
GCD in nearly linear time

Ramprasad Saptharishi

August 25, 2025

Abstract

This is an exposition of the deterministic near-linear time algorithm for polynomials GCD
of Schönhage.

Notation. For a polynomial f (x), we will use | f | to denote its degree.

1 Extended Euclid’s Algorithm

Given a pair of polynomials f , g (with | f | > |g|) the Extended Euclid’s algorithm provides a
sequence of quotients and remainders. We will use the following notation throughout.

r0 := f ,

r1 := g,

For all i ≥ 1, ri+1 := ri−1 − qiri.

We also have the corresponding Bézout coefficients (ui, vi) that for all i ≥ 0 satisfy ui f + vig = ri.
These also satisfy a similar relation:

(u0, v0) := (1, 0),

(u1, v1) := (0, 1),

For all i ≥ 1, ui+1 = ui−1 − qiui,

vi+1 = vi−1 − qivi.

We will refer to the sequence (r0, r1, r2, . . .) as the remainder sequence, (q1, q2, . . .) as the quotient
sequence and ((u0, v0), (u1, v1), . . .) as the Bézout coefficient sequence.

Base version: (2025-08-25 11:32:08 +0530) , 7280eef

1

1.1 Expressing as matrices

Each step of Extended Euclid’s algorithm essentially replaces a pair of polynomials (ri−1, ri) with
(ri, ri−1 − qiri). This can be expressed conveniently in this matrix form:[

ri

ri+1

]
=

[
1

1 −qi

] [
ri−1

ri

]

Extending the above, we get the following.

Lemma 1.1 (Extended Euclid in matrix form). For all i ≥ 1, we have[
ri

ri+1

]
=

[
1

1 −qi

]
· · ·

[
1

1 −q1

] [
r0

r1

]
.

Consequently, for all i ≥ 1, we have[
ui vi

ui+1 vi+1

]
=

[
1

1 −qi

]
· · ·

[
1

1 −q1

]

Observation 1.2 (Degrees of polynomials in the sequences). The remainder, quotient and Bézout
coefficient sequence satisfy the following:

1. The degrees of ri are strictly decreasing.

2. For each i ≥ 1, |qi| = |ri−1| − |ri|.

3. For each i ≥ 2, |ui| = |q2| + · · · + |qi−1| = |r1| − |ri−1| and |vi| = |q1| + · · · + |qi−1| =
|r0| − |ri−1|

Proof. The first two items are immediate from the definition. The third item follows from inspect-
ing the matrix form in Lemma 1.1.

2 GCD in near-linear time

The near-linear time algorithm for GCD really uses two key insights

Working with quotient sequences instead of remainder sequences: It is easy to construct sim-
ple examples of degree ≤ n polynomials1 f , g such that |r0|+ |r1|+ · · ·+ |rt+1| = Ω(n2) where
r0, . . . , rt+1 is the degree sequence. Thus, any algorithm that computes the complete sequence of
remainders will inevitably take Ω(n2) time.

On the other hand, |q1|+ |q2|+ · · · |qt| = | f | − |rt+1| = O(n). Thus, it is at least plausible to
compute the complete quotient sequence in near linear time.

1Continuants: f0 = 1, f1 = x, fi+1 = x fi + fi−1 for all i ≥ 1

2

Quotients are mostly determined by higher order parts: Suppose f and g are two polynomials
with | f | = n and |g| = n− d, then it turns out that the quotient of f and g is completely determined
by the top d terms of f and g. This idea can be extended further to say that the first few terms of
the quotient sequence is determined by the top few coefficients of f and g. This is formalised in
the following lemma.

Lemma 2.1 (Quotient sequence of polynomials with large ‘prefix’). Suppose f , g are two polynomials
with | f | > |g|, and suppose there exists polynomials W, f̂ , ĝ, e f , eg such that

f = W · f̂ + e f

g = W · ĝ + eg

and assume that |W| >
∣∣e f

∣∣ ,
∣∣eg

∣∣.
Suppose {q̂1, q̂2, . . .} and {r̂0, r̂1, . . .} are the quotient and remainder sequence for f̂ and ĝ. Let t ≥ 1

be the first index satisfying |r̂t+1| <
∣∣∣ f̂
∣∣∣ /2.

Then, the first t terms of the quotient sequence of f and g is also {q̂1, . . . , q̂t}. Furthermore, if r0 =

f , r1 = g, r2, . . . is the remainder sequence of f and g, then |rt+1| < |W|+
∣∣∣ f̂
∣∣∣ /2.

Although the above lemma is more general, it would be convenient to just think of W = xk for
an appropriate k and that’s how we would actually end up using the lemma.

Proof. Define r0 = f , r1 = g and ri+1 = ri−1 − q̂iri be the purported remainder sequence of f and
g assuming that {q̂∗} is indeed the quotient sequence. We will show that this is the right quotient
sequence by exhibiting that the degrees of ri are strictly decreasing.

Let {(ûi, v̂i) : i ∈ {0, . . . , t}} be the Bézout coefficients associated with the quotient sequence.
Then for any i ∈ [t],

ri = ui f + vig

= W · (ûi f̂ + v̂i ĝ) + ûie f + v̂ieg

= W · r̂i + (ûie f + v̂ieg).

Since i ≤ t, we have

∣∣ûi · e f + v̂i · eg
∣∣ ≤ max

(∣∣ûie f
∣∣ ,
∣∣v̂ieg

∣∣)
≤ max (|ûi| , |v̂i|) + max

(∣∣e f
∣∣ ,
∣∣eg

∣∣)
=

(∣∣∣ f̂
∣∣∣− |ri−1|

)
+ max

(∣∣e f
∣∣ ,
∣∣eg

∣∣) (by Observation 1.2)

<
∣∣∣ f̂
∣∣∣ /2 + max

(∣∣e f
∣∣ ,
∣∣eg

∣∣) ∵ |ri−1| > |rt| ≥
∣∣∣ f̂
∣∣∣ /2

≤ |r̂i|+ max
(∣∣e f

∣∣ ,
∣∣eg

∣∣) ∵ |ri| ≥ |rt| ≥
∣∣∣ f̂
∣∣∣ /2

≤ |r̂i|+ |W| = |W · r̂i| .

3

Therefore the degree of ri is in fact the degree of W · r̂i. Since r̂i have monotonically decreasing
degrees, so must be the degree of ri. This shows that

|r0| > · · · > |rt−1| > |rt| ≥ |W|+
∣∣∣ f̂
∣∣∣ /2

which implies that the first q̂1, . . . , q̂t−1 are the first (t− 1) terms of the quotient sequence of f , g.
For the last term,

rt+1 = W · r̂t+1 + (ût+1 · e f + v̂t+1 · eg)

=⇒ |rt+1| ≤ max
(
|W|+ |r̂t+1| ,

∣∣ût+1 · e f + v̂t+1 · eg
∣∣)

Since |r̂t+1| <
∣∣∣ f̂
∣∣∣ /2, and max(|ût+1| , |v̂t+1|) = |v̂t+1| =

∣∣∣ f̂
∣∣∣− |rt| <

∣∣∣ f̂
∣∣∣ /2, we have

|rt+1| < |W|+
∣∣∣ f̂
∣∣∣ /2 ≤ |rt| .

This implies that next term of the quotient sequence of f and g is indeed q̂t.

3 The HalfGCD algorithm

The following subroutine for will take us “half-way” through the Extended Euclid Algorithm.

Algorithm 1: HalfGCD
Input: f (x), g(x): two polynomials with n = deg(f (x)) > deg(g(x))
Output: The initial prefix of the quotient sequence q1, . . . , qt where rt+1 is the first

remainder with |rt+1| < n/2
1 if |g| < n/2 then
2 return empty sequence
3 end
4 Write f , g as f = xm · f̂ + e f and g = xm · ĝ + eg with m = n/2, and

∣∣e f
∣∣ ,
∣∣eg

∣∣ < m.
5 Recursively compute HalfGCD(f̂ , ĝ) = (q1, . . . , qa).

6 Compute the matrix M =

[
1

1 −qa

]
· · ·

[
1

1 −q1

]
.

7 Compute f ′, g′ defined as

[
f ′

g′

]
:= M

[
f
g

]
. (Note that |g′| < 3n/4, but no bound on | f ′|)

8 Compute the quotient and remainder for f ′ divided by g′ to get f ′ = g′ · qa+1 + h′

9 Set k = n/4 and write g′, h′ as g′ = xk g̃ + e′g and h′ = xk h̃ + e′h.
10 Compute HalfGCD(g̃, h̃) = (qa+2, . . . , qb).
11 return (q1, . . . , qb).

4

Running time bound: Using standard near-linear time polynomial multiplication subroutines,
it is easy to see that Line 4, Line 7, Line 8, Line 9 can all be performed in deterministic Õ(n) time.
Line 6 can be computed via a balanced-tree-like multiplication in Õ(|q1|+ · · ·+ |qa|) = Õ(n) time.

The remaining steps are the recursive calls in Line 5 and Line 10. The polynomials f̂ , ĝ in Line 5
both have degree at most n/2. The polynomials g̃, h̃ in Line 10 have degree at most |g′| − (n/4) <
n/2 since |g′| < 3n/4. Therefore, both these steps are recursive calls with input polynomials of
half the degree. Thus, if T(n) denotes the time complexity of the above algorithm when run in
polynomials f , g satisfying n = | f | > |g|, then

T(n) = 2 · T(n/2) + Õ(n) =⇒ T(n) = Õ(n).

Proof of correctness: By Lemma 2.1, the quotient sequence obtained in Line 5 is the first few
terms of the quotient sequence of f and g. Therefore, if r0 = f , r1 = g, r2, . . . was the remainder
sequence of f and g, then we have that ra = f ′ and ra+1 = g′ with |g′| < m +

∣∣∣ f̂
∣∣∣ /2 ≤ 3n/4.

Thus by Line 7, we have jumped to until the a-th term in the remainder sequence. Clearly, the
next quotient in the sequence is qa+1 computed in Line 8. Again by Lemma 2.1, we have that
(qa+2, . . . , qb) are the first few terms of the quotient sequence of g′, h′ with the last remainder
having degree less than k + |g̃| /2 ≤ (n/4) + (n/4) = n/2. Therefore (q1, . . . , qb) is indeed the
initial prefix of the quotient sequence of f and g until the remainder has degree smaller than n/2.

3.1 The final gcd algorithm

Algorithm 2: GCD
Input: f (x), g(x): two polynomials with n = deg(f (x)) > deg(g(x))
Output: The entire quotient sequence, and the gcd of f and g

1 Compute HalfGCD(f , g) = (q1, . . . , qr).
2 Compute the matrix product

MQ =

[
1

1 −qa

]
· · ·

[
1

1 −q1

]

3 Compute

[
f ′

g′

]
← MQ

[
f
g

]
. (At this point, |g′| < | f | /2 but no bound on | f ′|.)

4 Run one step of Euclidian division to write f ′ = g′q + h′.
5 Compute Q′, d = GCD(g′, h′). Set Q = (q1, . . . , qa, q) + Q′ (concatenating lists).
6 return Q, d

It can be easily seen that the time complexity of the above algorithm can be computed as

TGCD(n) = THalfGCD + Õ(n) + TGCD(n/2)

= Õ(n).

5

4 Other applications

The intermediate terms of the Extended Euclid Algorithm have other applications as well. Recall
that for any i ≥ 1, we have

ui f + vig ≤ ri

and we have that |ui| = |g| − |ri−1| < |g| − |ri| and |vi| = | f | − |ri−1| < | f | − |ri|. The following
lemma essentially provides a “converse” for any such equation.

Lemma 4.1. Suppose f , g, u, v, r are polynomials with | f | > |g| and satisfy u · f + v · g = r and |u|+
|r| < |g|. If rt is the first element of the remainder sequence of f and g with |rt| ≤ |r| and ut, vt are the
corresponding Bézout coefficients, then there is some nonzero polynomial α such that r = α · rt, u = α · ut

and v = α · vt.

In other words, any equation of the form u f + vg = r that satisfy the degree constraints must
essentially be one of the Bézout equations possibly scaled by a nonzero polynomial overall.

Proof. Consider the two equations:

r = u · f + v · g,

rt = ut · f + vt · g.

Eliminating f from the above two equations yields

r · ut − rt · u = g · (ut · v− u · vt) = 0 mod g

Note that |r|+ |ut| = |r|+ |g| − |rt−1| < |g| since |rt−1| > |r|, and similarly |rt|+ |u| ≤ |r|+ |u| <
|g|. Therefore, the degree of r · ut − rt · u is less than the degree of g. This forces rut = rtu and
hence ut · v = u · vt. However, since gcd(ut, vt) = 1, it must be that ut divides u and vt divides v
with the ratios being the same. Hence, there is some nonzero polynomial α such that u = ut · α,
v = α · vt and r = α · rt.

The following is a slight variant of the above lemma (with basicall the same proof).

Lemma 4.2. Suppose f , g, u, v, r are polynomials with | f | > |g| and satisfy u · f + v · g = r. Suppose we
additionally also have a parameter s ∈N such that |r| < s and |u|+ s ≤ |g|.

If rt is the first element of the remainder sequence of f and g with |rt| < s and ut, vt are the corre-
sponding Bézout coefficients, then there is some nonzero polynomial α such that r = α · rt, u = α · ut and
v = α · vt.

6

4.1 Decoding Reed-Solomon codes

A cool corollary of the above lemma is the following near-linear time decoding algorithm for
Reed-Solomon codes (due to Shuhong Gao). Let us assume that we are dealing with message
polynomials m(x) of degree at most k, and are evaluating on points α1, . . . , αn. Suppose we are
given a received word (β1, . . . , βn) that is within distance less than (n− k)/2.

Let f (x) be the unique polynomial of degree at most n− 1 such that f (αi) = βi for all i ∈ [n]
and let g(x) = (x − α1) · · · (x − αn) which we have access to. Let E(x) = ∏i:m(αi) ̸=βi

(x − αi),
the error locator polynomial (which we do not have access to). Then note that E(x) · f (x) =

E(x) ·m(x) mod g(x). Therefore, there is some polynomial c(x) such that

E(x) · f (x) + c(x) · g(x) = E(x) ·m(x).

Note that |E| < (n− k)/2 and |E ·m| < (n− k)/2 + k = (n + k)/2. Thus, the above equation is of
the form in Lemma 4.2 with E(x) playing the role of u and E(x) ·m(x) playing the role of r, and
(n + k)/2 playing the role of s. Thus, the above equation must be a scaling of a Bézout equation
for the polynomials f (x) and g(x). This yields the following algorithm.

1. Compute the polynomial f (x) such that | f | ≤ n − 1 and f (αi) = βi. Compute g(x) =

(x− α1) · · · (x− αn).

2. Using the quotient sequence, compute the first t such that ut f + vtg = rt with |rt| < (n +

k)/2.

3. Return rt/ut as the message polynomial.

7

	Extended Euclid's Algorithm
	Expressing as matrices

	GCD in near-linear time
	The HalfGCD algorithm
	The final gcd algorithm

	Other applications
	Decoding Reed-Solomon codes

