
A selection of lower bounds for
arithmetic circuits

Neeraj Kayal and Ramprasad Saptharishi

To Somenath Biswas, on his 60th Birthday

Mathematics Subject Classification (2010). Primary 68Q25, 68W30; Sec-
ondary 12E05.

Keywords. arithmetic circuits, lower bounds, determinant, permanent.

It is convenient to have a measure of the amount of
work involved in a computing process, even though
it be a very crude one ... We might, for instance,
count the number of additions, subtractions, multi-
plications, divisions, recordings of numbers,...

from Rounding-off errors in matrix processes,

Alan M. Turing, 1948.

1. Introduction

Polynomials originated in classical mathematical studies concerning geom-
etry and solutions to systems of equations. They feature in many classical
results in algebra, number theory and geometry - e.g. in Galois and Abel’s
resolution of the solvability via radicals of a quintic, Lagrange’s theorem on
expressing every natural number as a sum of four squares and the impos-
sibility of trisecting an angle (using ruler and compass). In modern times,
computer scientists began to investigate as to what functions can be (ef-
ficiently) computed. Polynomials being a natural class of functions, one is
naturally lead to the following question:

What is the optimum way to compute a given (family of) poly-
nomial(s)?

Now the most natural way to compute a polynomial f(x1, x2, . . . , xn) over
a field F is to start with the input variables x1, x2, . . . , xn and then apply a



2 Kayal and Saptharishi

sequence of basic operations such as additions, subtractions and multiplica-
tions1 in order to obtain the desired polynomial f . Such a computation is
called a straight line program. We often represent such a straight-line pro-
gram graphically as an arithmetic circuit - wherein the overall computation
corresponds to a directed acylic graph whose source nodes are labelled with
the input variables {x1, x2, . . . , xn} and the internal nodes are labelled with
either + or × (each internal node corresponds to one computational step in
the straight-line program). We typically allow arbitrary constants from the
underlying field on the incoming edges of a + gate so that a + gate can in
fact compute an arbitrary F-linear combination of its inputs. The complexity
of the computation corresponds to the number of operations, also called the
size of the corresponding arithmetic circuit. With arithmetic circuits being
the relevant model, the informal question posed above can be formalized by
defining the optimal way to compute a given polyomial as the smallest arith-
metic circuit in terms of the size that computes it. While different aspects
of polynomials have been studied extensively in various areas of mathemat-
ics, what is unique to computer science is the endeavour to prove upper and
lower bounds on the size of arithmetic circuits computing a given (family of)
polynomials. Here we give a biased survey of this area, focusing mostly on
lower bounds. Note that there are already two excellent surveys of this area
- one by Avi Wigderson [Wig02] and the other by Amir Shpilka and Amir
Yehudayoff [SY10]2. Our intention in writing the survey is the underlying
hope that revisiting and assimilating the known results pertaining to circuit
lower bounds will in turn help us make progress on this beautiful problem.
Consequently we mostly present here those results which we for some rea-
son felt we did not understand comprehensively enough. We conclude with
some recent lower bound results for homogeneous bounded depth formulas.
Some notable lower bound results that we are unable to present here due to
space and time constraints are as follows. A quadratic lower bound for depth
three circuits by Shpilka and Wigderson [SW01], for bounded occur bounded
depth formulas by Agrawal, Saha, Saptharishi and Saxena [ASSS12] and the
n1+Ω(1/r) lower bound for circuits of depth r by Raz [Raz10].

Overview. The state of affairs in arithmetic complexity is such that despite
a lot of attention we still have only modest lower bounds for general circuits
and formulas. In order to make progress, recent work has focused on restricted
subclasses. We first present the best known lower bound for general circuits
due to Baur and Strassen [BS83], and a lower bound for formulas due to
Kalorkoti [Kal85]. The subsequent lower bounds that we present follow a
common roadmap and we articulate this in Section 4, and present some simple

1 One can also allow more arithmetic operations such as division and square roots. It turns
out however that one can efficiently simulate any circuit with divisions and square roots by
another circuit without these operations while incurring only an polynomial factor increase

in size.
2 A more specialized survey by Chen, Kayal and Wigderson [CKW11] focuses on the appli-
cations of partial derivatives in understanding the structure and complexity of polynomials.



A selection of lower bounds for arithmetic circuits 3

lower bounds to help the reader gain familiarity. We then present (a slight
generalization of) an exponential lower bound for monotone circuits due to
Jerrum and Snir [JS82]. Moving on to more restricted (but still nontrivial and
interesting) models, we first present an exponential lower bound for depth
three circuits over finite fields due to Grigoriev and Karpinski [GK98] and
multilinear formulas. We conclude with some recent progress on lower bounds
for homogeneous depth four circuits.

Remark. Throughout the article, we shall use Detn and Permn to refer to the
determinant and permanent respectively of a symbolic n×n matrix ((xij))1≤i,j≤n.

2. Existential lower bounds

Before we embark on our quest to prove lower bounds for interesting families
of polynomials, it is natural to ask as to what bounds one can hope to achieve.
For a multivariate polynomial f(x) ∈ F[x], denote by S(f) the size of the
smallest arithmetic circuit computing f .

Theorem 1. [Folklore.] For “most” polynomials f(x) ∈ F[x] of degree d on n
variables we have

S(f) ≥ Ω

(√(
n+ d

d

))
.

Sketch of Proof. We prove this here only in the situation where the under-
lying field F is a finite field and refer the reader to another survey ([CKW11],
Chapter 4) for a proof in the general case. So let F = Fq be a finite field.
Any line of a straight line program computing f can be expressed as tak-
ing the product of two Fq-linear combinations of previously computed val-
ues. Hence the total number of straight-line programs of length s is at most

qO(s2). On the other hand there are q(
n+d
d ) polynomials of degree d on n

variables. Hence most n-variate polynomials of degree d require straight-line
programs of length at least (equivalently arithmetic circuits of size at least)

s = Ω

(√(
n+d
d

))
. �

Hrubes and Yehudayoff [HY11] showed that in fact most n-variate polynomi-

als of degree d with zero-one coefficients have complexity at least Ω

(√(
n+d
d

))
.

Now it turns out that this is in fact a lower bound on the number of mul-
tiplications in any circuit computing a random polynomial. Lovett [Lov11]
complements this nicely by giving a matching upper bound. Specifically, it
was shown in [Lov11] that for any polynomial f of degree d on n variables

there exists a circuit computing f having at most

(√(
n+d
d

))
· (nd)O(1) mul-

tiplications.



4 Kayal and Saptharishi

3. Weak lower bounds for general circuits and formulas

Despite several attempts by various researchers to prove lower bounds for
arithmetic circuits or formulas, we only have very mild lower bounds for
general circuits or formulas thus far. In this section, we shall look at the two
modest lower bounds for general circuits and formulas.

3.1. Lower bounds for general circuits

The only super-linear lower bound we currently know for general arithmetic
circuits is the following result of Baur and Strassen [BS83].

Theorem 2 ([BS83]). Any fan-in 2 circuit that computes the polynomial f =

xd+1
1 + · · ·+ xd+1

n has size Ω(n log d).

3.1.1. An exploitable weakness. Each gate of the circuit Φ computes a local
operation on the two children. To formalize this, define a new variable yg for
every gate g ∈ Φ. Further, for every gate g define a quadratic equation Qg as

Qg =

{
yg − (yg1 + yg2) if g = g1 + g2

yg − (yg1 · yg2) if g = g1 · g2.

Further if yo corresponds to the output gate, then the system of equations

{Qg = 0 : g ∈ Φ} ∪ {yo = 1}

completely characterize the computations of Φ that results in an output of 1.
The same can also be extended for multi-output circuits that compute several
polynomials simultaneously. In such cases, the set of equations

{Qg = 0 : g ∈ Φ} ∪ {yoi = 1 : i = 1, . . . , n}

completely characterize computations that result in an output of all ones.
The following classical theorem allows us to bound the number of common
roots to a system of polynomial equations.

Theorem 3 (Bézout’s theorem). Let g1, . . . , gr ∈ F[X] such that deg(gi) = di
such that the number of common roots of g1 = · · · = gr = 0 is finite. Then,
the number of common roots (counted with multiplicities) is bounded by

∏
di.

Thus in particular, if we have a circuit Φ of size s that simultaneously com-
putes

{
xd1, . . . , x

d
n

}
, then we have dn inputs that evaluate to all ones (where

each xi must be a d-th root of unity). Hence, Bézout’s theorem implies that

2s ≥ dn =⇒ s = Ω(d log n).

Observe that
{
xd1, . . . , x

d
n

}
are all first-order derivatives of f = xd+1

1 + · · ·+
xd+1
n (with suitable scaling). A natural question here is the following — if
f can be computed an arithmetic circuit of size s, what is the size required
to compute all first-order partial derivatives of f simultaneously? The näıve
approach of computing each derivative separately results in a circuit of size
O(s · n). Baur and Strassen [BS83] show that we can save a factor of n.



A selection of lower bounds for arithmetic circuits 5

Lemma 4 ([BS83]). Let Φ be an arithmetic circuit of size s and fan-in 2 that
computes a polynomial f ∈ F[X]. Then, there is a multi-output circuit of size
O(s) computing all first order derivatives of f .

Note that this immediately implies that any circuit computing f = xd+1
1 +

· · ·+ xd+1
n requires size Ω(d log n) as claimed by Theorem 2.

3.1.2. Computing all first order derivatives simultaneously. Since we are
working with fan-in 2 circuits, the number of edges is at most twice the
size. Hence let s denote the number of edges in the circuit Φ, and we shall
prove by induction that all first order derivatives of Φ can be computed by
a circuit of size at most 5s. Pick a non-leaf node v in the circuit Φ closest to
the leaves with both its children being variables, and say x1 and x2 are the
variables feeding into v. In other words, v = x1 � x2 where � is either + or
×.

Let Φ′ be the circuit obtained by deleting the two edges feeding into v,
and replacing v by a new variable. Hence, Φ′ computes a polynomial f ′ ∈
F[X ∪ {v}] and has at most (s − 1) edges. By induction on the size, we can
assume that there is a circuit D(Φ′) consisting of at most 5(s− 1) edges that
computes all the first order derivatives of f ′.

Observe that since f ′ |(v=x1�x2)= f(x), we have that

∂f

∂xi
=

(
∂f ′

∂xi

)
v=x1�x2

+

(
∂f ′

∂v

)
v=x1�x2

(
∂(x1 � x2)

∂xi

)
.

Hence, if v = x1 + x2 then

∂f

∂x1
=

(
∂f ′

∂x1

)
v=x1+x2

+

(
∂f ′

∂v

)
v=x1+x2

∂f

∂x2
=

(
∂f ′

∂x2

)
v=x1+x2

+

(
∂f ′

∂v

)
v=x1+x2

∂f

∂xi
=

(
∂f ′

∂xi

)
v=x1+x2

for i > 2.

If v = x1 · x2, then

∂f

∂x1
=

(
∂f ′

∂x1

)
v=x1·x2

+

(
∂f ′

∂v

)
v=x1·x2

· x2

∂f

∂x2
=

(
∂f ′

∂x2

)
v=x1·x2

+

(
∂f ′

∂v

)
v=x1·x2

· x1

∂f

∂xi
=

(
∂f ′

∂xi

)
v=x1·x2

for i > 2.

Hence, by adding at most 5 additional edges to D(Φ′), we can construct D(Φ)
and hence size of D(Φ) is at most 5s. �(Lemma 4)



6 Kayal and Saptharishi

3.2. Lower bounds for formulas

This section would be devoted to the proof of Kalorkoti’s lower bound [Kal85]
for formulas computing Detn, Permn.

Theorem 5 ([Kal85]). Any arithmetic formula computing Permn (or Detn)
requires Ω(n3) size.

The exploitable weakness in this setting is again to use the fact that the
polynomials computed at intermediate gates share many polynomial depen-
dencies.

Definition 6 (Algebraic independence). A set of polynomials {f1, . . . , fm}
is said to be algebraically independent if there is no non-trivial polynomial
H(z1, . . . , zm) such that H(f1, . . . , fm) = 0.

The size of the largest algebraically independent subset of f = {f1, . . . , fm} is
called the transcendence degree (denoted by trdeg(f)).

The proof of Kalorkoti’s theorem proceeds by defining a complexity measure
using the above notion of algebraic independence.

The Measure: For any subset of variables Y ⊆ X, we can write a polynomial
f ∈ F[X] of the form f =

∑s
i=1 fi · mi where mi’s are distinct monomials

in the variables in Y , and fi ∈ F [X \ Y ]. We shall denote by tdY (f) the
transcendence degree of {f1, . . . , fs}
Fix a partition of variables X = X1 t · · · tXr. For any polynomial f ∈ F[X],
define the map Γ[Kal] : F[X]→ Z≥0 as

Γ[Kal](f) =

r∑
i=1

tdXi(f).

The lower bound proceeds in two natural steps:

1. Show that Γ[Kal](f) is small whenever f is computable by a small for-
mula.

2. Show that Γ[Kal](Detn) is large.

3.2.1. Upper bounding Γ[Kal] for a formula.

Lemma 7. Let f be computed by a fan-in two formula Φ of size s. Then for
any partition of variables X = X1 t · · · tXr, we have Γ[Kal](f) = O(s).

Proof. For any node v ∈ Φ, let Leaf(v) denote the leaves of the subtree
rooted at v and let LeafXi(v) denote the leaves of the subtree rooted at v
that are in the part Xi. Since the underlying graph of Φ is a tree, it follows
that the size of Φ is bounded by a twice the number of leaves. For each part
Xi, we shall show that tdXi

(f) = O(|LeafXi
(Φ)|), which would prove the

required bound.



A selection of lower bounds for arithmetic circuits 7

Fix an arbitrary part Y = Xi. Define the following three sets of nodes

V0 = {v ∈ Φ : |LeafY (v)| = 0 and |LeafY (Parent(v))| ≥ 2}
V1 = {v ∈ Φ : |LeafY (v)| = 1 and |LeafY (Parent(v))| ≥ 2}
V2 = {v ∈ Φ : |LeafY (v)| ≥ 2} .

Each node v ∈ V0 computes a polynomial in fv ∈ F[X \ Y ], and we shall
replace the subtree at v by a node computing the polynomial fv. Similarly,

any node v ∈ V1 computes a polynomial of the form f
(0)
v + f

(1)
v yv for some

yv ∈ Y and f
(0)
v , f

(1)
v ∈ F[X \ Y ]. We shall again replace the subtree rooted

at v by a node computing f
(0)
v + f

(1)
v yv.

Hence, the formula Φ now reduces to a smaller formula ΦY with leaves being
the nodes in V0 and V1 (and nodes in V2 are unaffected). We would like to
show that the size of the reduced formula, which is at most twice the number
of its leaves, is O(|LeafY (Φ)|).

Observation 8. |V1| ≤ |LeafY (Φ)|.

Proof. Each node in V1 has a distinct leaf labelled with a variable in Y .
Hence, |V1| is bounded by the number of leaves labelled with a variable in Y .

� (Obs)

This shows that the V1 leaves are not too many. Unfortunately, we cannot
immediately bound the number of V0 leaves, since we could have a long chain
of V2 nodes each with one sibling being a V0 leaf. The following observation
would show how we can eliminate such long chains.

Observation 9. Let u be an arbitrary node, and v be another node in the
subtree rooted at u with LeafY (u) = LeafY (v). Then the polynomial gu
computed at u and the polynomial gv computed at v are related as gu =
f1gv + f2 for some f1, f2 ∈ F[X \ Y ].

Proof. If LeafY (u) = LeafY (v), then every node on the path from u to v
must have a V0 leaf as the other child. The observation follows as all these
nodes are + or × gates. � (Obs)

Using the above observation, we shall remove the need for V0 nodes com-
pletely by augmenting each node u (computing a polynomial gu) in ΦY with

polynomials f
(0)
u , f

(1)
u ∈ F[X \ Y ] to enable them to compute f

(1)
u gu + f

(0)
u .

Let this augmented formula be called Φ̂Y . Using Observation 9, we can now
contract any two nodes u and v with LeafY (u) = LeafY (v), and eliminate
all V0 nodes completely. Since all V2 nodes are internal nodes, the only leaves
of the augmented formula Φ̂Y are in V1. Hence, the size of the augmented
formula Φ̂Y is bounded by 2 |V1|, which is bounded by 2 |LeafY (Φ)| by Ob-
servation 8.

Suppose Φ computes a polynomial f , which can be written as f =
∑t
i=1 fi ·

mi with fi ∈ F[X \ Y ] and mi’s being distinct monomials in Y . Since Φ̂Y



8 Kayal and Saptharishi

also computes f , each fi is a polynomial combination of the polynomials

SY =
{
f

(0)
u , f

(1)
u : u ∈ Φ̂Y

}
. Since Φ̂Y consists of at most 2 |LeafY (Φ)|

augmented nodes, we have that tdY (f) ≤ |SY | ≤ 4 |LeafY (Φ)|. Therefore,

tdY (f) = trdeg {fi : i ∈ [t]} ≤ 4 |LeafY (Φ)|
Hence,

Γ[Kal](Φ) =

r∑
i=1

tdXi(fi) ≤ 4

(
r∑
i=1

|LeafXi |

)
= O(s).

�

3.2.2. Lower bounding Γ[Kal](Detn).

Lemma 10. Let X = X1 t · · · t Xn be the partition as defined by Xt =
{xij : i− j ≡ t mod n}. Then, Γ[Kal](Detn) = Ω(n3).

Proof. By symmetry, it is easy to see that tdXi(Detn) is the same for all i.
Hence, it suffices to show that tdY (Detn) = Ω(n2) for Y = Xn = {x11, . . . , xnn}.
To see this, observe that the determinant consists of the monomials

(
x11...xnn

xiixjj

)
·

xijxji for every i 6= j. Hence, tdY (Detn) ≥ trdeg {xijxji : i 6= j} = Ω(n2).

Therefore, Γ[Kal](Detn) = Ω(n3). �

The proof of Theorem 5 follows from Lemma 7 and Lemma 10.

4. “Natural” proof strategies

The lower bounds presented in Section 3 proceeded by first identifying a
weakness of the model, and exploiting it in an explicit manner. More con-
cretely, Section 3.2 presents a promising strategy that could be adopted to
prove lower bounds for various models of arithmetic circuits. The crux of the
lower bound was the construction of a good map Γ that assigned a number
to every polynomial. The map Γ[Kal] was useful to show a lower bound in the
sense that any f computable by a small formula had small Γ[Kal](f). In fact,
all subsequent lower bounds in arithmetic circuit complexity have more or
less followed a similar template of a “natural proof”. More concretely, all the
subsequent lower bounds we shall see would essentially follow the outlined
plan.

Step 1 (normal forms) For every circuit in the circuit class C of
interest, express the polynomial computed as a small sum of simple
building blocks.

For example, every ΣΠΣ circuit is a small sum of products of linear poly-
nomials which are the building blocks here. In this case, the circuit model
naturally admits such a representation but we shall see other examples with
very different representations as sum of building blocks.

Step 2 (complexity measure) Construct a map Γ : F[x1, . . . , xn]→
Z≥0 that is sub-additive i.e. Γ(f1 + f2) ≤ Γ(f1) + Γ(f2).



A selection of lower bounds for arithmetic circuits 9

In most cases, Γ(f) is the rank of a large matrix whose entries are linear
functions in the coefficients of f . In such cases, we immediately get that Γ is
sub-additive.
The strength of the choice of Γ is determined by the next step.

Step 3 (potential usefulness) Show that if B is a simple building
block, then Γ(B) is small. Further, check if Γ(f) for a random
polynomial f is large (potentially).

This would suggest that if any f with large Γ(f) is to be written as a sum
of B1 + · · · + Bs, then sub-additivity and the fact that Γ(Bi) is small for
each i and Γ(f) is large immediately imply that s must be large. This implies
that the complexity measure Γ does indeed have a potential to prove a lower
bound for the class. The next step is just to replace the random polynomial
by an explicit polynomial.

Step 4 (explicit lower bound) Find an explicit polynomial f for
which Γ(f) is large.

These are usually the steps taken in almost all the known arithmetic circuit
lower bound proofs. The main ingenuity lies in constructing a useful com-
plexity measure, which is really to design Γ so that it is small on the building
blocks.

Of course, there could potentially be lower bound proofs that do not follow
the road-map outlined. For instance, it could be possible that Γ is not small
for a random polynomial, but specifically tailored in a way to make Γ large
for the Permn. Or perhaps Γ need not even be sub-additive and maybe there
is a very different way to argue that all polynomial in the circuit class have
small Γ. However, this has been the road-map for almost all lower bounds so
far (barring very few exceptions). As a warmup, we first present some very
simple applications of the above plan to prove lower bounds for some very
simple subclasses of arithmetic circuits in the next section. We then move on
to more sophisticated proofs of lower bounds for less restricted subclasses of
circuits.

5. Some simple lower bounds

Let us start with the simplest complete3 class of arithmetic circuits – depth-2
circuits or ΣΠ circuits.

5.1. Lower bounds for ΣΠ circuits

Any ΣΠ circuit of size s computes a polynomial f = m1 +· · ·+ms where each
mi is a monomial multiplied by a field constant. Therefore, any polynomial
computed by a small ΣΠ circuit must have a small number of monomials.
Hence, it is obvious that any polynomial that has many monomials require
large ΣΠ circuits.

3in the sense that any polynomial can be computed in this model albeit of large size



10 Kayal and Saptharishi

This can be readily rephrased in the language of the outline described last
section by defining Γ(f) to simply be the number of monomials present in
f . Hence, Γ(f) ≤ s for any f computed by a ΣΠ circuit of size s. Of course,
even a polynomial like f = (x1 + x2 + · · · + xn)n have Γ(f) = nΩ(n) giving
the lower bound.

5.2. Lower bounds for Σ∧Σ circuits

A Σ∧Σ circuit of size s computes a polynomial of the form f = `d11 + · · ·+ `dss
where each `i is a linear polynomial over the n variables.4

Clearly as even a single `d could have exponentially many monomials, the Γ
defined above cannot work in this setting. Nevertheless, we shall try to design
a similar map to ensure that Γ(f) is small whenever f is computable by a
small Σ∧Σ circuit.

In this setting, the building blocks are terms of the form `d. The goal would
be to construct a sub-additive measure Γ such that Γ(`d) is small. Here is the
key observation to guide us towards a good choice of Γ.

Observation 11. Any k-th order partial derivative of `d is a constant multiple
of `d−k.

Hence, if ∂=k(f) denotes the set of k-th order partial derivatives of f , then
the space spanned by ∂=k(`d) has dimension 1. This naturally leads us to
define Γ exploiting this weakness.

Γk(f)
def
= dim

(
∂=k(f)

)
It is straightforward to check that Γk is indeed sub-additive and hence Γk(f) ≤
s whenever f is computable by a Σ∧Σ circuit of size s. For a random polyno-
mial f , we should be expecting Γk(f) to be

(
n+k
k

)
as there is unlikely to be

any linear dependencies among the partial derivatives. Hence, all that needs
to be done is to find an explicit polynomial with large Γk.
If we consider Detn or Permn, then any partial derivative of order k is just an
(n− k)× (n− k) minor. Also, these minors consist of disjoint sets of mono-

mials and hence are linearly independent. Hence, Γk(Detn) =
(
n
k

)2
. Choosing

k = n/2, we immediately get that any Σ∧Σ circuit computing Detn or Permn

must be of size 2Ω(n).

5.3. Low-rank ΣΠΣ

A slight generalization of Σ∧Σ circuits is a rank-r ΣΠΣ circuit that computes
a polynomial of the form

f = T1 + . . . + Ts

where each Ti = `i1 . . . `id is a product of linear polynomials such that
dim {`i1, . . . , `id} ≤ r.

4such circuits are also called diagonal depth-3 circuits in the literature



A selection of lower bounds for arithmetic circuits 11

Thus, Σ∧Σ is a rank-1 ΣΠΣ circuit, and a similar partial-derivative technique
for lower bounds works here as well.
In the setting where r is much smaller than the number of variables n, each
Ti is essentially an r-variate polynomial masquerading as an n-variate poly-
nomial using an affine transformation. In particular, the set of n first order
derivatives of T have rank at most r. This yields the following observation.

Observation 12. Let T = `1 . . . `d with dim {`1, . . . , `d} ≤ r. Then for any k,
we have

Γk(T )
def
= dim

(
∂=k(T )

)
≤

(
r + k

k

)
.

Thus once again by sub-additivity, for any polynomial f computable by a
rank-r ΣΠΣ circuit of size s, we have Γk(f) ≤ s ·

(
r+k
r

)
. Note that a random

polynomial is expected to have Γk(f) close to
(
n+k
k

)
, which could be much

larger for r � n. We already saw that Γk(Detn) =
(
n
k

)2
. This immediately

gives the following lower bound, the proof of which we leave as an exercise
to the interested reader.

Theorem 13. Let r ≤ n2−δ for some constant δ > 0. For k = εnδ, where
ε > 0 is sufficiently small, we have(

n
k

)2(
r+k
k

) = exp
(
Ω(nδ)

)
.

Hence, any rank-r ΣΠΣ circuit computing Detn or Permn must have size
exp

(
Ω(nδ)

)
. �

This technique of using the rank of partial derivatives was introduced by
Nisan and Wigderson [NW97] to prove lower bounds for homogeneous depth-
3 circuits (which also follows as a corollary of Theorem 13). The survey of
Chen, Kayal and Wigderson [CKW11] give a comprehensive exposition of the
power of the partial derivative method.

With these simple examples, we can move on to other lower bounds for various
other more interesting models.

6. Lower bounds for monotone circuits

This section would present a slight generalization of a lower bound by Jerrum
and Snir [JS82]. To motivate our presentation here, let us first assume that
the underlying field is R, the field of real numbers. A monotone circuit over
R is a circuit having +,× gates in which all the field constants are non-
negative real numbers. Such a circuit can compute any polynomial f over R
all of whose coefficients are nonnegative real numbers, such as for example
the permanent. It is then natural to ask whether there are small monotone
circuits over R computing the permanent. Jerrum and Snir [JS82] obtained an
exponential lower bound on the size of monotone circuits over R computing



12 Kayal and Saptharishi

the permanent. Note that this definition of monotone circuits is valid only
over R (actually more generally over ordered fields but not over say finite
fields) and such circuits can only compute polynomials with non-negative
coefficients. Here we will present Jerrum and Snir’s argument in a slightly
more generalized form such that the circuit model makes sense over any
field F and is complete, i.e. can compute any polynomial over F. Let us first
explain the motivation behind the generalized circuit model that we present
here. Observe that in any monotone circuit over R, there is no cancellation
as there are no negative coefficients. Formally, for a node v in our circuits let
us denote by fv the polynomial computed at that node. For a polynomial f
let us denote by Mon(f) the set of monomials having a nonzero coefficient in
the polynomial f .

1. If w = u+ v then

Mon(fw) = Mon(fu) ∪Mon(fv).

2. If w = u× v then

Mon(fw) = Mon(fu)·Mon(fv)
def
= {m1 ·m2 : m1 ∈ Mon(fu),m2 ∈ Mon(fv)} .

This means that for any node v in a monote circuit over R one can determine
Mon(fv) in a very syntactic manner starting from the leaf nodes. Let us make
precise this syntactic computation that we have in mind.

Definition 14 (Formal Monomials.). Let Φ be an arithmetic circuit. The for-
mal monomials at any node v ∈ Φ, which shall be denoted by FM(v), shall be
inductively defined as follows:

If v is a leaf labelled by a variable xi, then FM(v) = {xi}. If it is
labelled by a constant, then FM(v) = {1}.

If v = v1 + v2, then FM(v) = FM(v1) ∪ FM(v2).
If v = v1 × v2, then

FM(v) = FM(v1) · FM(v2)
def
= {m1 ·m2 : m1 ∈ FM(v1),m2 ∈ FM(v2)} .

Note that for any node v in any circuit we have Mon(fv) ⊆ FM(v) but in a
monotone circuit over R this containment is in fact an equality at every node.
This motivates our definition of a slightly more general notion of a monotone
circuit as follows.

Definition 15 (Monotone circuits). A circuit C is said to be syntactically
monotone (simply monotone for short) if Mon(fv) = FM(v) for every node
v in C.

The main theorem of this section is the following:

Theorem 16 ([JS82]). Over any field F, any syntactically monotone circuit C
computing Detn or Permn must have size at least 2Ω(n).

The proof of this theorem is relatively short assuming the following struc-
tural result (which is present in standard depth-reduction proofs [VSBR83,
AJMV98]).



A selection of lower bounds for arithmetic circuits 13

Lemma 17. Let f be a degree d polynomial computed by a monotone circuit
of size s. Then, f can be written of the form f =

∑s
i=1 fi · gi where the fi’s

and gi’s satisfy the following properties.

1. For each i ∈ [s], we have d
3 < deg gi ≤ 2d

3 .
2. For each i, we have FM(fi) · FM(gi) ⊆ FM(f).

We shall defer this lemma to the end of the section and first see how this
would imply Theorem 16. The complexity measure Γ(f) in this case is just
the number of monomials in f , but it is the above normal form that is crucial
in the lower bound.

Proof of Theorem 16. Suppose Φ is a circuit of size s that computes Detn.
Then by Lemma 17,

Detn =

s∑
i=1

fi · gi

with FM(fi) ·FM(gi) ⊆ FM(Detn). The building blocks are terms of the form
T = f · g, where FM(f) · FM(g) ⊆ FM(Detn).

Since all the monomials in Detn are products of variables from distinct
columns and rows, the rows (and columns) containing the variables f de-
pends on is disjoint from the rows (and columns) containing variables that g
depends on. Hence, there exists sets of indices A,B ⊆ [n] such that f depends
only on {xjk : j ∈ A, k ∈ B} and g depends only on

{
xjk : j ∈ A, k ∈ B

}
.

Further, since Detn is a homogeneous polynomial of degree n, we also have
that both f and g must be homogeneous as well. Also as all monomials of
g using distinct row and column indices from A and B respectively, we see
that deg g = |A| = |B| and deg f = |A| = |B|. Using Lemma 17, let |A| = αn
for some 1

3 ≤ α ≤
2
3 . This implies that Γ(f) ≤ (αn)!, and Γ(g) ≤ ((1− α)n)!

and hence

Γ(f · g) ≤ (αn)!((1− α)n)! ≤ n!(
n
n/3

)
as 1

3 ≤ α ≤
2
3 . Also, Γ is clearly sub-additive and we have

Γ(f1g1 + · · ·+ fsgs) ≤ s · n!(
n
n/3

) .
Since Γ(Detn) = n!, this forces s ≥

(
n
n/3

)
= 2Ω(n). �

We only need to prove Lemma 17 now.

6.1. Proof of Lemma 17

Without loss of generality, assume that the circuit Φ is homogeneous5, and
consists of alternating layers of + and × gates. Also, assume that all × gates
have fan-in two, and orient the two children such that the formal degree of

5It is a forklore result that any circuit can be homogenized with just a polynomial blow-up

in size. Further, this process also preserves monotonicity of the circuit. A proof of this may
be seen in [SY10].



14 Kayal and Saptharishi

the left child is at least as large as the formal degree of the right child. Such
circuits are also called left-heavy circuits.

Definition 18 (Proof tree). A proof tree of an arithmetic circuit Φ is a sub-
circuit Φ′ such that

• The root of Φ is in Φ′

• If a multiplication gate with v = v1 × v2 ∈ Φ′, then v1 and v2 are in Φ′

as well.
• If an addition gate v = v1 + · · ·+ vs ∈ Φ′, then exactly one vi is in Φ′.

Such a sub-circuit Φ′, represented as a tree (duplicating nodes if required),
shall be called a proof tree of Φ.

Let ProofTrees(Φ) denote the set of all proof trees of Φ. It is easy to see
that any proof tree of Φ computes a monomial over the variables. Further, if
Φ was a monotone circuit computing a polynomial f , then every proof tree
computes a monomial in f . Therefore,

f =
∑

Φ′∈ProofTrees(Φ)

[Φ′]

where [Φ′] denotes the monomial computed by Φ′. Of course, the number
of proof trees is exponential and the above expression is huge. However, we
could use a divide-and-conquer approach to the above equation using the
following lemma.

Lemma 19. Let Φ′ be a left-heavy formula of formal degree d. Then there is
a node v on the left-most path of Φ′ such that d

3 ≤ deg(v) < 2d
3 .

Proof. Pick the lowest node on the left-most path that has degree at least
2d
3 . Then, its left child must be a node of degree less than 2d

3 , and also at

least d
3 (because the formula is left-heavy). �

For any proof tree Φ′ and a node v on its left-most path, define [Φ′ : v] to
be the output polynomial of the proof tree obtained by replacing the node v
on the left-most path by 1. If v does not occur on the left-most path of Φ′,
define [Φ′ : v] to be 0. We will denote the polynomial computed at a node v
by fv. Then, the above equation can now be re-written as:

f =
∑

Φ′∈ProofTrees(Φ)

[Φ′]

=
∑
v∈Φ

d
3≤deg v< 2d

3

fv ·

 ∑
Φ′∈ProofTrees(Φ)

[Φ′ : v]


=

∑
v∈Φ

d
3≤deg v< 2d

3

fv · gv where gv =
∑

Φ′∈ProofTrees(Φ)

[Φ′ : v].

Since d
3 ≤ deg v < 2d

3 , we also have that d
3 < deg gv ≤ 2d

3 and the last
equation is what was required by Lemma 17. �



A selection of lower bounds for arithmetic circuits 15

7. Lower bounds for depth-3 circuits over finite fields

This section shall present the lower bound of Grigoriev and Karpinski [GK98]
for Detn. A follow-up paper of Grigoriev and Razborov [GR00] extended
the result over function fields, also including a weaker lower bound for the
permanent, but we shall present a slightly different proof that works for the
permanent as well.

Theorem 20. [GK98] Any depth-3 circuit computing Detn (or Permn) over a
finite field Fq (q 6= 2) requires size 2Ω(n).

Main idea: Let q = |F|. Suppose C = T1 + · · ·+Ts, where each Ti is a product
of linear polynomials. Define rank(Ti) as in Section 5.3 to be the dimension
of the set of linear polynomials that Ti is a product of.
In Section 5.3, we saw that the dimension of partial derivatives would handle
low rank Ti’s. As for the high rank Ti’s, since Ti is a product of at least r
linearly independent linear polynomials, a random evaluation keeps Ti non-

zero with probability at most
(

1− 1
q

)r
. Since q is a constant, we have that a

random evaluation of a high rank Ti is almost always zero. Hence, in a sense,
C can be “approximated” by just the low-rank components.
Grigoriev and Karpinski [GK98] formalize the above idea as a measure by
combining the partial derivative technique seen in Section 5.3 with evalua-
tions to show that Detn cannot be approximated by a low-rank ΣΠΣ circuit.

7.1. The complexity measure

For any polynomial f ∈ F[x11, . . . , xnn], define the matrix Mk(f) as follows
— the columns of Mk(f) are indexed by k-th order partial derivatives of f ,

and rows by elements of Fn2

, with the entry being the evaluation of the par-
tial derivative (column index) at the point (row index).

The rank of Mk(f) could be a possible choice of a complexity measure but
Grigoriev and Karpinski make a small modification to handle the high rank
Tis. Instead, they look at the matrix Mk(f) and remove a few erroneous

evaluation points and use the rank of the resulting matrix. For any A ⊆ Fn2

,
let us define Mk(f ;A) to be the matrix obtained from Mk(f) by only taking

the rows whose indices are in A. Also, let Γ
[GK]
k,A (f) denote rank(Mk(f ;A)).

7.2. Upper-bounding Γ
[GK]
k,A for a depth-3 circuit

Our task here is to give an upper bound on the complexity measure for a
ΣΠΣ-circuit of size s. We first see that the task reduces to upper bounding
the measure for a single term via subadditivity. It follows from the linearity
of the entries of the matrix.

Observation 21 (Sub-additivity). Γ
[GK]
k,A (f + g) ≤ Γ

[GK]
k,A (f) + Γ

[GK]
k,A (g).

Now fix a threshold r0 = βn for some constant β > 0 (to be chosen shortly),
and let k = γn for some γ > 0 (to be chosen shortly). We shall call a term



16 Kayal and Saptharishi

T = `1 · · · `d to be of low rank if rank(T ) ≤ r0, and large rank otherwise. By

the above observation, we need to upper-bound the measure Γ
[GK]
k,A for each

term T , for a suitable choice of A.

Low rank terms (rank(T ) ≤ r0):

Suppose T = `1 · · · `d with {`1, . . . , `r} being a maximal independent set
of linear polynomials (with r ≤ r0). Then, T can be expressed as a linear
combination of terms from the set {`e11 . . . `err : ei ≤ d ∀i ∈ [r]}. And since

the matrix Mk(f) depends only on evaluations in Fn2

, we can use the relation

that xq = x in F to express the function T : Fn2 → F as a linear combination

of {`e11 . . . `err : ei < q ∀i ∈ [r]}. Therefore, for any set A ⊆ Fn2

, we have
that

Γ
[GK]
k;A (T ) ≤ rank(Mk(f)) ≤ qr ≤ qβn.

High rank terms (rank(T ) > r0):

Suppose T = `1 . . . `d whose rank is greater than r0 = βn, and let {`1, . . . , `r}
be a maximal independent set. We want to use the fact that since T is a
product of at least r independent linear polynomials, most evaluations would
be zero. We shall be choosing our A to be the set where all k-th order partial
derivatives evaluate to zero.

On applying the product rule of differentiation, any k-th order derivative of
T can be written as a sum of terms each of which is a product of at least r−k
independent linear polynomials. Let us count the erroneous points ET ⊆ Fn2

that keep at least r − k of {`1, . . . , `r} non-zero, or in other words makes at
most k of {`1, . . . , `r} zero.

Pr
a∈Fn2

[at most k of `1, . . . , `r evaluate to zero] ≤
k∑
i=0

(
r

i

)(
1

q

)i(
1− 1

q

)r−i
Hence, we can upper-bound |ET | as

|ET | ≤
k∑
i=0

(
r

i

)
(q − 1)r−iqn

2−r

= O

(
k ·
(
r

k

)(
1− 1

q

)r−k
qn

2

)
if r > qk

= qn
2

· αn for some 0 < α < 1.

By choosing A = Fn2 \E where E =
⋃
T of large rank ET , we have that Mk(T ;A)

is just the zero matrix and hence Γ
[GK]
k,A (T ) = 0.

Putting it together, if C = T1 + · · ·+ Ts, then

Γ
[GK]
k,A (C) ≤ s · qβn. (1)

where A = Fn2 \E for some set E of size at most s·αn ·qn2

for some 0 < α < 1.



A selection of lower bounds for arithmetic circuits 17

7.3. Lower-bounding Γ
[GK]
k,A for Detn and Permn

We now wish to show that Mk(Detn;A) has large rank. The original proof
of Grigoriev and Karpinski is tailored specifically for the determinant, and
does not extend directly to the permanent. The following argument is a proof
communicated by Srikanth Srinivasan [Sri13] that involves an elegant trick
that he attributes to [Kou08]. The following proof is presented for the deter-
minant, but immediately extends to the permanent as well.

Note that if we were to just consider Mk(Detn), it would have been easy to
show that the rank is full by looking at just those evaluation points that
keep exactly one (n − k) × (n − k) minor non-zero (set the main diagonal
of the minor to ones, and every other entry to zero). Hence, Mk(Detn) has
the identity matrix embedded inside and hence must be full rank. However,
we are missing a few of the evaluations (since a small set E of evaluations is
removed) and we would still like to show that the matrix continues to have
full column-rank.

Lemma 22. Let p(X) be a non-zero linear combination of r× r minors of the
matrix X = ((xij)). Then,

Pr
A∈Fn2

q

[p(A) 6= 0] ≥ Ω(1).

This immediately implies that for every linear combinations of the columns of
Mk(Detn), a constant fraction of the coordinates have non-zero values. Since

we are removing merely a set E of size (1− o(1))qn
2

, there must continue to
exist coordinates that are non-zero. In other words, no linear combination of
columns of Mk(Detn;A) results in the zero vector.
The proof of the above lemma would be an induction on the number of
minors contributing to the linear combination. As a base case, we shall use
a well-known fact about Detn and Permn of random matrices.

Proposition 23. If A is a random n×n matrix with entries from a fixed finite
field Fq, then for q 6= 2 we have

Pr[det(A) 6= 0] ≥ q − 2

q − 1
= Ω(1).

We shall defer the proof of this proposition for later, and proceed with the
proof of Lemma 22.

Proof of Lemma 22. If p(X) is a scalar multiple of a single non-zero minor,
then we already have the lemma from Proposition 23. Hence, let us assume
that there are at least two distinct minors participating in the linear combi-
nation p(X). Without loss of generality, assume that the first row occurs in
some of the minors, and does not in others. That is,

p(X) =

( ∑
i:Row1∈Mi

ciMi

)
+

 ∑
j:Row1 /∈Mj

cjMj


= (x11M

′
1 + · · ·+ x1nM

′
n) + M ′′ (expanding along the first row).



18 Kayal and Saptharishi

To understand a random evaluation of p(X), let us first set rows 2, . . . , n to
random values, and then setting row 1 to random values.

Pr
A

[p(A) 6= 0] ≥ Pr[x11M
′
1 + · · ·+ x1nM

′
n +M ′′ 6= 0 | some M ′i 6= 0]

×Pr[some M ′i 6= 0]

Note that once we have set rows 2, . . . , n to random values, p(X) reduces
to a linear polynomial in {x11, . . . , x1n}. Further, a random evaluation of

any non-constant linear polynomial is zero with probability exactly
(

1− 1
q

)
.

Hence,

Pr
A

[p(A) 6= 0] ≥ Pr[x11M
′
1 + · · ·+ x1nM

′
n +M ′′ 6= 0 | some M ′i 6= 0]

×Pr[some M ′i 6= 0]

=

(
1− 1

q

)
· Pr[some M ′i 6= 0].

Now comes Koutis’ Trick: the term
(

1− 1
q

)
·Pr[ some M ′i 6= 0] is exactly the

probability that x11M
′
1 + · · ·+ x1nM

′
n is non-zero! Hence,

Pr
A

[p(A) 6= 0] = Pr[x11M
′
1 + · · ·+ x1nM

′
n +M ′′ 6= 0]

≥ Pr[x11M
′
1 + · · ·+ x1nM

′
n 6= 0]

= Pr

[( ∑
i:Row1∈Mi

ciMi

)
6= 0

]
.

which is just the linear combination obtained by only considering those mi-
nors that contain the first row. Repeating this process for other rows/columns
until only one minor remains, we have

Pr
A

[p(A) 6= 0] ≥ Pr
A

[det(A) 6= 0] =
q − 2

q − 1
(by Proposition 23).

�

We now give a proof of Proposition 23.

Proof of Proposition 23. We shall fix random values to the first row of A.
Then,

Pr
A

[Detn(A) = 0] ≤ Pr[a11M1 + · · ·+ a1nMn = 0 | some a1i non-zero]

+ Pr[a11 = · · · = a1n = 0]

= Pr[a11M1 + · · ·+ a1nMn = 0 | some a1i non-zero]

+
1

qn
.

Whenever there is some a1i that is non-zero, then a11M1 + · · ·+ a1nMn is a
non-zero linear combination of minors. By a similar argument as in the proof
of Lemma 22, we have that

Pr[a11M1 + · · ·+a1nMn = 0 | not all a1i are zero] ≤ Pr[Detn−1(A) = 0].



A selection of lower bounds for arithmetic circuits 19

Unfolding this recursion, we have

Pr[Detn(A) = 0] ≤ 1

q
+

1

q2
+ · · ·+ 1

qn
=

1

q − 1

=⇒ Pr[Detn(A) 6= 0] ≥
(

1− 1

q − 1

)
=

q − 2

q − 1
.

�

7.4. Putting it all together

Hence, if Detn is computed by a depth-3 circuit of top fan-in s over F, then

s · qβn = Ω

((
n

k

)2
)

= Ω
(

22H(γ)·n
)

=⇒ log s = Ω((2H(γ)− β log q)n)

where H(γ) is the binary entropy function6. By choosing γ < q−q/2, we
can find a β such that qγ < β (which was required in Section 7.2) and
2H(γ) > β log q, yielding the lower bound

s = exp
(

Ω(q−q/2 · q log q · n)
)

= 2Ω(n).

�(Theorem 20)

8. Lower bounds for multilinear models

Raz [Raz09] showed that multilinear formulas computing the Detn or Permn

must be of size nΩ(logn). The complexity measure used by Raz also led to
exponential lower bounds for constant depth multilinear circuits [RY09] and
super-linear lower bounds for syntactic multilinear circuits [RSY08]. We shall
first give some intuition behind the complexity measure before actually seeing
the lower bounds.

8.1. The partial derivative matrix

Intuition. A natural first step is to try the simpler task of proving lower
bounds for depth-3 multilinear circuits.

f = `11 . . . `1d + · · ·+ `s1 . . . `sd

The task is now to construct a measure Γ such that Γ(`1 . . . `d) is small
whenever each `i is a linear polynomial and different `i’s are over disjoint
sets of variables. Consider the simplest case of f = (a1 + b1x)(a2 + b2y).
An observation is that the coefficients of f are given by the 2 × 2 matrix

6The binary entropy function is defined as H(γ)
def
= −γ log2(γ) − (1 − γ) log2(1 − γ). It is

well known that
(n
k

)
≈ 2nH(k/n).



20 Kayal and Saptharishi

obtained as [a1 b1]T [a2 b2] =

[
a1a2 a1b2
a2b1 b1b2

]
. In other words, a polynomial

f = a0 + a1x+ a2y + a3xy factorizes into two variable disjoint factors if and

only if the matrix

[
a0 a1

a2 a3

]
has rank 1. A straight-forward generalization

of this to multiple variables yields the partial derivative matrix (which was
first introduced by Nisan [Nis91] in the context of non-commutative ABPs)

Definition 24. For any given partition of variables X = Y t Z, define the
partial derivative matrix MY,Z(f) to be the matrix described as follows —
the rows are indexed by monomials in Y , columns indexed by monomials
in Z, and the (i, j)-th entry of the matrix is the coefficient of the monomial

mi(Y )·mj(Z) in f . We shall use Γ
[Raz]
Y,Z (f) to denote rank(MY,Z(f)). Further,

we shall call a polynomial f to be full-rank if MY,Z(f) is full-rank.

Here are some basic properties of the partial derivative matrix which would
be extremely useful in later calculations.

Observation 25 (Sub-additivity). For any partition X = Y t Z and any

pair of multilinear polynomials f and g in F[X] we have Γ
[Raz]
Y,Z (f + g) ≤

Γ
[Raz]
Y,Z (f) + Γ

[Raz]
Y,Z (g).

Proof. Follows from the linearity of the matrix. �

Observation 26 (Multiplicativity). If f1 ∈ F[Y1, Z1] and f2 ∈ F[Y2, Z2] with
Y = Y1 t Y2 and Z = Z1 t Z2, then

Γ
[Raz]
Y,Z (f1 · f2) = Γ

[Raz]
Y1,Z1

(f1) · Γ
[Raz]
Y2,Z2

(f2).

Proof. It is not hard to see thatMY,Z(f1·f2) is the tensor productMY1,Z1(f1)⊗
MY2,Z2

(f2), and the rank of a tensor product of two matrices is the product
of the ranks. �

Observation 27. Γ
[Raz]
Y,Z (f) ≤ 2min(|Y |,|Z|).

Proof. The number of rows is 2|Y | and number of columns is 2|Z|, and hence
the rank is upper-bounded by the minimum. �

Let us get back to lower bounds for multilinear models, and attempt to use

Γ
[Raz]
Y,Z (f) defined above. Unfortunately, there are examples of simple polyno-

mials like f = (y1 + z1) . . . (yn + zn) with Γ
[Raz]
Y,Z (f) = 2n. Raz’s idea here

was to look at Γ
[Raz]
Y,Z (f) for a random partition, and show that with high

probability the rank of the partial derivative matrix is far from full. As a
toy example, we shall see why this has the potential to give lower bounds for
depth-3 multilinear circuits.



A selection of lower bounds for arithmetic circuits 21

Lemma 28. Let f(X) = `1 . . . `d be an n-variate multilinear polynomial. If
X = Y t Z is a random partition with |Y | = |Z| = |X|/2, then with high
probability we have

Γ
[Raz]
Y,Z (f) ≤ 2|X|/2 · 2−|X|/16.

It is to be noted that we should expect a random polynomial to be full-rank

with respect to any partition, so the measure Γ
[Raz]
Y,Z (f) is expected to be

2|X|/2 which should yield a lower bound of 2Ω(|X|).

Sketch of Proof. Without loss of generality we can assume that each `i
depends on at least two variables as removing the `i’s that depend on just one

variable does not alter Γ
[Raz]
Y,Z (f) with respect to any partition. Let |X| = n.

Using Observation 26, Γ
[Raz]
Y,Z (f) ≤ 2d and hence if d < n/3 then we are done.

Hence assume that d ≥ n/3. By a simple averaging argument, there must
hence be at least d/4 of the `i’s that depend on at most 3 variables; we shall
refer to these as the small `i’s.
Since the partition is chosen at random, on expectation a quarter of the
small `i’s would have all its variables mapped to either Y or Z, hence not

contributing to Γ
[Raz]
Y,Z (f). Therefore, with high probability,

Γ
[Raz]
Y,Z (f) ≤ 2d · 2−d/16 ≤ 2n/2 · 2−n/16.

�

More generally, if f = g1(X1) . . . gt(Xt) where the Xi’s are mutually disjoint,
then a random partition is very unlikely to partition all the Xi’s into almost
equal parts. This shall be formalized in the next section to prove the lower
bound for multilinear formulas.

8.2. Lower bound for multilinear formulas

We now present the lower bound for multilinear formulas due to [Raz09]. The
first step of our roadmap is to find a suitable normal form for multilinear
formulas. The normal form that we use is from the survey by Shpilka and
Yehudayoff [SY10].

8.2.1. Formulas to log-product sums. The following structural lemma shows
that any multilinear formula can be converted in to a small sum of log-product
polynomials. The techniques of the following lemma can also be used in other
settings with minor modifications, and we shall encounter a different version
of this lemma later as well.

Definition 29. A multilinear polynomial f ∈ F[X] is called a multilinear log-
product polynomial if f = g1 . . . gt and there exists a partition of variables
X = X1 t · · · tXt such that

• gi ∈ F[Xi] for all i ∈ [t].

• |X|3i ≤ |Xi| ≤ 2|X|
3i for all i, and |Xt| = 1.



22 Kayal and Saptharishi

Lemma 30. Let Φ be a multilinear formula of size s computing a polynomial p.
Then f can be written as a sum of (s+1) log-product multivariate polynomials.

Proof. Similar to Lemma 19, let v be a node in Φ such that set of variables

Xv that it depends on satisfies |X|3 ≤ |Xv| ≤ 2|X|
3 . If Φv is the polynomial

computed at this node, then f can be written as

f = Φv · g1 + Φv=0 for some g1 ∈ F[X \Xv].

where Φv=0 is the formula obtained by replacing the node v by zero. Note
that the subtree at the node v is completely disjoint from Φv=0. Hence the
sum of the sizes of Φv and Φv=0 is at most s. Hence, g1 ∈ F[X \ Xv] and
|X|
3 ≤ |X \Xv| ≤ 2|X|

3 . Inducting on the formulas Φv and Φv=0 gives the
lemma. �

8.2.2. Log-products are far from full-rank on a random partition. The main
technical part of the proof is to show that log-product multivariate polynomi-
als are far from full-rank under a random partition of variables. This would
let us show that a sum of log-product multivariate polynomials cannot be
full rank unless it is a very large sum.

Main idea: Suppose f = g1 . . . gt where each gi ∈ F[Xi]. Let X = Y tZ be a
random partition with |Y | = |Z| = |X|/2, and Yi = Y ∩Xi and Zi = Z ∩Xi.

Let di =
∣∣∣ |Yi|−|Zi|

2

∣∣∣ measure the imbalance between the sizes of Yi and Zi,

and we shall say Xi is k-imbalanced if di ≥ k. Let bi = |Yi|+|Zi|
2 = |Xi|

2 .

By Observation 26, we know that

Γ
[Raz]
Y,Z (f) = Γ

[Raz]
Yi,Zi

(g1) . . .Γ
[Raz]
Yi,Zi

(gt)

≤ 2min(|Y1|,|Z1|) · · · · 2min(|Yt|,|Zt|)

= 2b1−d1 · · · 2bt−dt =
2|X|/2

2d1+···+dt
.

Hence, even if one of the Xi’s is a little imbalanced, then the product is far
from full-rank.

Lemma 30 shows that the size of Xi decreases slowly with i, and it is not

hard to show that |Xi| ≥
√
|X| for i ≤ t′

def
= log |X|

100 . We wish to show that

the probability that none of gi (for i ≤ t′) is k-unbalanced for k = |X|1/20

is very small. Let Ei be the event that Xi is not k-unbalanced. The goal is
to upper bound the probability that all the events Ei hold. These probability
calculations would follow from this lemma about the hypergeometric distri-
bution.

Hypergeometric Distribution: Fix parameters n, g, r ≥ 0, and let G ⊆ [n]
with |G| = g. Informally, the hypergeometric distribution is the distribution
obtained on the intersection sizes of a random set of size r with a fixed set



A selection of lower bounds for arithmetic circuits 23

of size g from a universe of size n. Formally, the random variable H(n, g, r)
is defined as:

Pr [H(n, g, r) = k] = Pr
R⊆[n],|R|=r

[|R ∩G| = k] =

(
g
k

)(
n−g
r−k
)(

n
r

) .

The following lemma shows that for a fairly large range of parameters, the
hypergeometric distribution does not put too much mass on any value.

Lemma 31. Let n, g, r be parameters such that n
4 ≤ r ≤ 3n

4 and 0 ≤ g ≤ 2n
3 .

Then for any t ≤ g,

Pr [H(n, g, r) = t] ≤ O

(
1
√
g

)
.

The proof of this lemma follows from standard binomial coefficient estimates
on the probability.

Let us go back to estimating the probability that all the events Ei hold.

Pr [E1 ∧ · · · ∧ Et′ ] = Pr[E1] · Pr[E2 | E1] · · ·Pr[Et′ | E1 ∧ · · · ∧ Et′−1].

The event E1 is just the probability that a random set Y of size |X|/2 inter-

sects X1 in t places where t ∈
[
|Xi|

2 − k,
|Xi|

2 − k
]
. This is just a particular

setting of the hypergeometric distribution and Lemma 31 asserts that

Pr[E1] ≤ O

(
2k√
|X|

)
.

To apply a similar bound for the other terms, consider the event Ei given
that E1, . . . , Ei−1 hold. Let X ′ = X \ (X1 ∪ . . .∪Xi−1) and Y ′ = Y ∩X ′. The
fact that E1, . . . , Ei−1 hold means that the partition has been fairly balanced
in the first (i− 1) parts and hence |Y ′| ≤ |X ′|+ ik. Hence, we would still be
in the range of parameters in Lemma 31 to also get that

∀i ≤ t′ Pr[Ei | E1 ∧ · · · ∧ Ei−1] ≤ O

(
2k√
|X|

)
=⇒ Pr [E1 ∧ · · · ∧ Et′ ] ≤ |X|−ε log|X|

for some ε > 0

=⇒ Pr
[
Γ

[Raz]
Y,Z (g1 . . . gt) ≤ 2(|X|/2)−|X|1/20

]
≤ |X|−ε log|X|

.

Hence, if g1 . . . gt is a log-product multilinear polynomial, then with probabil-

ity at least
(
1− |X|−ε log |X|) we have that Γ

[Raz]
Y,Z (g1 . . . gt) ≤ 2(|X|/2)−|X|1/20 .

Further, if f is computable by a multilinear formula of size s then, by
Lemma 30, f can be written as a sum of (s+1) log-product multilinear poly-
nomials. Hence, with probability at least

(
1− (s+ 1)|X|−ε log |X|) we have

that
Γ

[Raz]
Y,Z (f) ≤ (s+ 1) · 2(|X|/2)−|X|1/20 .

Hence, if (s + 1) < |X|(ε/2) log |X|, then with high probability a random par-

tition would ensure Γ
[Raz]
Y,Z (f)� 2|X|/2. Let us record this as a lemma.



24 Kayal and Saptharishi

Lemma 32. Let f ∈ F[X] be computed by a multilinear formula of size s <
|X|(ε/2) log |X| for a small enough constant ε > 0. Then with probability at
least (1− |X|−(ε/2) log |X|) we have

Γ
[Raz]
Y,Z (f) ≤ (s+ 1) · 2|X|/2 · 2−|X|

1/20

for a random partition X = Y t Z with |Y | = |Z| = |X|/2.

8.2.3. Detn and Permn have large rank. The last step of the proof would be
to find an explicit polynomial whose partial derivative matrix under a random
partition has large rank. As earlier, our candidate polynomial would be Detn
or Permn. Unfortunately, both these polynomials are over n2 variables and
degree n. It is not hard to verify that the rank of the partial derivative
matrix of Detn or Permn can never be greater than 22n. Hence directly using

Lemma 32, we would have 2O(n) competing with 2n
2/2−nO(1)

which is simply
futile. A simple fix is to first randomly restrict ourselves to fewer variables
and then apply Lemma 32.

Let m = n1/3. Let σ be a random restriction that assigns random values to
all but 2m randomly chosen variables. We shall call this set of 2m variables
as X, and randomly partition this into two sets Y and Z of size m each.
Hence, σ(Detn) reduces to a multilinear polynomial over 2m variables. It is
also worth noting that a multilinear formula remains a multilinear formula
under this restriction. The following claim is easy to verify.

Claim 33. With probability at least 1/2, the variables in X belong to distinct
rows and columns.

We shall restrict ourselves to only these random restrictions, and without
loss of generality let the sets be Y = {x1,1, x3,3, . . . , x2m−1,2m−1} and Z =
{x2,2, x4,4, . . . , x2m,2m}. For ease of notation, we shall refer to x2i−1,2i−1 as
yi and x2i,2i as zi for i = 1, . . . ,m.

Consider the following restriction:

f = Det



y1 1
1 z1

. . .

ym 1
1 zm

1
. . .

1


= (y1z1 − 1) . . . (ymzm − 1).

It is easy to check that Γ
[Raz]
Y,Z (f) = 2m. Although this is a single restric-

tion with large rank, the Schwartz-Zippel-DeMillo-Lipton lemma immediately



A selection of lower bounds for arithmetic circuits 25

gives that random restriction would also have rank 2m with high probability7.
We shall record this as a lemma.

Lemma 34. With probability at least 1/100, we have that Γ
[Raz]
Y,Z (σ(Detn)) =

2m where σ is a random restriction to 2m variables for m = n1/3.

Combining Lemma 34 with Lemma 32, we have the following theorem.

Theorem 35 ([Raz09]). Any multilinear formula computing Detn or Permn

must be of size nΩ(logn). �

8.3. Stronger lower bounds for constant depth multilinear formulas

Looking back at Lemma 32, we see that whenever f(X) is computable by a

size s multilinear formula Γ
[Raz]
Y,Z (f) is exponentially smaller than 2|X|/2 with

probability
(
1− s · |X|−ε log |X|). Hence we had to settle for a nΩ(logn) lower

bound not because of the rank deficit but rather because of the bounds in the
probability estimate. Unfortunately, this lower bound technique cannot yield
a better lower bound for multilinear formulas as there are explicit examples

of polynomials computable by poly-sized multilinear circuits with Γ
[Raz]
Y,Z (f) =

2|X|/2 under every partition [Raz06]. However, the probability bound can be
improved in the case of constant depth multilinear circuits to give stronger
lower bounds.
Note that Lemma 32 was proved by considering multilinear log-products (Def-
inition 29) as the building blocks. To show that a multilinear log product
g1(X1) . . . g`(X`) has small rank under a random partition, we argued that
the probability that all the Xi’s are partitioned in a roughly balanced fashion
is quite small. This was essentially done by thinking of this as ` = O(log n)
close-to-independent events, each with probability 1/poly(n).
If ` was much larger than log n (with other parameters being roughly the
same), it should be intuitively natural to expect a much lower probability of
all the Xi’s being partitioned in a roughly balanced manner. This indeed is
the case for constant depth multilinear circuits, and we briefly sketch the key
points where they differ from the earlier proof. The first is an analogue of
Definition 29 in this setting.

Definition 36. A multilinear polynomial f is said to be a multilinear t-product
if f can be written as f = g1 . . . gt with the following properties:

• The variable sets of the gi are mutually disjoint
• Each gi non-trivially depends on at least t variables

Lemma 37. Let f be a multilinear polynomial of degree d over n variables
that is computed by a depth-∆ multilinear formula Φ of size s. Then, f can

be written as a sum of at most s multilinear t-products for t = (n/100)
1/2∆

,
and a multilinear polynomial of degree at most n/100.

7provided the underlying field is large, but this isn’t really a concern as we can work with
a large enough extension if necessary



26 Kayal and Saptharishi

Proof. If d < n/100, then the lemma is vacuously true. Since Φ is a formula
of depth ∆ and computes a polynomial of degree d > n/100, there must be

at least one product gate v of fan-in at least
(
n

100

)1/∆
= t2. Then similar to

Lemma 30,

f = Φv · f ′ + Φv=0

As Φv is a product of t2 polynomials, by grouping the factors together we
have that Φv · f ′ is a multilinear t-product. Further, Φv=0 is a multilinear
polynomial that is computable by a depth-∆ formula of smaller size and we
can induct on Φv=0. �

Lemma 38. Let f(X) be an n-variate polynomial computed by a depth-∆
multilinear formula of size s. If X = Y t Z is a randomly chosen partition
with |Y | = |Z| = n/2, then with probability at least (1 − s · exp(−nΩ(1/∆)))
we have

Γ
[Raz]
Y,Z (f) ≤ (s+ 1) · 2n/2 · exp(−nΩ(1/∆)).

Sketch of Proof. By Lemma 37, we have that f can be written as g0 +
g1 + · · ·+gs where deg(g0) ≤ n/100 and g1, . . . , gs are multilinear t-products.
Note that since g0 is a multilinear polynomial of degree at most (n/100), the

number of monomials in g0 is at most
(

n
n/100

)
≤ 2n/10. Hence, Γ

[Raz]
Y,Z (g0) ≤

2n/10.
For the other gi’s, we can bound the probability that Γ

[Raz]
Y,Z (gi) is large in a

very similar fashion as in Lemma 32, as the probability that all the factors of
gi are partitioned in a balanced manner is roughly the intersection of t inde-
pendent events. By very similar estimates, this probability can be bounded
by (1/poly(n))t. Hence, with high probability

Γ
[Raz]
Y,Z (f) ≤ Γ

[Raz]
Y,Z (g0)+· · ·+Γ

[Raz]
Y,Z (gs) ≤ (s+1)·2n/2·exp(−nΩ(1/∆)).

�

Combining Lemma 38 with Lemma 34, we have the following theorem of Raz
and Yehudayoff.

Theorem 39 ([RY09]). Any multilinear formula of depth ∆ computing Detn
or Permn must be of size exp(nΩ(1/∆)). �

9. Lower bounds for depth-4 circuits

This section shall address a recent technique for proving lower bounds for
some depth-4 circuits.

Definition 40. A depth-4 circuit, also referred to as a ΣΠΣΠ circuit, computes
a polynomial of the form

f = Q11 . . . Q1d + · · · + Qs1 . . . Qsd.

The number of summands s is called the top fan-in of the circuit.



A selection of lower bounds for arithmetic circuits 27

Further, a ΣΠ[a]ΣΠ[b] circuit is a depth-4 circuit computing a polynomial of
the form

f = Q11 . . . Q1a + · · · + Qs1 . . . Qsa where degQij ≤ b for all i, j.

9.1. Significance of the model

In a surprising series of results on depth reduction, Agrawal and Vinay [AV08]
and subsequent strengthenings of Koiran [Koi12] and Tavenas [Tav13] showed
that depth-4 circuits more or less capture the complexity of general circuits.

Theorem 41 ([AV08, Koi12, Tav13]). If f is an n variate degree-d polynomial
computed by a size s arithmetic circuit, then f can also be computed by a

ΣΠ[O(
√
d)]ΣΠ[

√
d] circuit of size exp

(
O(
√
d log s)

)
.

Conversely, if an n-variate degree-d polynomial requires ΣΠ[O(
√
d)]ΣΠ[

√
d] cir-

cuits of size exp
(

Ω(
√
d log s)

)
, then it requires arbitrary depth arithmetic

circuits of size nΩ(log s/ logn) to compute it.

Thus proving strong enough lower bounds for this special case of depth-
4 circuits imply lower bounds for general circuits. The main results of the
section is some recent lower bound [GKKS13, KSS13, FLMS13] that comes
very close to the required threshold.

9.2. Building the complexity measure

As a simpler task, let us first attempt to prove lower bounds for expressions
of the form

f = Qd1 + · · · + Qds

where each of the Qi’s are quadratics. This is exactly the problem studied
by Kayal [Kay12], which led to the complexity measure for proving depth-4
lower bounds.

The goal is to construct a measure Γ such that Γ(f) is small whenever f is
a power of a quadratic. As a first attempt, let us look at the space of k-th
order partial derivatives of Qd (for a suitable choice of k). Unlike the case of
Σ∧Σ-circuits where the the space of k-th order partial derivatives of `d had
dimension 1, the space of partial derivatives of Qd could be as large as it can
be expected. Nevertheless, the following simple observation would provide
the key intuition.

Observation 42. Any k-th order partial derivative of Qd is of the form Qd−kp
where p is a polynomial of degree at most k. Hence, if k � d, then all k-th
order partial derivatives of Qd share large common factors.

This suggests that instead of looking at linear combinations of the partial
derivatives of Qd, we should instead be analysing low-degree polynomial com-
binations of them.



28 Kayal and Saptharishi

Definition 43. Let ∂=k(f) refer to the set of all k-th order partial derivatives
of f , and x≤` refer to the set of all monomials of degree at most `. The
shifted partials of f , denoted by

〈
∂=k (f)

〉
≤`, is the vector space spanned by{

x≤` · ∂=k(f)
}

. The dimension of this space shall be denoted by Γ
[Kay]
k,` (f).

The above observation shows that any element of
〈
∂=k

(
Qd
)〉
≤` is divisible

by Qd−k and we thereby have the following lemma.

Lemma 44. If f = Qd where Q is a quadratic, then Γ
[Kay]
k,` (f) ≤

(
n+k+`
n

)
, the

number of monomials of degree (k + `).

Note that if f was instead a random polynomial, we would expect the measure

dim
(〈
∂=k (f)

〉
≤`

)
to be about

(
n+k
n

)
·
(
n+`
n

)
, which is much larger than(

n+k+`
n

)
for suitable choice of k, `. Hence this measure Γ

[Kay]
k,` is certainly

potentially useful for this model. Very similar to the above lemma, one can
also show the following upper bound for the building blocks of ΣΠ[a]ΣΠ[b]

circuits.

Lemma 45. Let f = Q1 . . . Qa with degQi ≤ b for all i. Then,

Γ
[Kay]
k,` (f) = dim

(〈
∂=k (f)

〉
≤`

)
≤

(
a

k

)(
n+ (b− 1)k + `

n

)
.

It is easy to check that Γ
[Kay]
k,` is a sub-additive measure, and we immediately

have this corollary.

Corollary 46. Let f be an n-variate polynomial computed by a ΣΠ[a]ΣΠ[b]

circuit of top fan-in s. Then,

Γ
[Kay]
k,` (f) ≤ s ·

(
a

k

)(
n+ (b− 1)k + `

n

)
.

Or in other words for any choice of k, `, we have that any ΣΠ[a]ΣΠ[b] circuit
computing a polynomial f must have top fan-in s at least

Γ
[Kay]
k,` (f)(

a
k

)(
n+(b−1)k+`

n

) .
Intuition from algebraic geometry. Another perspective for the shifted par-
tial derivatives comes from algebraic geometry. Any zero a ∈ Fn of Q is a
zero of multiplicity d of Qd. This implies that the set of common zeroes of all
k-th order partial derivatives of Qd (for k ≈

√
d) is large. On the other hand

if f is a random polynomial, then with high probability there are no roots of
large multiplicity.
In algebraic geometry terminology, the common zeroes of a set of polyno-
mials is called the variety of the ideal generated by them. Further there is
also a well-defined notion of a dimension of a variety which measures how
large a variety is. Let F[x]≤r refer to the set of polynomials of degree at
most r, and let γI(r) = dim (I ∩ F[x]≤r). Intuitively, if γI(r) is large, then



A selection of lower bounds for arithmetic circuits 29

there are many constraints and hence the variety is small. In other words
the growth of γI(r) is inversely related to the dimension of the variety of I,
and this is precisely captured by what is known as the Affine Hilbert func-
tion of I. More about the precise definitions of the Affine Hilbert function
etc. can be found in any standard text in algebraic geometry such as [CLO07].

In our setting, the ideal we are interested in is I =
〈
∂=kf

〉
. If f is a homoge-

neous polynomial, then I ∩F[x]≤r =
〈
∂=k (f)

〉
≤` where ` = r− (deg(f)−k).

Hence studying the dimension of shifted partial derivatives is exactly study-
ing γI(r) which holds all information about the dimension of the variety.

9.3. Lower bounding shifted partials of explicit polynomials

For a random polynomial R(x), we would expect that

Γ
[Kay]
k,` (R) ≈ min

{(
n+ `+ d− k

n

)
,

(
n+ k

n

)(
n+ `

n

)}
.

The terms on the RHS correspond to trivial upper bounds, where first term
is the total number of monomials of degree (`+ d− k) and the second term
is the total number shifted partials.

Claim 47. For k = ε
√
d for a small enough ε > 0, and ` = cn

√
d

logn for a large

enough constant c, we have

min
{(

n+`+d−k
n

)
,
(
n+k
n

)(
n+`
n

)}
(
O(
√
d)

k

)(
n+(
√
d−1)k+`
n

) = 2Ω(
√
d logn).

The proof of this claim is easily obtained by using standard asymptotic esti-
mates of binomial coefficients. Note that using Corollary 46, the above claim
shows that if we can find an explicit polynomial whose dimension of shifted
partials are as large as above, then we would have an exp(Ω(

√
d log n)) lower

bound for the top fan-in of ΣΠ[
√
d]ΣΠ[

√
d] circuits computing this polynomial.

If we have a set of polynomials with distinct leading monomials, then they are
clearly linearly independent. Hence one way of lower bounding the dimension
of a space of polynomials is to find a sufficiently large set of polynomials with
distinct monomials in the space. The vector space of polynomials we are
interested is

〈
∂=k (f)

〉
≤`, and if we choose a structured polynomial f we can

hope to be able to estimate the number of distinct leading monomials in this
vector space.

9.3.1. Shifted partials of the determinant and permanent. The first lower

bound for ΣΠ[
√
d]ΣΠ[

√
d] circuits was by Gupta, Kamath, Kayal and Sapthar-

ishi [GKKS13] for the determinant and the permanent polynomial. We shall
describe the lower bound for Detn, although it would carry over immediately
to Permn as well. As mentioned earlier, we wish to estimate the number of dis-
tinct leading monomials in

〈
∂=k (Detn)

〉
≤` = span

{
x≤`∂=kDetn

}
. [GKKS13]

made a relaxation to merely count the number of distinct leading monomials



30 Kayal and Saptharishi

among the generators
{
x≤`∂=kDetn

}
instead of their span.

The first observation is that any k-th order partial derivative of Detn is just
an (n − k) × (n − k) minor. Let us fix a monomial ordering induced by the
lexicographic ordering on the variables:

x11 � x12 · · · � x1n � x21 � · · · � xnn.
Under this ordering, the leading monomial of any minor is just the product of
variables on the main diagonal of the sub-matrix corresponding to the minor,
and hence is a term of the form xi1j1 . . . xi(n−k),j(n−k)

where i1 < · · · < in−k
and j1 < · · · < jn−k; let us call such a sequence of indices as an (n − k)-
increasing sequences in [n]× [n]. Further, for any (n−k)-increasing sequence,
there is a unique minor M whose leading monomial is precisely the product
of the variables indexed by the increasing sequence. Therefore, the task of
lower bounding distinct leading monomials in

{
x≤`∂=kDetn

}
reduces to the

following combinatorial problem.

Claim 48. For any k, ` > 0, we have

Γ
[Kay]
k,` (Detn) ≥ #

{
monomials of degree (`+ n− k) that

contain an (n− k)-increasing sequence

}
.

We could start with an (n−k)-increasing sequence, and multiply by a mono-
mial of degree ` to obtain a monomial containing an increasing sequence. Of
course, the issue is that this process is not invertible and hence we might
overcount. To fix this issue, [GKKS13] assign a canonical increasing sequence
to every monomial that contains an increasing sequence and multiply by
monomials of degree ` that do not change the canonical increasing sequence.

Definition 49. Let D2 = {x1,1, . . . , xn,n, x1,2, x2,3, . . . , xn−1,n}, the main diag-
onal and the diagonal just above it. For any monomial m define the canonical
increasing sequence of m, denoted by χ(m), as (n − k)-increasing sequence
of m that is entirely contained in D2 and is ordered highest according to the
ordering ’�’. If m contains no (n − k)-increasing sequence entirely in D2,
then we shall say the canonical increasing sequence is empty.

The reason we restrict ourselves to D2 is because it is easier to understand
which monomials change the canonical increasing sequence and which mono-
mials do not.

Lemma 50. Let S be an (n− k)-increasing sequence completely contained in
D2, and let mS be the monomial obtained by multiplying the variables indexed
by S. There are at least (2(n− k)− 1) variables in D2 such that if m is any
monomial over these variables, then χ(mS) = χ(m ·mS).

Proof. Note that for any xi,j ∈ D2 other than xn,n, exactly one of xi+1,j or
xi,j+1 is in D2 as well; let us refer to this element in D2 as the companion of
xi,j . It is straightforward to check that for any (n−k)-increasing sequence S,
the elements of S and their companions do not alter the canonical increasing
sequence. �



A selection of lower bounds for arithmetic circuits 31

It is a simple exercise to check that the number of (n−k)-increasing sequences

contained in D2 is
(
n+k
2k

)
. Further, as we are free to use the n2 − 2n + 1

variables outside D2, and the 2(n − k) − 1 variables that don’t alter the
canonical increasing sequence, we have the following lemma.

Lemma 51. For any k, ` ≥ 0,

dim
(〈
∂=k (Detn)

〉
≤`

)
≥

(
n+ k

2k

)(
(n2 − 2n+ 1) + 2(n− k)− 1 + `

`

)
.

Although this lower bound is not as large as expected for a random polyno-
mial, this is still sufficient to give strong lower bounds for depth-4 circuits. By
choosing k = ε

√
n for a small enough ε > 0, and ` = n2

√
n, Lemma 51 with

Corollary 46 yields the lower bound of Gupta, Kamath, Kayal and Sapthar-
ishi [GKKS13]

Theorem 52. Any ΣΠ[O(
√
n)]ΣΠ[

√
n] circuit computing Detn or Permn has top

fanin 2Ω(
√
n). �

It is worth noting that although Claim 47 suggests that we should be able to
obtain a lower bound of exp(Ω(

√
n log n)) for Detn, [GKKS13] also showed

that the above estimate for the dimension of shifted partial derivatives for
the determinant is fairly tight. Hence the dimension of shifted partials cannot
give a stronger lower bound for the determinant polynomial. However, it is
possible that the estimate is not tight for the permanent and the dimension
of shifted partial derivatives of the permanent is provably strictly larger than
that of the determinant! It is conceivable that one should be able to prove
an exp(Ω(

√
n log n)) lower bound for the permanent using this measure.

Indeed, subsequently an exp(Ω(
√
d log n)) was proved [KSS13, FLMS13] for

other explicit polynomials which we now outline.

9.3.2. Shifted partials of the Nisan-Wigderson polynomial. Very shortly after
[GKKS13]’s 2Ω(

√
n) lower bound, Kayal, Saha and Saptharishi [KSS13] gave

a stronger lower bound for a different polynomial. Their approach was to
engineer an explicit polynomial F for which the dimension of shifted partial
derivatives is easier to estimate. The main idea was that, if any k-th order
partial derivative of the engineered polynomial is a monomial, then once again

estimating dim
(〈
∂=k (F )

〉
≤`

)
reduces to a monomial counting problem. If

we could ensure that no two monomials of F have a gcd of degree k or more,
then we would immediately get that all k-th order partial derivatives of F
are just monomials (albeit possibly zero). If we were to interpret the set of
non-zero monomials of F as just subsets over the variables, then the above
constraint can be rephrased as a set system with small pairwise intersection.
Such systems are well studied and are known as Nisan-Wigderson designs
[NW94]. With this in mind, [KSS13] studied the following polynomial family
inspired by an explicit construction of a Nisan-Wigderson design.

Definition 53 (Nisan-Wigderson Polynomial). . Let n be a power of 2 and let
Fn be the finite field with n elements that are identified with the set {1, . . . , n}.



32 Kayal and Saptharishi

For any 0 ≤ k ≤ n, the polynomial NWk is a n2-variate polynomial of degree
n defined as follows:

NWk(x1,1, . . . , xn,n) =
∑

p(t) ∈ Fn[t]
deg(p) < k

x1,p(1) . . . xn,p(n).

It is easy to show that the above family of polynomials is in VNP. Further,
since any two distinct univariate polynomials of degree less than k intersects
in less than k places, we have the following observation.

Observation 54. Any two monomials of NWk intersect in less than k vari-
ables. Hence, any k-th order partial derivative of NWk(x) is a monomial
(which could possibly be zero). �

Hence, the problem of lower bounding the shifted partials of NWk reduces
to the problem of counting distinct monomials of degree ` + d − k that are
divisible by one of these k-th order derivatives. [KSS13] additionally used the
observation that two random k-th order partial derivatives of NWk are mono-
mials that are far from each other. Using this, they estimate the number of
distinct shifts of these monomials and showed that the dimension of shifted
partial derivatives of NWk is very close to the trivial upper bound as in
Claim 47. We sketch the argument by Chillara and Mukhopadhyay [CM14].
Formally, for any two multilinear monomials m1 and m2, let the ∆(m1,m2)
denote min {|m1| − |m1 ∩m2|,m2 − |m1 ∩m2|} (abusing notation by identi-
fying the multilinear monomials with the set of variables that divide it).

Lemma 55 ([CM14]). Let m1, . . . ,ms be monomials over N variables such
that ∆(mi,mj) ≥ d for all i 6= j. Then the number of distinct monomials that
may be obtained by multiplying some mi by arbitrary monomials of degree `
is at least s

(
N+`
N

)
−
(
s
2

)(
N+`−d
N

)
.

Proof. For i = 1, . . . , s, let Ai be the set of monomials that can be obtained
by multiplying mi with a degree ` monomial. By inclusion-exclusion,∣∣∣∣∣

s⋃
i=1

Ai

∣∣∣∣∣ ≥
s∑
i=1

|Ai| −
∑
i<j

|Ai ∩Aj | .

Note that each Ai is of size exactly
(
N+`
N

)
. Further, since ∆(mi,mj) ≥ d, any

monomial that is divisible by mi and mj must necessarily be divisible by mi

and the variables in mj not in mi. Hence, |Ai ∩Aj | ≤
(
N+`−d
N

)
. The lemma

follows by substituting these above. �

Note that any two distinct monomials of NWk intersect in at most k places.
For each monomial mi of NWk, let m′i be any non-zero k-th order partial
derivative of mi. Therefore, ∆(m′i,m

′
j) ≥ n − 2k ≥ n

2 for k = ε
√
n. Since

we have nk monomials of pairwise distance at least n/2, the above lemma
immediately yields a lower bound for the shifted partials of NWk.



A selection of lower bounds for arithmetic circuits 33

Theorem 56 ([KSS13]). Let k = ε
√
d for some constant ε > 0. Then for any

` = Θ
(
n2√n
logn

)
,

dim
(〈
∂=k (NWk)

〉
≤`

)
≥ nk

2
·
(
n2 + `

n2

)
Sketch of Proof. As mentioned earlier, we have nk monomials {m′i} with
pairwise distance at least n

2 . Using Lemma 55, it suffices to show that

nk ·
(
n2 + `

n2

)
≥ 2 ·

(
nk

2

)
·
(
n2 + `− n

2

n2

)
and this follows easily from standard binomial coefficient estimates. �

Combining with Corollary 46, we have the lower bound of [KSS13] using
standard estimates.

Theorem 57 ([KSS13]). Any ΣΠ[O(
√
n)]ΣΠ[

√
n] computing the NWk polyno-

mial, where k = ε
√
n for a sufficiently small ε > 0, must have top fan-in

exp(Ω(
√
n log n)). �

[KSS13] used the above lower bound to give an nΩ(logn) lower bound for a
subclass of formulas called regular formulas. The interested reader can refer
to [KSS13] for more details.

9.3.3. Shifted partials of the Iterated-matrix-multiplication polynomial. Fourier,
Limaye, Malod and Srinivasan [FLMS13] showed the same lower bound as
[KSS13] but for the iterated matrix multiplication polynomial which is known
to have polynomial sized circuits computing it.

Definition 58 (Iterated matrix multiplication polynomial). Let M1, . . . ,Md

be n×n matrices with distinct variables as entries, i.e. Mk =
((
x

(k)
ij

))
i,j≤n

for

k = 1, . . . , d. The polynomial IMMn,d is a (n2d)-variate degree-d polynomial
defined as the (1, 1)-th entry of the matrix product M1 . . .Md:

IMMn,d(x) = (M1 . . .Md)1,1 .

A more useful perspective is to interpret this as a canonical algebraic branch-
ing program.

Definition 59 (Algebraic branching program). An algebraic branching pro-
gram (ABP) comprises of a layered directed graph G with (d + 1) layers of
vertices, where the first and last layer consists of a single node (called source
and sink respectively), all other layers consist of n vertices, and edges are
only between successive layers and have linear polynomials as edge-weights.
The ABP is set to compute the polynomial f defined as

f(x) =
∑

source-sink path ρ

weight(ρ)

where the weight of any path is just the product of the edge weights on the
path.



34 Kayal and Saptharishi

The canonical ABP comprises of the graph where the i-th vertex of layer

(` − 1) is connected to the j-th vertex of layer ` with edge-weight x
(`)
ij for

every choice of i, j and `. It is easy to see that the polynomial computed by
the canonical ABP is in fact IMMn,d.

To lower bound the dimension of shifted partial derivatives of IMMn,d, firstly
note that a derivative with respect to any variable (or edge) simply results
in the sum of all source-sink paths that pass through this edge. [FLMS13]
use the following simple but crucial observation to assist in bounding the
dimension of shifted partials.

Observation 60. Assume that d is even. Let e1, e3, . . . , ed−1 be an arbitrary
set of edges such that ei is between layer i and i+ 1. Then, there is a unique
path from source to sink that passes through all these edges.

Proof. Since these are edges in alternate layers, their starting and ending
points uniquely determine the edges that are picked up from the even-numbered
layers to complete the source-sink path. �

Since we are interested in k-th order derivatives for k ≈ ε
√
d, [FLMS13]

consider the following restriction by removing some edges from the underlying
graph:

• Select (2k − 1) layers `1, . . . , `2k−1 that are roughly equally spaced be-
tween the first and the last layer. These layers, and the first and the
last layers, shall be untouched and shall be called pristine layers.
• In all the other layers, retain only those edges connecting vertex i of

this layer to vertex i of the next.

This restriction effectively makes the graph similar to an ABP with 2k + 1
layers. Let the polynomial computed by the restricted ABP be IMM′n,d(x).

Since IMM′n,d was obtained by just setting some variables of IMMn,d to zero,

the dimension of shifted partial derivatives of IMM′n,d can only be smaller
than that of IMMn,d. Similar to Observation 60, we have the following ob-
servation.

Observation 61. For every choice of k edges from odd-numbered pristine lay-
ers, there is a unique source-sink path that passes through them.
In other words, for any choice of k variables chosen by picking one from each
odd-numbered pristine layer, then the k-th order partial derivative of IMM′n,d
with respect to these k variables is a non-zero monomial.

Once again, we can lower bound the dimension of shifted partial derivatives
of IMM′n,d by a monomial counting problem. Similar to the earlier case,
[FLMS13] show that the monomials thus obtained are far from one another.
We state their main lemma below without proof.

Lemma 62 ([FLMS13]). There are at least nk/2 monomials of IMM′n,d of
pairwise distance at least n

4 .



A selection of lower bounds for arithmetic circuits 35

Again, using Lemma 55 and standard binomial coefficient estimates, this
implies that the shifted partial derivatives of IMM′n,d is almost as large as
the trivial upper bound.

Theorem 63 ([FLMS13]). Let k = ε
√
d for a sufficiently small ε > 0 and ` be

an integer such that n1/16 ≤ N+`
` ≤ n1/4 where N is the number of variables

IMM′n,d depends on. Then,

dim
(〈
∂=k (IMMn,d)

〉
≤`

)
≥ dim

(〈
∂=k

(
IMM′n,d

)〉
≤`

)
= Ω

(
nk/2 ·

(
N + `

`

))
.

�

Combining with Corollary 46, we get the lower bound of [FLMS13].

Theorem 64 ([FLMS13]). Any ΣΠ[O(
√
d)]ΣΠ[

√
d] circuit computing IMMn,d,

with d ≤ nδ for a sufficiently small δ > 0, has top fan-in exp(Ω(
√
d log n)).

�

Similar to [KSS13], the above result also implies nΩ(logn) lower bounds for
regular formulas computing IMMn,d.

10. Conclusion

The field of arithmetic complexity, like Boolean complexity, abounds with
open problems and proving lower bounds for almost any natural subclass of
arithmetic circuits is interesting especially if the currently known techniques/
complexity measures do not apply to that subclass8. The surveys [Wig02,
SY10, CKW11] mark out the frontiers of this area in the form of many open
problems and we invite the reader to try some of them.

References

[AJMV98] Eric Allender, Jia Jiao, Meena Mahajan, and V. Vinay. Non-
Commutative Arithmetic Circuits: Depth Reduction and Size Lower
Bounds. Theoretical Computer Science, 209(1-2):47–86, 1998.

[ASSS12] Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin
Saxena. Jacobian hits circuits: hitting-sets, lower bounds for depth-d
occur-k formulas & depth-3 transcendence degree-k circuits. In Sympo-
sium on Theory of Computing (STOC), pages 599–614, 2012.

[AV08] Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth
four. In Foundations of Computer Science (FOCS), pages 67–75, 2008.

[BS83] Walter Baur and Volker Strassen. The complexity of partial derivatives.
Theoretical Computer Science, 22:317–330, 1983.

8 Some of the complexity measures that we describe here yield lower bounds for slightly
more general subclasses of circuits.



36 Kayal and Saptharishi

[CKW11] Xi Chen, Neeraj Kayal, and Avi Wigderson. Partial Derivatives in Arith-
metic Complexity (and beyond). Foundation and Trends in Theoretical
Computer Science, 2011.

[CLO07] D.A. Cox, J.B. Little, and D. O’Shea. Ideals, Varieties and Algorithms.
Undergraduate texts in mathematics. Springer, 2007.

[CM14] Suryajith Chillara and Partha Mukhopadhyay. Depth-4 Lower Bounds,
Determinantal Complexity : A Unified Approach. Symposium on Theo-
retical Aspects of Computing (STACS), 2014.

[FLMS13] Hervé Fournier, Nutan Limaye, Guillaume Malod, and Srikanth Srini-
vasan. Lower bounds for depth 4 formulas computing iterated ma-
trix multiplication. Electronic Colloquium on Computational Complexity
(ECCC), 20:100, 2013.

[GK98] Dima Grigoriev and Marek Karpinski. An exponential lower bound for
depth 3 arithmetic circuits. In Symposium on Theory of Computing
(STOC), pages 577–582, 1998.

[GKKS13] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Sapthar-
ishi. Approaching the chasm at depth four. In Conference on Computa-
tional Complexity (CCC), 2013.

[GR00] Dima Grigoriev and Alexander A. Razborov. Exponential lower bounds
for depth 3 arithmetic circuits in algebras of functions over finite fields.
Appl. Algebra Eng. Commun. Comput., 10(6):465–487, 2000.

[HY11] Pavel Hrubeš and Amir Yehudayoff. Arithmetic complexity in ring ex-
tensions. Theory of Computing, 7(8):119–129, 2011.

[JS82] Mark Jerrum and Marc Snir. Some exact complexity results for straight-
line computations over semirings. Journal of the ACM, 29(3):874–897,
1982.

[Kal85] Kyriakos Kalorkoti. A Lower Bound for the Formula Size of Rational
Functions. SIAM Journal of Computing, 14(3):678–687, 1985.

[Kay12] Neeraj Kayal. An exponential lower bound for the sum of powers of
bounded degree polynomials. Technical report, Electronic Colloquium
on Computational Complexity (ECCC), 2012.

[Koi12] Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider.
Theoretical Computer Science, 448:56–65, 2012.

[Kou08] Ioannis Koutis. Faster algebraic algorithms for path and packing prob-
lems. In ICALP, pages 575–586, 2008.

[KSS13] Neeraj Kayal, Chandan Saha, and Ramprasad Saptharishi. A super-
polynomial lower bound for regular arithmetic formulas. Electronic Col-
loquium on Computational Complexity (ECCC), 20:91, 2013.

[Lov11] Shachar Lovett. Computing polynomials with few multiplications. The-
ory of Computing, 7(13):185–188, 2011.

[Nis91] Noam Nisan. Lower bounds for non-commutative computation. In Sym-
posium on Theory of Computing (STOC), pages 410–418, 1991.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs Randomness. Journal of
Computer and System Sciences, 49(2):149–167, 1994.

[NW97] N. Nisan and A. Wigderson. Lower bounds on arithmetic circuits via
partial derivatives. Computational Complexity, 6(3):217–234, 1997.



A selection of lower bounds for arithmetic circuits 37

[Raz06] Ran Raz. Separation of multilinear circuit and formula size. Theory of
Computing, 2(1):121–135, 2006.

[Raz09] R. Raz. Multi-linear formulas for permanent and determinant are of
super-polynomial size. Journal of the ACM, 56(2), 2009.

[Raz10] Ran Raz. Tensor-rank and lower bounds for arithmetic formulas. In
Symposium on Theory of Computing (STOC), pages 659–666, 2010.

[RSY08] Ran Raz, Amir Shpilka, and Amir Yehudayoff. A lower bound for the
size of syntactically multilinear arithmetic circuits. SIAM Journal on
Computing, 38(4):1624–1647, 2008.

[RY09] Ran Raz and Amir Yehudayoff. Lower bounds and separations for con-
stant depth multilinear circuits. Computational Complexity, 18(2):171–
207, 2009.

[Sri13] Srikanth Srinivasan. personal communication, 2013.

[SW01] A. Shpilka and A. Wigderson. Depth-3 arithmetic circuits over fields of
characteristic zero. Computational Complexity, 10(1):1–27, 2001.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of re-
cent results and open questions. Foundations and Trends in Theoretical
Computer Science, 5:207–388, March 2010.

[Tav13] Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth
3. In Mathematical Foundations of Computer Science (MFCS), pages
813–824, 2013.

[VSBR83] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast
Parallel Computation of Polynomials Using Few Processors. SIAM Jour-
nal of Computing, 12(4):641–644, 1983.

[Wig02] Avi Wigderson. Arithmetic complexity - a survey. Lecture Notes, 2002.

Neeraj Kayal
Microsoft Research
Bangalore, India
e-mail: neeraka@microsoft.com

Ramprasad Saptharishi
Microsoft Research
Bangalore, India
e-mail: ramprasad@cmi.ac.in


	1. Introduction
	2. Existential lower bounds
	3. Weak lower bounds for general circuits and formulas
	3.1. Lower bounds for general circuits
	3.1.1. An exploitable weakness
	3.1.2. Computing all first order derivatives simultaneously

	3.2. Lower bounds for formulas
	3.2.1. Upper bounding [Kal] for a formula
	3.2.2. Lower bounding [Kal](Detn)


	4. ``Natural'' proof strategies
	5. Some simple lower bounds
	5.1. Lower bounds for  circuits
	5.2. Lower bounds for  circuits
	5.3. Low-rank 

	6. Lower bounds for monotone circuits
	6.1. Proof of Lemma 17

	7. Lower bounds for depth-3 circuits over finite fields
	7.1. The complexity measure
	7.2. Upper-bounding [GK]k,A for a depth-3 circuit
	7.3. Lower-bounding [GK]k,A for Detn and Permn
	7.4. Putting it all together

	8. Lower bounds for multilinear models
	8.1. The partial derivative matrix
	Intuition

	8.2. Lower bound for multilinear formulas
	8.2.1. Formulas to log-product sums
	8.2.2. Log-products are far from full-rank on a random partition
	8.2.3. Detn and Permn have large rank

	8.3. Stronger lower bounds for constant depth multilinear formulas

	9. Lower bounds for depth-4 circuits
	9.1. Significance of the model
	9.2. Building the complexity measure
	Intuition from algebraic geometry

	9.3. Lower bounding shifted partials of explicit polynomials
	9.3.1. Shifted partials of the determinant and permanent
	9.3.2. Shifted partials of the Nisan-Wigderson polynomial
	9.3.3. Shifted partials of the Iterated-matrix-multiplication polynomial


	10. Conclusion
	References

