptharishi

August 25, 2025

Abstract

This is an exposition of the deterministic near-linear time algorithm for polynomials GCD
of Schonhage.

Notation. For a polynomial f(x), we will use | f| to denote its degree.

1 Extended Euclid’s Algorithm

Given a pair of polynomials f,g (with |f| > |g|) the Extended Euclid’s algorithm provides a
sequence of quotients and remainders. We will use the following notation throughout.

ro := f,
ry = g,

Foralli > 1, riy1:=ri_1—q;.

We also have the corresponding Bézout coefficients (u;, v;) that for all i > 0 satisfy u; f + v;g = 1;.

These also satisfy a similar relation:

(uo,v9) := (1,0),

(ug,v1) :=(0,1),
Foralli > 1, wujy1 = ui_1 —qiu,,
Vit1 = Vi1 — {i0;-

We will refer to the sequence (rg, 71,72, ...) as the remainder sequence, (41,42, - . .) as the quotient
sequence and ((uo,vo), (u1,v1),...) as the Bézout coefficient sequence.

Base version: (2025-08-25 11:32:08 +0530) , 7280eef

1.1 Expressing as matrices

Each step of Extended Euclid’s algorithm essentially replaces a pair of polynomials (r;_1, 7;) with

(ri,ri—1 — g;r;). This can be expressed conveniently in this matrix form:

MR

Extending the above, we get the following.

Lemma 1.1 (Extended Euclid in matrix form). For all i > 1, we have

SO Y e]

Consequently, for all i > 1, we have

u; Ui . 1 1
Uit1 Uil 1 —q 1 —m

Observation 1.2 (Degrees of polynomials in the sequences). The remainder, quotient and Bézout
coefficient sequence satisfy the following:

1. The degrees of r; are strictly decreasing.
2. Foreachi > 1, |q;| = |ri—1| — |ril-

3. Foreach i > 2, |ui| = |q2] + -+ gica] = |1l = rial and [oi] = |gs] + -+ lgia| =

ro| — [ri1]

Proof. The first two items are immediate from the definition. The third item follows from inspect-

ing the matrix form in Lemma 1.1. O

2 GCD in near-linear time

The near-linear time algorithm for GCD really uses two key insights

Working with quotient sequences instead of remainder sequences: It is easy to construct sim-
ple examples of degree < n polynomials' f, ¢ such that |ro| + |r1]| + - - + |rr41] = Q(n?) where
r0,...,Tt41 is the degree sequence. Thus, any algorithm that computes the complete sequence of
remainders will inevitably take Q)(n?) time.

On the other hand, |g1]| + |92 + - - - |9¢| = |f| — |re41] = O(n). Thus, it is at least plausible to
compute the complete quotient sequence in near linear time.

IContinuants: fy = 1, fi = x, fiy1 = xf; + f;_q foralli > 1

2

Quotients are mostly determined by higher order parts: Suppose f and g are two polynomials
with |f| = nand |g| = n —d, then it turns out that the quotient of f and g is completely determined
by the top d terms of f and g. This idea can be extended further to say that the first few terms of
the quotient sequence is determined by the top few coefficients of f and g. This is formalised in

the following lemma.

Lemma 2.1 (Quotient sequence of polynomials with large ‘prefix’). Suppose f, g are two polynomials
with | f| > |g|, and suppose there exists polynomials W, f, §, e 7, eg such that

f=W-f+e
§=W-g+e

eg‘.

Suppose {G1,dy, ...} and {fo,#1,...} are the quotient and remainder sequence for f and §. Let t > 1
be the first index satisfying |f441| < ‘f‘ /2.

Then, the first t terms of the quotient sequence of f and g is also {41, ...,4:}. Furthermore, if ro =

and assume that |W| > |es

4

f,r1 =g, 12, ...is the remainder sequence of f and g, then |ri11| < |W| + ’f’ /2.

Although the above lemma is more general, it would be convenient to just think of W = x* for
an appropriate k and that’s how we would actually end up using the lemma.

Proof. Define rg = f,r1 = g and r;41 = ri_1 — {;r; be the purported remainder sequence of f and
g assuming that {4, } is indeed the quotient sequence. We will show that this is the right quotient
sequence by exhibiting that the degrees of r; are strictly decreasing.

Let {(#;,0;) : i € {0,...,t}} be the Bézout coefficients associated with the quotient sequence.

Then for any i € [t],

ri =uif +v;g
=W - (0if +0;8) + flies + ieg
= W'?i+ (ﬁi8f+ﬁi€g).

Since i < t, we have

’ﬁi'ef+ﬁi'eg| < max(’ﬁief , ﬁieg‘)
< max (4], 9;|) + max (|eg|, |eg])
= (‘f‘ - \ri,1\> + max (|ef|, |eg|) (by Observation 1.2)
<‘f‘ /2 +max (|ef|, |eg]) \ri_1\>|rt]2‘f‘ /2
< |7i] + max (|ef], |eg]) ri|l > | > ‘f‘ /2

< [fil + W] = W7

Therefore the degree of r; is in fact the degree of W - 7;. Since #; have monotonically decreasing
degrees, so must be the degree of r;. This shows that

o] > - > [riea| > 1] > W] + ‘f‘ /2

which implies that the first 41, ..., 4;—1 are the first (— 1) terms of the quotient sequence of f, .

For the last term,

re1 = W Prg + (i1 - ef + e - €g)

= |rp1]| < max (|W] + [P,

Qi1 -ef +0pp - egl)
Since |P¢41] < ’f‘ /2, and max(|d¢ 11|, [0e41]) = |Op41] = ’f’ — |l < ’f’ /2, we have
real < W[+ || /2 < I

This implies that next term of the quotient sequence of f and g is indeed §;. O

3 The HalfGCD algorithm

The following subroutine for will take us “half-way” through the Extended Euclid Algorithm.
Algorithm 1: Hal£GCD
Input: f(x), g(x): two polynomials with n = deg(f(x)) > deg(g(x))

Output: The initial prefix of the quotient sequence gy, ..., g where r; is the first
remainder with |r;1| <n/2
1 if |g| < n/2 then
2 ‘ return empty sequence
3 end
Write f,gas f = x™ - f +efand g = x™ - § + ¢, with m = n/2, and |es

'Sy

eg| < m.

7

5 Recursively compute Hal£GCD(f,$) = (q1, ..., qa)-

=2}

1 1
Compute the matrix M = [1] e [1] .

3

!
Compute f’, ¢’ defined as [,] =M [f . (Note that |g’| < 3n/4, but no bound on |f’|)
8 8

8 Compute the quotient and remainder for f’ divided by ¢’ to get f' = ¢’ - g1 + 1
9 Setk = n/4 and write ¢, 1 as ¢’ = x*g + ¢ and I = x*Ti + ¢},
10 Compute HalfGCD(&, 1) = (qas2, ..., qp)-

11 return (qq,...,qp).

Running time bound: Using standard near-linear time polynomial multiplication subroutines,
it is easy to see that Line 4, Line 7, Line 8, Line 9 can all be performed in deterministic O(n) time.
Line 6 can be computed via a balanced-tree-like multiplication in O(|g1| + - - - + |g4]) = O(n) time.

The remaining steps are the recursive calls in Line 5 and Line 10. The polynomials f ,$inLine 5
both have degree at most 1/2. The polynomials ¢,/ in Line 10 have degree at most |g'| — (1n/4) <
n/2 since |¢’| < 3n/4. Therefore, both these steps are recursive calls with input polynomials of
half the degree. Thus, if T(n) denotes the time complexity of the above algorithm when run in

polynomials f, g satisfying n = | f| > |g], then
T(n) =2-T(n/2)+O(n) = T(n) =O(n).

Proof of correctness: By Lemma 2.1, the quotient sequence obtained in Line 5 is the first few
terms of the quotient sequence of f and g. Therefore, if rp = f,7; = g,12,... was the remainder
sequence of f and g, then we have that r, = ' and r,11 = ¢’ with |¢/| < m + ‘f‘ /2 < 3n/4.
Thus by Line 7, we have jumped to until the a-th term in the remainder sequence. Clearly, the
next quotient in the sequence is g,41 computed in Line 8. Again by Lemma 2.1, we have that
(Gat2,--.,qp) are the first few terms of the quotient sequence of ¢’, 1’ with the last remainder
having degree less than k + |§| /2 < (n/4) + (n/4) = n/2. Therefore (qi,...,qp) is indeed the
initial prefix of the quotient sequence of f and g until the remainder has degree smaller than n /2.

3.1 The final gcd algorithm

Algorithm 2: GCD
Input: f(x), g(x): two polynomials with n = deg(f(x)) > deg(g(x))

Output: The entire quotient sequence, and the gcd of f and ¢
1 Compute HalfGCD(f, Q) = (41, .-, qr)-
2 Compute the matrix product

Mg = L _1%] L _1q1]

f

. (At this point, [¢’| < |f] /2 but no bound on |f’|.)

(3]

!
Compute [f /] +— Mg
8

4 Run one step of Euclidian division to write f = ¢'q + I’
5 Compute Q',d = GCD(g',1'). Set Q = (41, -..,4a,9) + Q' (concatenating lists).
6 return Q,d

It can be easily seen that the time complexity of the above algorithm can be computed as

Teen (1) = Tharscep + O(n) + Taep(n/2)
= O(n).

4 Other applications

The intermediate terms of the Extended Euclid Algorithm have other applications as well. Recall

that for any i > 1, we have
uif +vig < rj

and we have that |u;| = |g| — |ri_1| < |g] — |ri| and |vi| = |f]| — |ri=1] < |f] — |ri|]- The following

lemma essentially provides a “converse” for any such equation.

Lemma 4.1. Suppose f,g,u,v,r are polynomials with |f| > |g| and satisfy u - f +v-g = r and |u| +
|r| < |g|- If r+ is the first element of the remainder sequence of f and g with |r¢| < |r| and uy, v; are the
corresponding Bézout coefficients, then there is some nonzero polynomial « such that v = a -1, U = « - Uy

and v =« - v

In other words, any equation of the form uf + vg = r that satisfy the degree constraints must
essentially be one of the Bézout equations possibly scaled by a nonzero polynomial overall.

Proof. Consider the two equations:

r=u-f+v-g
Tt:Mt'f+Ut'g.

Eliminating f from the above two equations yields
reup—ri-u=g-(up-v—u-v)=0mod g

Note that |r| + |u¢| = |r| +|g| — |ri—1| < |g| since |r;—1| > ||, and similarly |r¢| + |u| < |r| + |u| <
|g|. Therefore, the degree of r - uy — r - u is less than the degree of g. This forces ru; = r;u and
hence u; - v = u - v;. However, since ged (1, v;) = 1, it must be that u; divides u and v; divides v
with the ratios being the same. Hence, there is some nonzero polynomial « such that u = u; - «,

v=«-viandr =« - 1. O

The following is a slight variant of the above lemma (with basicall the same proof).

Lemma 4.2. Suppose f,g,u,v,r are polynomials with |f| > |g| and satisfy u - f + v - g = r. Suppose we
additionally also have a parameter s € IN such that |r| < s and |u| +s < |g].

If 1y is the first element of the remainder sequence of f and g with |ry| < s and u;,v; are the corre-
sponding Bézout coefficients, then there is some nonzero polynomial a such that r = a -1y, u = a - uy and

V=0-0 O

4.1 Decoding Reed-Solomon codes

A cool corollary of the above lemma is the following near-linear time decoding algorithm for
Reed-Solomon codes (due to Shuhong Gao). Let us assume that we are dealing with message
polynomials m(x) of degree at most k, and are evaluating on points «;,...,a,. Suppose we are
given a received word (B, ..., Bx) that is within distance less than (n — k) /2.

Let f(x) be the unique polynomial of degree at most n — 1 such that f(«;) = ; for all i € [n]
and let g(x) = (x —az) - (x — a,) which we have access to. Let E(x) = [Tim(,)2p (¥ — i),
the error locator polynomial (which we do not have access to). Then note that E(x) - f(x) =

E(x)-m(x) mod g(x). Therefore, there is some polynomial ¢(x) such that

E(x) - f(x) +e(x) - g(x) = E(x) - m(x).

Note that |[E| < (n —k)/2and |E-m| < (n —k)/2+k = (n+ k) /2. Thus, the above equation is of
the form in Lemma 4.2 with E(x) playing the role of u# and E(x) - m(x) playing the role of r, and
(n + k) /2 playing the role of s. Thus, the above equation must be a scaling of a Bézout equation

for the polynomials f(x) and g(x). This yields the following algorithm.

1. Compute the polynomial f(x) such that |f| < n—1 and f(a;) = B;. Compute g(x) =

(x—aq) - (x —ay).

2. Using the quotient sequence, compute the first ¢t such that u;f + v, = r with || < (n+
k) /2.

3. Return 7;/u; as the message polynomial.

	Extended Euclid's Algorithm
	Expressing as matrices

	GCD in near-linear time
	The HalfGCD algorithm
	The final gcd algorithm

	Other applications
	Decoding Reed-Solomon codes

