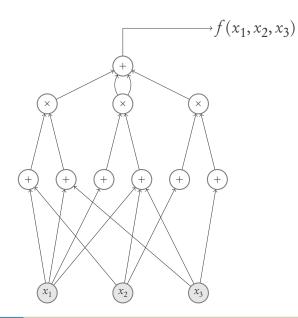
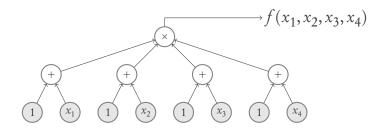
Near-optimal Bootstrapping of Hitting Sets

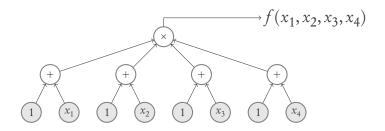
Mrinal Kumar Simons Institute Ramprasad Saptharishi TIFR, Mumbai Anamay Tengse TIFR, Mumbai

Simons Institute December 2018

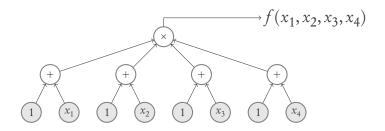
# **Algebraic Circuits**



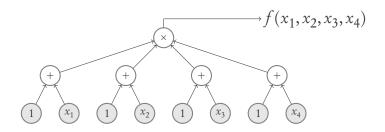




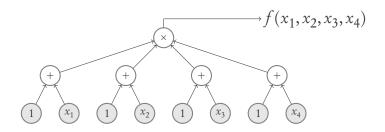
 A tree, made up of + and × gates. Leaves containing variables or constants



 A tree, made up of + and × gates. Leaves containing variables or constants. Size = number of leaves

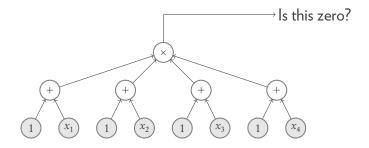


- A tree, made up of + and × gates. Leaves containing variables or constants. Size = number of leaves
- $\operatorname{Size}(f(g_1, \dots, g_n)) \leq \operatorname{Size}(f) \cdot \max_i (\operatorname{Size}(g_i))$

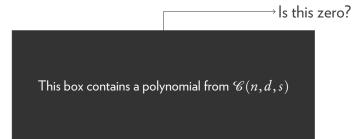


- A tree, made up of + and × gates. Leaves containing variables or constants. Size = number of leaves
- $\operatorname{Size}(f(g_1, \dots, g_n)) \leq \operatorname{Size}(f) \cdot \max_i(\operatorname{Size}(g_i))$
- Formula(n, d, s): n-variate, degree ≤ d polynomials computable by size s formulas. (note: d ≤ s)

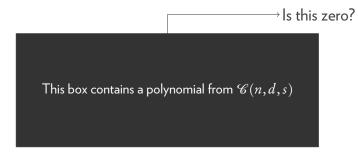
# **Polynomial Identity Testing**



### **Blackbox Polynomial Identity Testing**

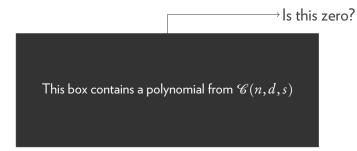


## **Blackbox Polynomial Identity Testing**



Only have evaluation access to the circuit.

## **Blackbox Polynomial Identity Testing**



Only have evaluation access to the circuit.

Equivalent to constructing a hitting set H:

For every nonzero  $P \in \mathscr{C}(n, d, s)$ , there is some  $\overline{a} \in H$  such that  $P(\overline{a}) \neq 0$ .

#### **Counting argument**

There are non-explicit hitting sets of poly(s) size for  $\mathcal{C}(n, d, s)$ .

#### **Counting argument**

There are non-explicit hitting sets of poly(s) size for  $\mathcal{C}(n, d, s)$ .

#### **Lemma ([Ore\*, DeMillo-Lipton, Schwartz-Zippel])** If $S \subseteq \mathbb{F}$ with $|S| \ge d + 1$ , then $S^n$ is a hitting set for $\mathscr{C}(n, d, s)$ .

That is, we have an explicit, but trivial, hitting set of  $(d + 1)^n$  size.

#### **Counting argument**

There are non-explicit hitting sets of poly(s) size for  $\mathcal{C}(n, d, s)$ .

#### **Lemma ([Ore\*, DeMillo-Lipton, Schwartz-Zippel])** If $S \subseteq \mathbb{F}$ with $|S| \ge d + 1$ , then $S^n$ is a hitting set for $\mathscr{C}(n, d, s)$ .

That is, we have an explicit, but trivial, hitting set of  $(d + 1)^n$  size.

**Question:** Are there small explicit hitting sets for  $\mathcal{C}(n, d, s)$ ?

\*: See [Bishnoi-Clark-Potukuchi-Schmitt]

#### Theorem ([Agrawal-Ghosh-Saxena 2018])

Say n large enough.

Suppose, for each  $s \ge n$ , there is an explicit hitting set for Circuits(n, s, s) of size at most

 $(s+1)^{n^{0.49}}$ . (Trivial hitting set size:  $(s+1)^n$ )

#### Theorem ([Agrawal-Ghosh-Saxena 2018])

Say n large enough.

Suppose, for each  $s \ge n$ , there is an explicit hitting set for Circuits(n, s, s) of size at most

$$(s+1)^{n^{0.49}}$$
. (Trivial hitting set size:  $(s+1)^n$ )

Then there is an explicit hitting set for Circuits(s, s, s) of size at most

#### Theorem ([Agrawal-Ghosh-Saxena 2018])

Say n large enough.

Suppose, for each  $s \ge n$ , there is an explicit hitting set for Circuits(n, s, s) of size at most

$$(s+1)^{n^{0.49}}$$
. (Trivial hitting set size:  $(s+1)^n$ )

Then there is an explicit hitting set for Circuits(s, s, s) of size at most

 $s^{\exp(\exp(O(\log^* s)))}$ .

#### Theorem ([Agrawal-Ghosh-Saxena 2018])

Say n large enough.

Suppose, for each  $s \ge n$ , there is an explicit hitting set for Circuits(n, s, s) of size at most

$$(s+1)^{n^{0.49}}$$
. (Trivial hitting set size:  $(s+1)^n$ )

Then there is an explicit hitting set for Circuits(s, s, s) of size at most

## Improving almost-trivial hitting sets

#### Theorem ([Kumar-S-Tengse])

Say n large enough.

Suppose, for each  $s \ge n$ , there is an explicit hitting set for Circuits(n, s, s) of size at most

 $(s+1)^{n-0.01}$ . (Trivial hitting set size:  $(s+1)^n$ )

Then there is an explicit hitting set for Circuits(s, s, s) of size at most

## Improving almost-trivial hitting sets

#### Theorem ([Kumar-S-Tengse])

Say n large enough.

Suppose, for each  $s \ge n$ , there is an explicit hitting set for Formula(n, s, s) of size at most

 $(s+1)^{n-0.01}$ . (Trivial hitting set size:  $(s+1)^n$ )

Then there is an explicit hitting set for Formula(s, s, s) of size at most

## Improving almost-trivial hitting sets

#### Theorem ([Kumar-S-Tengse])

Say n large enough.

Suppose, for each  $s \geq n,$  there is an explicit hitting set for  $\mathscr{C}(n,s,s)$  of size at most

 $(s+1)^{n-0.01}$ . (Trivial hitting set size:  $(s+1)^n$ )

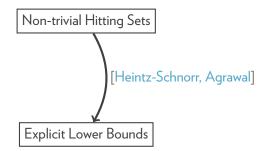
Then there is an explicit hitting set for  $\mathscr{C}(s, s, s)$  of size at most

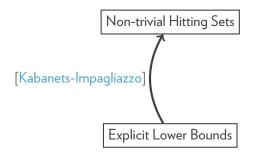
 $s^{tiny(s)}$ .

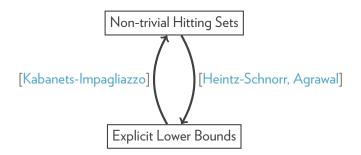
(where  $\,\mathscr{C}\,$  is any class well-behaved under sums, projections and compositions)

Non-trivial Hitting Sets

Explicit Lower Bounds







From a non-trivial hitting set, get a lower bound. Use that to get a *better* hitting set. And so on ...

# **Preliminaries:**

Hardness vs Randomness for algebraic models

### Lower bounds from hitting sets

H is a hitting set for  $\mathscr{C}(n,d,s)$  if

for all  $0 \neq P \in \mathcal{C}(n, d, s)$ , there is some  $\overline{a} \in H$  such that  $P(\overline{a}) \neq 0$ .

### Lower bounds from hitting sets

H is a hitting set for  $\mathscr{C}(n,d,s)$  if

for all  $0 \neq P \in \mathscr{C}(n, d, s)$ , there is some  $\overline{a} \in H$  such that  $P(\overline{a}) \neq 0$ .

#### **Observation**

If P is a nonzero polynomial that vanishes on H, then P cannot be a member of  $\mathcal{C}(n, d, s)$ .

### Lower bounds from hitting sets

H is a hitting set for  $\mathscr{C}(n,d,s)$  if

for all  $0 \neq P \in \mathscr{C}(n, d, s)$ , there is some  $\overline{a} \in H$  such that  $P(\overline{a}) \neq 0$ .

#### **Observation**

If P is a nonzero polynomial that vanishes on H, then P cannot be a member of  $\mathcal{C}(n, d, s)$ .

#### Theorem ([Heintz-Schnorr, Agrawal])

For any  $k \leq n$  such that  $k |H|^{1/k} \leq d$ , we can find a nonzero k-variate polynomial Q of individual degree less than  $|H|^{1/k}$  such that Q requires size more than s.

#### Theorem ([Kabanets-Impagliazzo] (Informal))

If Q is hard-enough, then for any small algebraic circuit computing P, we have

$$P(x_1, \dots, x_m) \neq 0 \quad \Longleftrightarrow \quad P(Q(\overline{y}_1), \dots, Q(\overline{y}_m)) \neq 0$$

even if  $\overline{y}_1, \ldots, \overline{y}_m$  are almost disjoint.

Aside: Combinatorial Designs

Aside: Combinatorial Designs

**Definition (Combinatorial designs)** 

 $\{S_1, \dots, S_m\} \subseteq [\ell] \text{ is an } (\ell, k, r) \text{-design if } |S_i| = k \text{ and } \left|S_i \cap S_j\right| < r.$ 

Aside: Combinatorial Designs

#### **Definition (Combinatorial designs)**

 $\{S_1, \dots, S_m\} \subseteq [\ell] \text{ is an } (\ell, k, r) \text{-design if } |S_i| = k \text{ and } \left|S_i \cap S_j\right| < r.$ 

#### Fact

For all\*  $\ell \ge k^2$  and  $r \le k$ , we have explicit  $(\ell, k, r)$ -designs with  $m = \left(\frac{\ell}{k}\right)^r$ .

Aside: Combinatorial Designs

#### **Definition (Combinatorial designs)**

 $\{S_1, \dots, S_m\} \subseteq [\ell] \text{ is an } (\ell, k, r) \text{-design if } |S_i| = k \text{ and } \left|S_i \cap S_j\right| < r.$ 

#### Fact

For all\*  $\ell \ge k^2$  and  $r \le k$ , we have explicit  $(\ell, k, r)$ -designs with  $m = \left(\frac{\ell}{k}\right)^r$ .

 $|\mathbb{F}| = (\ell/k).$ 



k

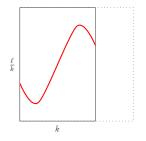
Aside: Combinatorial Designs

#### **Definition (Combinatorial designs)**

 $\{S_1, \dots, S_m\} \subseteq [\ell] \text{ is an } (\ell, k, r) \text{-design if } |S_i| = k \text{ and } \left|S_i \cap S_j\right| < r.$ 

#### Fact

For all\*  $\ell \ge k^2$  and  $r \le k$ , we have explicit  $(\ell, k, r)$ -designs with  $m = \left(\frac{\ell}{k}\right)^r$ .



$$\begin{split} |\mathbb{F}| &= (\ell/k).\\ \text{For } p(z) \in \mathbb{F}[z] \text{ with } \deg(p) < r,\\ S_p &= \{(i, p(i)) \,:\, i \in [k]\}. \end{split}$$

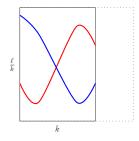
Aside: Combinatorial Designs

#### **Definition (Combinatorial designs)**

 $\{S_1, \dots, S_m\} \subseteq [\ell] \text{ is an } (\ell, k, r) \text{-design if } |S_i| = k \text{ and } \left|S_i \cap S_j\right| < r.$ 

#### Fact

For all\*  $\ell \ge k^2$  and  $r \le k$ , we have explicit  $(\ell, k, r)$ -designs with  $m = \left(\frac{\ell}{k}\right)^r$ .



$$\begin{split} |\mathbb{F}| &= (\ell/k).\\ \text{For } p(z) \in \mathbb{F}[z] \text{ with } \deg(p) < r,\\ S_p &= \{(i, p(i)) \,:\, i \in [k]\}. \end{split}$$

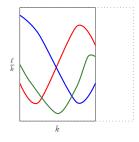
Aside: Combinatorial Designs

#### **Definition (Combinatorial designs)**

 $\{S_1, \dots, S_m\} \subseteq [\ell] \text{ is an } (\ell, k, r) \text{-design if } |S_i| = k \text{ and } \left|S_i \cap S_j\right| < r.$ 

#### Fact

For all\*  $\ell \ge k^2$  and  $r \le k$ , we have explicit  $(\ell, k, r)$ -designs with  $m = \left(\frac{\ell}{k}\right)^r$ .



$$\begin{split} |\mathbb{F}| &= (\ell/k).\\ \text{For } p(z) \in \mathbb{F}[z] \text{ with } \deg(p) < r,\\ S_p &= \{(i, p(i)) \,:\, i \in [k]\}. \end{split}$$

 $\mathbf{Q}\llbracket \ell, k, r \rrbracket := \left( \mathbf{Q}(\overline{y} \mid_{S_1}), \dots, \mathbf{Q}(\overline{y} \mid_{S_m}) \right)$ 

 $Q\llbracket \ell, k, r \rrbracket := \left( Q(\overline{y} \mid_{S_1}), \dots, Q(\overline{y} \mid_{S_m}) \right)$ 

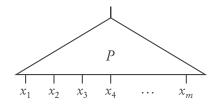
#### Lemma ([Kabanets-Impagliazzo])

Let  $P(x_1, \ldots, x_m)$  is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that  $P(Q[[\ell, k, r]]) = 0$ . Then Q has small circuits.

 $Q\llbracket \ell, k, r \rrbracket := \left( Q(\overline{y} \mid_{S_1}), \dots, Q(\overline{y} \mid_{S_m}) \right)$ 

#### Lemma ([Kabanets-Impagliazzo])

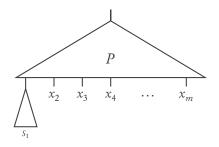
Let  $P(x_1,...,x_m)$  is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that  $P(Q[[\ell,k,r]]) = 0$ . Then Q has small circuits.



 $Q\llbracket \ell, k, r \rrbracket := \left( Q(\overline{y} \mid_{S_1}), \dots, Q(\overline{y} \mid_{S_m}) \right)$ 

#### Lemma ([Kabanets-Impagliazzo])

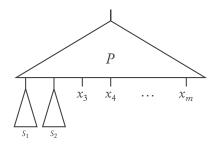
Let  $P(x_1,...,x_m)$  is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that  $P(Q[[\ell,k,r]]) = 0$ . Then Q has small circuits.



 $Q\llbracket \ell, k, r \rrbracket := \left( Q(\overline{y} \mid_{S_1}), \dots, Q(\overline{y} \mid_{S_m}) \right)$ 

#### Lemma ([Kabanets-Impagliazzo])

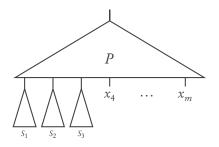
Let  $P(x_1,...,x_m)$  is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that  $P(Q[\![\ell,k,r]\!]) = 0$ . Then Q has small circuits.



 $Q\llbracket \ell, k, r \rrbracket := \left( Q(\overline{y} \mid_{S_1}), \dots, Q(\overline{y} \mid_{S_m}) \right)$ 

#### Lemma ([Kabanets-Impagliazzo])

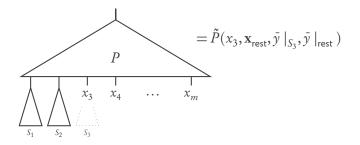
Let  $P(x_1,...,x_m)$  is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that  $P(Q[[\ell,k,r]]) = 0$ . Then Q has small circuits.



 $Q\llbracket \ell, k, r \rrbracket := \left( Q(\overline{y} \mid_{S_1}), \dots, Q(\overline{y} \mid_{S_m}) \right)$ 

#### Lemma ([Kabanets-Impagliazzo])

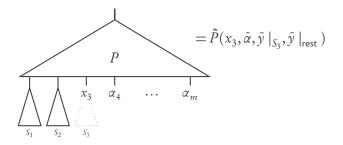
Let  $P(x_1, \ldots, x_m)$  is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that  $P(Q[[\ell, k, r]]) = 0$ . Then Q has small circuits.



 $Q\llbracket \ell, k, r \rrbracket := \left( Q(\overline{y} \mid_{S_1}), \dots, Q(\overline{y} \mid_{S_m}) \right)$ 

#### Lemma ([Kabanets-Impagliazzo])

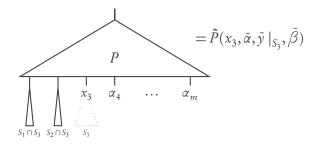
Let  $P(x_1,...,x_m)$  is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that  $P(Q[\![\ell,k,r]\!]) = 0$ . Then Q has small circuits.



 $Q\llbracket \ell, k, r \rrbracket := \left( Q(\overline{y} \mid_{S_1}), \dots, Q(\overline{y} \mid_{S_m}) \right)$ 

#### Lemma ([Kabanets-Impagliazzo])

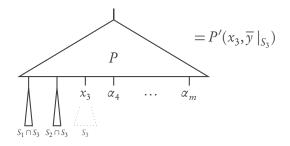
Let  $P(x_1, \ldots, x_m)$  is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that  $P(Q[[\ell, k, r]]) = 0$ . Then Q has small circuits.



 $Q\llbracket \ell, k, r \rrbracket := \left( Q(\overline{y} \mid_{S_1}), \dots, Q(\overline{y} \mid_{S_m}) \right)$ 

#### Lemma ([Kabanets-Impagliazzo])

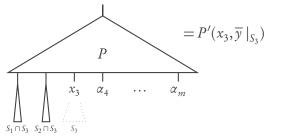
Let  $P(x_1,...,x_m)$  is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that  $P(Q[[\ell,k,r]]) = 0$ . Then Q has small circuits.



 $Q\llbracket \ell, k, r \rrbracket := \left( Q(\overline{y} \mid_{S_1}), \dots, Q(\overline{y} \mid_{S_m}) \right)$ 

#### Lemma ([Kabanets-Impagliazzo])

Let  $P(x_1, ..., x_m)$  is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that  $P(Q[[\ell, k, r]]) = 0$ . Then Q has small circuits.

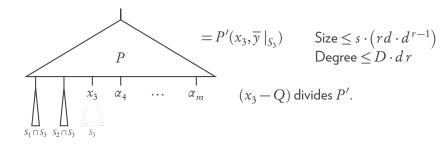


Size 
$$\leq s \cdot (rd \cdot d^{r-1})$$
  
Degree  $\leq D \cdot dr$ 

 $Q\llbracket \ell, k, r \rrbracket := \left( Q(\overline{y} \mid_{S_1}), \dots, Q(\overline{y} \mid_{S_m}) \right)$ 

#### Lemma ([Kabanets-Impagliazzo])

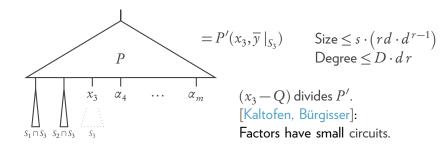
Let  $P(x_1, ..., x_m)$  is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that  $P(Q[[\ell, k, r]]) = 0$ . Then Q has small circuits.



 $Q\llbracket \ell, k, r \rrbracket := \left( Q(\overline{y} \mid_{S_1}), \dots, Q(\overline{y} \mid_{S_m}) \right)$ 

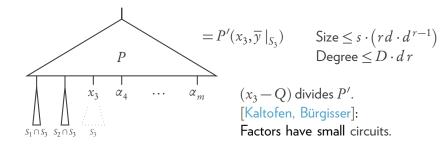
#### Lemma ([Kabanets-Impagliazzo])

Let  $P(x_1, ..., x_m)$  is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree < d such that  $P(Q[[\ell, k, r]]) = 0$ . Then Q has small circuits.



 $Q\llbracket \ell, k, r \rrbracket := \left( Q(\overline{y} \mid_{S_1}), \dots, Q(\overline{y} \mid_{S_m}) \right)$ 

#### Lemma ([Kabanets-Impagliazzo])



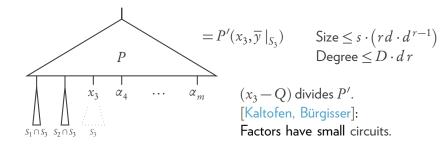
 $Q\llbracket \ell, k, r \rrbracket := \left( Q(\overline{y} \mid_{S_1}), \dots, Q(\overline{y} \mid_{S_m}) \right)$ 

#### Lemma ([Kabanets-Impagliazzo])

Suppose Q does not have circuits of size  $(s \cdot r \cdot d^r \cdot D)^{O(1)}$ . Then, for any nonzero polynomial  $P(x_1, \ldots, x_m)$  of degree at most D and circuit size at most s, we have that  $P(Q[[\ell, k, r]]) \neq 0$ .

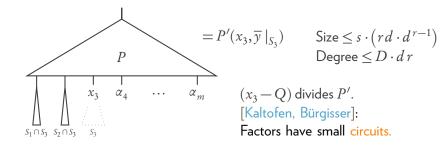
 $Q\llbracket \ell, k, r \rrbracket := \left( Q(\overline{y} \mid_{S_1}), \dots, Q(\overline{y} \mid_{S_m}) \right)$ 

#### Lemma ([Kabanets-Impagliazzo])



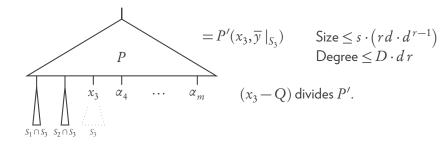
 $Q\llbracket \ell, k, r \rrbracket := \left( Q(\overline{y} \mid_{S_1}), \dots, Q(\overline{y} \mid_{S_m}) \right)$ 

#### Lemma ([Kabanets-Impagliazzo])



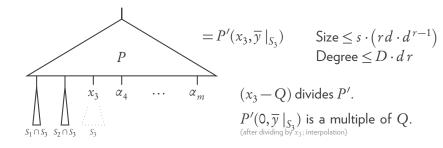
 $Q\llbracket \ell, k, r \rrbracket := \left( Q(\overline{y} \mid_{S_1}), \dots, Q(\overline{y} \mid_{S_m}) \right)$ 

#### Lemma ([Kabanets-Impagliazzo])



 $Q\llbracket \ell, k, r \rrbracket := \left( Q(\overline{y} \mid_{S_1}), \dots, Q(\overline{y} \mid_{S_m}) \right)$ 

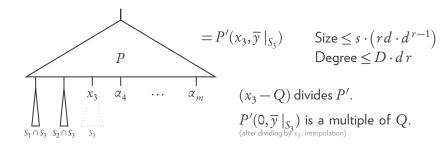
#### Lemma ([Kabanets-Impagliazzo])



 $Q\llbracket \ell, k, r \rrbracket := \left( Q(\overline{y} \mid_{S_1}), \dots, Q(\overline{y} \mid_{S_m}) \right)$ 

#### Lemma ([Kumar-S-Tengse])

Let  $P(x_1, ..., x_m)$  is a nonzero polynomial of degree at most D that is computable by a size s formula. Suppose Q is a k-variate polynomial of ind. degree < d such that  $P(Q[[\ell, k, r]]) = 0$ . Then a low-degree multiple of Q has formulas of size  $(s \cdot r \cdot d^r \cdot (D+1))$ .



 $Q\llbracket \ell, k, r \rrbracket := \left( Q(\overline{y} \mid_{S_1}), \dots, Q(\overline{y} \mid_{S_m}) \right)$ 

#### Lemma ([Kumar-S-Tengse])

Let  $P(x_1, \ldots, x_m)$  is a nonzero polynomial of degree at most D that is computable by a size s formula. Suppose Q is a k-variate polynomial of ind. degree < d such that  $P(Q[[\ell, k, r]]) = 0$ . Then a low-degree multiple of Q has formulas of size  $(s \cdot r \cdot d^r \cdot (D+1))$ .

 $Q\llbracket \ell, k, r \rrbracket := \left( Q(\overline{y} \mid_{S_1}), \dots, Q(\overline{y} \mid_{S_m}) \right)$ 

#### Lemma ([Kumar-S-Tengse])

Suppose Q has the property that no multiple of Q of degree at most  $D \cdot dr$  has a formula of size  $(s \cdot r \cdot d^r \cdot (D+1))$ . Then, for any nonzero polynomial  $P(x_1, \ldots, x_m)$  of degree at most D and

formula size at most s, we have that  $P(Q[[\ell, k, r]]) \neq 0$ .

 $\mathbf{Q}[\![\ell,k,r]\!] := \left(\mathbf{Q}(\overline{y}\mid_{S_1}), \dots, \mathbf{Q}(\overline{y}\mid_{S_m})\right)$ 

#### Lemma ([Kumar-S-Tengse])

Suppose Q has the property that no multiple of Q of degree at most  $D \cdot dr$  has a formula of size  $(s \cdot r \cdot d^r \cdot (D+1))$ . Then, for any nonzero polynomial  $P(x_1, \ldots, x_m)$  of degree at most D and formula size at most s, we have that  $P(Q[[\ell, k, r]]) \neq 0$ .

#### Corollary

Suppose Q vanishes on a hitting set for Formula(k, d', s') with  $d' = (D \cdot dr)$  and  $s' = s \cdot r \cdot d^r \cdot (D+1)$ . Then, if  $P \in$ Formula(m, D, s), we have

 $P \neq 0 \Longleftrightarrow P(Q\llbracket \ell, k, r \rrbracket) \neq 0.$ 

 $\mathbf{Q}\llbracket \ell, k, r \rrbracket := \left( \mathbf{Q}(\overline{y} \mid_{S_1}), \dots, \mathbf{Q}(\overline{y} \mid_{S_m}) \right)$ 

#### Lemma ([Kumar-S-Tengse])

Suppose Q has the property that no multiple of Q of degree at most  $D \cdot dr$  has a formula of size  $(s \cdot r \cdot d^r \cdot (D+1))$ . Then, for any nonzero polynomial  $P(x_1, \ldots, x_m)$  of degree at most D and formula size at most s, we have that  $P(Q[[\ell, k, r]]) \neq 0$ .

#### Corollary

Suppose Q vanishes on a hitting set for Formula(k, d', s') with  $d' = (D \cdot dr)$  and  $s' = s \cdot r \cdot d^r \cdot (D+1)$ . Then, if  $P \in$ Formula(m, D, s), we have

$$P \neq 0 \Longleftrightarrow P(Q[[\ell, k, r]]) \neq 0.$$

From hitting sets for k-variate formulas, we obtain a hitting set for m-variate formulas.

Hyp: Given a k-variate polynomial Q that is  $s^c$ -hard. Goal: Construct "better" hitting sets for  $\mathscr{C}(m, s, s)$  for all  $s \ge m$ 

**Hyp:** Given a k-variate polynomial Q that is  $s^c$ -hard. **Goal:** Construct "better" hitting sets for  $\mathscr{C}(m, s, s)$  for all  $s \ge m$ 

• Construct an  $(\ell, k, r)$ -design  $S_1, \ldots, S_m \subseteq [\ell]$ 

**Hyp:** Given a k-variate polynomial Q that is  $s^c$ -hard. **Goal:** Construct "better" hitting sets for  $\mathscr{C}(m, s, s)$  for all  $s \ge m$ 

• Construct an  $(\ell, k, r)$ -design  $S_1, \ldots, S_m \subseteq [\ell]$ 

 $\blacktriangleright$  Use the hardness of Q to argue that

$$0 \neq P \in \mathscr{C}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0$$

**Hyp:** Given a k-variate polynomial Q that is  $s^c$ -hard. **Goal:** Construct "better" hitting sets for  $\mathscr{C}(m, s, s)$  for all  $s \ge m$ 

• Construct an 
$$(\ell, k, r)$$
-design  $S_1, \ldots, S_m \subseteq [\ell]$ 

Use the hardness of Q to argue that

$$0 \neq P \in \mathscr{C}(m, s, s) \Longrightarrow P(Q\llbracket \ell, k, r \rrbracket) \neq 0$$

• Brute-force on the polynomial  $P(Q[[\ell, k, r]])$  to test if this is zero.

**Hyp:** Hitting sets for  $\mathscr{C}(\ell, s, s)$  for all  $s \ge \ell$ . **Goal:** Construct "better" hitting sets for  $\mathscr{C}(m, s, s)$  for all  $s \ge m$ 

• Construct an  $(\ell, k, r)$ -design  $S_1, \ldots, S_m \subseteq [\ell]$ 

Use the hardness of Q to argue that

$$0 \neq P \in \mathscr{C}(m, s, s) \Longrightarrow P(Q\llbracket \ell, k, r \rrbracket) \neq 0$$

• Brute-force on the polynomial  $P(Q[[\ell, k, r]])$  to test if this is zero.

**Hyp:** Hitting sets for  $\mathscr{C}(\ell, s, s)$  for all  $s \ge \ell$ . **Goal:** Construct "better" hitting sets for  $\mathscr{C}(m, s, s)$  for all  $s \ge m$ 

- Construct an  $(\ell, k, r)$ -design  $S_1, \ldots, S_m \subseteq [\ell]$
- ► Use Hyp to take a hitting set for  $\mathscr{C}(\ell, s^c, s^c)$  to construct a hard *k*-variate polynomial *Q*.
- $\blacktriangleright$  Use the hardness of Q to argue that

$$0 \neq P \in \mathscr{C}(m, s, s) \Longrightarrow P(Q\llbracket \ell, k, r \rrbracket) \neq 0$$

• Brute-force on the polynomial  $P(Q[[\ell, k, r]])$  to test if this is zero.

**Hyp:** Hitting sets for  $\mathscr{C}(\ell, s, s)$  for all  $s \ge \ell$ . **Goal:** Construct "better" hitting sets for  $\mathscr{C}(m, s, s)$  for all  $s \ge m$ 

- Construct an  $(\ell, k, r)$ -design  $S_1, \ldots, S_m \subseteq [\ell]$
- ► Use Hyp to take a hitting set for  $\mathscr{C}(\ell, s^c, s^c)$  to construct a hard *k*-variate polynomial *Q*.
- $\blacktriangleright$  Use the hardness of Q to argue that

$$0 \neq P \in \mathscr{C}(m, s, s) \Longrightarrow P(Q\llbracket \ell, k, r \rrbracket) \neq 0$$

▶  $P(Q[[\ell, k, r]]) \in \mathscr{C}(\ell, s', s')$  for a small-ish s'. Use **Hyp** on it.

## Why does bootstrapping work?

 $0 \neq P \in \mathscr{C}(m, s, s)$  (think of  $s = m^5$ ).

# Why does bootstrapping work?

 $0 \neq P \in \mathscr{C}(m, s, s)$  (think of  $s = m^5$ ).

If Q is a k-variate polynomial ( $k = 1000 \log m$ ) that is  $s^5$ -hard, then we can do a variable reduction from m to  $\ell = O(\log^2 m)$  that preserves nonzeroness.

$$0 \neq P \in \mathscr{C}(m, s, s)$$
 (think of  $s = m^5$ ).

If Q is a k-variate polynomial ( $k = 1000 \log m$ ) that is  $s^5$ -hard, then we can do a variable reduction from m to  $\ell = O(\log^2 m)$  that preserves nonzeroness.

$$P' = P(Q[\![\ell, k, r]\!]) \in \mathscr{C}(\ell, s', s') \text{ for a small-ish } s'.$$

$$0 \neq P \in \mathscr{C}(m, s, s)$$
 (think of  $s = m^5$ ).

If Q is a k-variate polynomial ( $k = 1000 \log m$ ) that is  $s^5$ -hard, then we can do a variable reduction from m to  $\ell = O(\log^2 m)$  that preserves nonzeroness.

$$P' = P(Q[\![\ell, k, r]\!]) \in \mathscr{C}(\ell, s', s') \text{ for a small-ish } s'.$$

**Note:** s' is already exponential in  $\ell$ .

$$0 \neq P \in \mathscr{C}(m, s, s)$$
 (think of  $s = m^5$ ).

If Q is a k-variate polynomial ( $k = 1000 \log m$ ) that is  $s^5$ -hard, then we can do a variable reduction from m to  $\ell = O(\log^2 m)$  that preserves nonzeroness.

$$P' = P(Q[\llbracket \ell, k, r \rrbracket) \in \mathscr{C}(\ell, s', s') \text{ for a small-ish } s'.$$

**Note:** s' is already exponential in  $\ell$ . Hence, to apply this once more, we  $k = O(\log \ell)$  variate polynomial that is  $(s')^5 = \exp(\exp(k))$ -hard.

$$0 \neq P \in \mathscr{C}(m, s, s)$$
 (think of  $s = m^5$ ).

If Q is a k-variate polynomial ( $k = 1000 \log m$ ) that is  $s^5$ -hard, then we can do a variable reduction from m to  $\ell = O(\log^2 m)$  that preserves nonzeroness.

$$P' = P(Q[\llbracket \ell, k, r \rrbracket) \in \mathscr{C}(\ell, s', s') \text{ for a small-ish } s'.$$

**Note:** s' is already exponential in  $\ell$ . Hence, to apply this once more, we  $k = O(\log \ell)$  variate polynomial that is  $(s')^5 = \exp(\exp(k))$ -hard.

Unlike the boolean setting, we **can** find such polynomials of suitably large degree.

$$0 \neq P \in \mathscr{C}(m, s, s)$$
 (think of  $s = m^5$ ).

If Q is a k-variate polynomial ( $k = 1000 \log m$ ) that is  $s^5$ -hard, then we can do a variable reduction from m to  $\ell = O(\log^2 m)$  that preserves nonzeroness.

$$P' = P(Q[\llbracket \ell, k, r \rrbracket) \in \mathscr{C}(\ell, s', s') \text{ for a small-ish } s'.$$

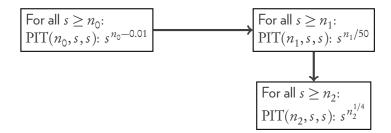
**Note:** s' is already exponential in  $\ell$ . Hence, to apply this once more, we  $k = O(\log \ell)$  variate polynomial that is  $(s')^5 = \exp(\exp(k))$ -hard.

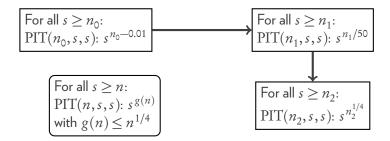
Unlike the boolean setting, we **can** find such polynomials of suitably large degree.

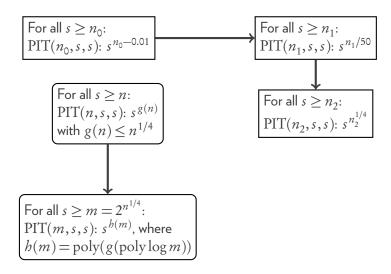
Thus, there is nothing stopping you from doing this again and again.

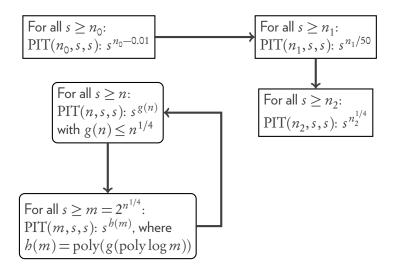
For all 
$$s \ge n_0$$
:  
PIT $(n_0, s, s)$ :  $s^{n_0-0.01}$ 

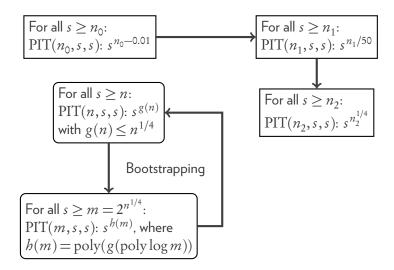


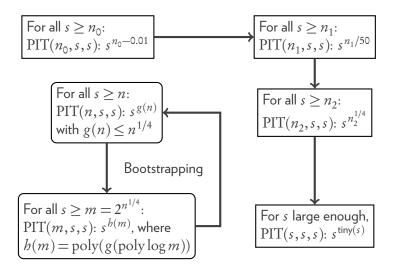


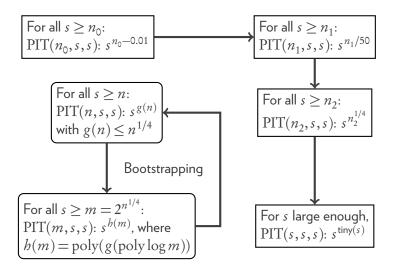


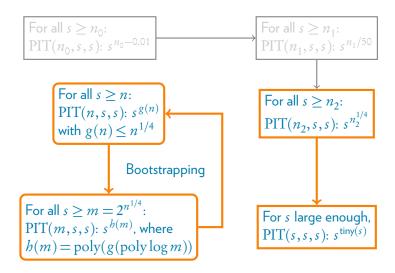












#### Lemma (Bootstrapping slightly non-trivial hitting sets)

Let *n* be large enough  $(n > 10^{10})$ . Suppose, for all  $s \ge n$ , there is an explicit hitting set for Formula(n, s, s) of size at most

$$s^{g(n)}$$
, with  $g(n) \leq \left(\frac{n^{1/4}}{10}\right)$ .

#### Lemma (Bootstrapping slightly non-trivial hitting sets)

Let *n* be large enough  $(n > 10^{10})$ . Suppose, for all  $s \ge n$ , there is an explicit hitting set for Formula(n, s, s) of size at most

$$s^{g(n)}$$
, with  $g(n) \leq \left(\frac{n^{1/4}}{10}\right)$ .

Then, for  $m = 2^{n^{1/4}}$  and all  $s \ge m$ , we have an explicit hitting set for Formula(m, s, s) of size at most

$$s^{h(m)}$$
, with  $h(m) \le 20(g(n))^2$ 

#### Lemma (Bootstrapping slightly non-trivial hitting sets)

Let *n* be large enough  $(n > 10^{10})$ . Suppose, for all  $s \ge n$ , there is an explicit hitting set for Formula(n, s, s) of size at most

$$s^{g(n)}$$
, with  $g(n) \leq \left(\frac{n^{1/4}}{10}\right)$ .

Then, for  $m = 2^{n^{1/4}}$  and all  $s \ge m$ , we have an explicit hitting set for Formula(m, s, s) of size at most

$$s^{b(m)}$$
, with  $b(m) \le 20(g(n))^2 = 20(g(\log^4 m))^2$ .

#### Lemma (Bootstrapping slightly non-trivial hitting sets)

Let *n* be large enough  $(n > 10^{10})$ . Suppose, for all  $s \ge n$ , there is an explicit hitting set for Formula(n, s, s) of size at most

$$s^{g(n)}$$
, with  $g(n) \leq \left(\frac{n^{1/4}}{10}\right)$ .

Then, for  $m = 2^{n^{1/4}}$  and all  $s \ge m$ , we have an explicit hitting set for Formula(m, s, s) of size at most

$$s^{h(m)}$$
, with  $h(m) \le 20(g(n))^2$ 

#### Lemma (Bootstrapping slightly non-trivial hitting sets)

Let *n* be large enough  $(n > 10^{10})$ . Suppose, for all  $s \ge n$ , there is an explicit hitting set for Formula(n, s, s) of size at most

$$s^{g(n)}$$
, with  $g(n) \leq \left(\frac{n^{1/4}}{10}\right)$ .

Then, for  $m = 2^{2^{(1/4)n^{1/4}}}$  and all  $s \ge m$ , we have an explicit hitting set for Formula(m, s, s) of size at most

$$s^{h(m)}$$
, with  $h(m) \le 20^{1+2} (g(n))^4$ 

#### Lemma (Bootstrapping slightly non-trivial hitting sets)

Let *n* be large enough  $(n > 10^{10})$ . Suppose, for all  $s \ge n$ , there is an explicit hitting set for Formula(n, s, s) of size at most

$$s^{g(n)}$$
, with  $g(n) \leq \left(\frac{n^{1/4}}{10}\right)$ .

Then, for  $m = 2^{c^{n^{1/4}}}$  and all  $s \ge m$ , we have an explicit hitting set for Formula(m, s, s) of size at most

$$s^{h(m)}$$
, with  $h(m) \le 20^{1+2}(g(n))^4$ 

#### Lemma (Bootstrapping slightly non-trivial hitting sets)

Let *n* be large enough  $(n > 10^{10})$ . Suppose, for all  $s \ge n$ , there is an explicit hitting set for Formula(n, s, s) of size at most

$$s^{g(n)}$$
, with  $g(n) \leq \left(\frac{n^{1/4}}{10}\right)$ .

Then, for  $m = 2^{e^{c^{n^{1/4}}}}$  and all  $s \ge m$ , we have an explicit hitting set for Formula(m, s, s) of size at most

$$s^{h(m)}$$
, with  $h(m) \le 20^{1+2+4} (g(n))^8$ 

#### Lemma (Bootstrapping slightly non-trivial hitting sets)

Let *n* be large enough  $(n > 10^{10})$ . Suppose, for all  $s \ge n$ , there is an explicit hitting set for Formula(n, s, s) of size at most

$$s^{g(n)}$$
, with  $g(n) \leq \left(\frac{n^{1/4}}{10}\right)$ .

Then, for  $m = 2^{c^{c^{n^{1/4}}}}$  and all  $s \ge m$ , we have an explicit hitting set for Formula(m, s, s) of size at most

$$s^{h(m)}$$
, with  $h(m) \le 20^{1+2+4+8}(g(n))^{16}$ 

#### Lemma (Bootstrapping slightly non-trivial hitting sets)

Let *n* be large enough  $(n > 10^{10})$ . Suppose, for all  $s \ge n$ , there is an explicit hitting set for Formula(n, s, s) of size at most

$$s^{g(n)}$$
, with  $g(n) \leq \left(\frac{n^{1/4}}{10}\right)$ .

Then, we have an explicit hitting set for Formula(s, s, s) of size

$$s^{\exp(\exp(O(\log^* s)))}$$

**Hyp:**  $s^{g(n)}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ , with  $g(n) \le \frac{n^{1/4}}{10}$ .

**Hyp:**  $s^{g(n)}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ , with  $g(n) \le \frac{n^{1/4}}{10}$ .

Let  $k = \sqrt{n}$ ,  $\ell = n$  and  $r = n^{1/4}$ . Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = 2^{n^{1/4}}$ .

**Hyp:**  $s^{g(n)}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ , with  $g(n) \le \frac{n^{1/4}}{10}$ .

Let 
$$k = \sqrt{n}$$
,  $\ell = n$  and  $r = n^{1/4}$ .  
Let  $S_1, \dots, S_m$  be an  $(\ell, k, r)$ -design with  $m = 2^{n^{1/4}}$ .

Using the hitting set H for Formula $(n, s^5, s^5)$  of size  $s^{5g(n)}$ , find Q vanishing on H such that:

• Q is k-variate, and  $ideg(Q) < d := s^{5g(n)/k}$ .

**Hyp:**  $s^{g(n)}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ , with  $g(n) \le \frac{n^{1/4}}{10}$ .

Let 
$$k = \sqrt{n}$$
,  $\ell = n$  and  $r = n^{1/4}$ .  
Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = 2^{n^{1/4}}$ .

Using the hitting set H for Formula $(n, s^5, s^5)$  of size  $s^{5g(n)}$ , find Q vanishing on H such that:

• Q is k-variate, and  $ideg(Q) < d := s^{5g(n)/k}$ .

**Claim:**  $0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0.$ 

**Hyp:**  $s^{g(n)}$  hitting sets for  $\mathscr{C}(n,s,s)$ , for any  $s \ge n$ , with  $g(n) \le \frac{n^{1/4}}{10}$ .

Let 
$$k = \sqrt{n}$$
,  $\ell = n$  and  $r = n^{1/4}$ .  
Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = 2^{n^{1/4}}$ .

Using the hitting set H for Formula $(n, s^5, s^5)$  of size  $s^{5g(n)}$ , find Q vanishing on H such that:

• Q is k-variate, and 
$$ideg(Q) < d := s^{5g(n)/k}$$

Claim:  $0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0.$ Proof.

Q vanishes on a hitting set for Formula(k, d', s') as  $d' = dDr = s^{5g(n)/k} \cdot s \cdot r \leq s^5,$  $s' = srd^r(D+1) \leq s^4 \cdot s^{5g(n) \cdot r/k} \leq s^5.$ 

Use the previous corollary.

**Hyp:**  $s^{g(n)}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ , with  $g(n) \le \frac{n^{1/4}}{10}$ .

Let 
$$k = \sqrt{n}$$
,  $\ell = n$  and  $r = n^{1/4}$ .  
Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = 2^{n^{1/4}}$ .

Using the hitting set H for Formula $(n, s^5, s^5)$  of size  $s^{5g(n)}$ , find Q vanishing on H such that:

• Q is k-variate, and  $ideg(Q) < d := s^{5g(n)/k}$ .

**Claim:**  $0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0.$ 

**Hyp:**  $s^{g(n)}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ , with  $g(n) \le \frac{n^{1/4}}{10}$ .

Let 
$$k = \sqrt{n}$$
,  $\ell = n$  and  $r = n^{1/4}$ .  
Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = 2^{n^{1/4}}$ .

Using the hitting set H for Formula $(n, s^5, s^5)$  of size  $s^{5g(n)}$ , find Q vanishing on H such that:

• Q is k-variate, and 
$$ideg(Q) < d := s^{5g(n)/k}$$

**Claim:**  $0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q\llbracket \ell, k, r \rrbracket) \neq 0.$ 

 $P(Q[\![\ell,k,r]\!])$  is a formula of size,degree at most  $s \cdot s^{\log(n)} \leq s^{2\log(n)}$ .

**Hyp:**  $s^{g(n)}$  hitting sets for  $\mathscr{C}(n,s,s)$ , for any  $s \ge n$ , with  $g(n) \le \frac{n^{1/4}}{10}$ .

Let 
$$k = \sqrt{n}$$
,  $\ell = n$  and  $r = n^{1/4}$ .  
Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = 2^{n^{1/4}}$ .

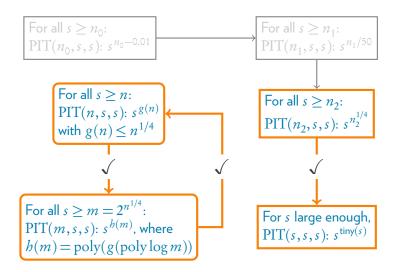
Using the hitting set H for Formula $(n, s^5, s^5)$  of size  $s^{5g(n)}$ , find Q vanishing on H such that:

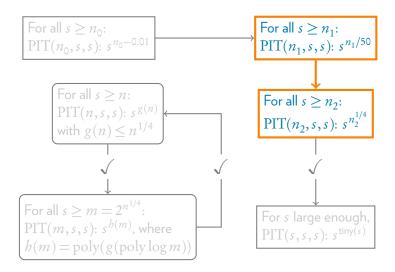
• Q is k-variate, and 
$$ideg(Q) < d := s^{5g(n)/k}$$
.

**Claim:**  $0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0.$ 

 $P(Q[\![\ell,k,r]\!]) \text{ is a formula of size,degree at most } s \cdot s^{\log(n)} \leq s^{2 \log(n)}.$ 

Using the hypothesis again, we get a hitting set of size  $s^{20(g(n))^2}$  for Formula(m, s, s).





## Déjà vu

**Hyp:**  $s^{g(n)}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ , with  $g(n) \le \frac{n}{50}$ .

**Hyp:**  $s^{g(n)}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ , with  $g(n) \le \frac{n}{50}$ .

Let k = n,  $\ell = n^2$  and r = 10. Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = k^{10}$ .

**Hyp:**  $s^{g(n)}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ , with  $g(n) \le \frac{n}{50}$ .

Let 
$$k = n$$
,  $\ell = n^2$  and  $r = 10$ .  
Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = k^{10}$ .

Using the hitting set H for Formula $(n, s^5, s^5)$  of size  $s^{5g(n)}$ , find Q vanishing on H such that:

• Q is k-variate, and  $ideg(Q) < d := s^{5g(n)/k}$ .

**Hyp:**  $s^{g(n)}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ , with  $g(n) \le \frac{n}{50}$ .

Let 
$$k = n$$
,  $\ell = n^2$  and  $r = 10$ .  
Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = k^{10}$ .

Using the hitting set H for Formula $(n, s^5, s^5)$  of size  $s^{5g(n)}$ , find Q vanishing on H such that:

• Q is k-variate, and  $ideg(Q) < d := s^{5g(n)/k}$ .

**Claim:**  $0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0.$ 

**Hyp:**  $s^{g(n)}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ , with  $g(n) \le \frac{n}{50}$ .

Let 
$$k = n$$
,  $\ell = n^2$  and  $r = 10$ .  
Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = k^{10}$ .

Using the hitting set H for Formula $(n, s^5, s^5)$  of size  $s^{5g(n)}$ , find Q vanishing on H such that:

• Q is k-variate, and  $ideg(Q) < d := s^{5g(n)/k}$ .

Claim:  $0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q\llbracket \ell, k, r \rrbracket) \neq 0.$ Proof.

 $\begin{aligned} Q \text{ vanishes on a hitting set for Formula}(k, d', s') \text{ as } \\ d' &= dDr = s^{5g(n)/k} \cdot s \cdot r \leq s^5, \\ s' &= srd^r(D+1) \leq s^4 \cdot s^{5g(n) \cdot r/k} \leq s^5. \end{aligned}$ 

Use the previous corollary.

**Hyp:**  $s^{g(n)}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ , with  $g(n) \le \frac{n}{50}$ .

Let 
$$k = n$$
,  $\ell = n^2$  and  $r = 10$ .  
Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = k^{10}$ .

Using the hitting set H for Formula $(n, s^5, s^5)$  of size  $s^{5g(n)}$ , find Q vanishing on H such that:

• Q is k-variate, and  $ideg(Q) < d := s^{5g(n)/k}$ .

**Claim:**  $0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0.$ 

**Hyp:**  $s^{g(n)}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ , with  $g(n) \le \frac{n}{50}$ .

Let 
$$k = n$$
,  $\ell = n^2$  and  $r = 10$ .  
Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = k^{10}$ .

Using the hitting set H for Formula $(n, s^5, s^5)$  of size  $s^{5g(n)}$ , find Q vanishing on H such that:

• Q is k-variate, and  $ideg(Q) < d := s^{5g(n)/k}$ .

**Claim:**  $0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0.$ 

 $P(Q[[\ell, k, r]])$  is a formula on  $\ell = n^2$  variables of degree  $s \cdot k \cdot s^{g(n)/k} \leq s^3$ .

**Hyp:**  $s^{g(n)}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ , with  $g(n) \le \frac{n}{50}$ .

Let 
$$k = n$$
,  $\ell = n^2$  and  $r = 10$ .  
Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = k^{10}$ .

Using the hitting set H for Formula $(n, s^5, s^5)$  of size  $s^{5g(n)}$ , find Q vanishing on H such that:

• Q is k-variate, and  $ideg(Q) < d := s^{5g(n)/k}$ .

**Claim:**  $0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0.$ 

 $P(Q[[\ell, k, r]])$  is a formula on  $\ell = n^2$  variables of degree  $s \cdot k \cdot s^{g(n)/k} \leq s^3$ . [O-DL-S-Z] lemma: hitting set of size  $s^{3\ell}$ 

**Hyp:**  $s^{g(n)}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ , with  $g(n) \le \frac{n}{50}$ .

Let 
$$k = n$$
,  $\ell = n^2$  and  $r = 10$ .  
Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = k^{10}$ .

Using the hitting set H for Formula $(n, s^5, s^5)$  of size  $s^{5g(n)}$ , find Q vanishing on H such that:

• Q is k-variate, and  $ideg(Q) < d := s^{5g(n)/k}$ .

**Claim:**  $0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0.$ 

 $P(Q[[\ell, k, r]])$  is a formula on  $\ell = n^2$  variables of degree  $s \cdot k \cdot s^{g(n)/k} \leq s^3$ . [O-DL-S-Z] lemma: hitting set of size  $s^{3\ell} \leq s^{(1/10) \cdot m^{1/4}}$ 

**Hyp:**  $s^{g(n)}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ , with  $g(n) \le \frac{n}{50}$ .

Let 
$$k = n$$
,  $\ell = n^2$  and  $r = 10$ .  
Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = k^{10}$ .

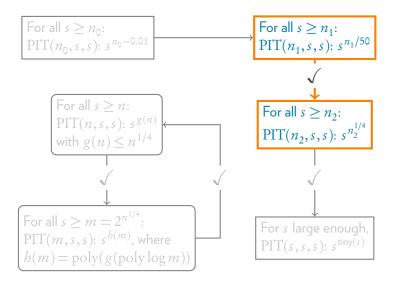
Using the hitting set H for Formula $(n, s^5, s^5)$  of size  $s^{5g(n)}$ , find Q vanishing on H such that:

• Q is k-variate, and  $ideg(Q) < d := s^{5g(n)/k}$ .

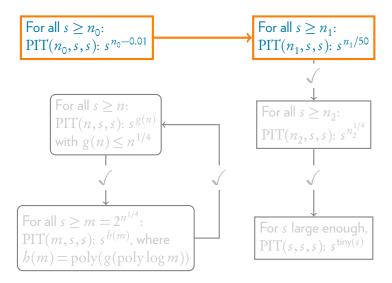
**Claim:**  $0 \neq P \in \text{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0.$ 

 $P(Q[[\ell, k, r]])$  is a formula on  $\ell = n^2$  variables of degree  $s \cdot k \cdot s^{g(n)/k} \leq s^3$ . [O-DL-S-Z] lemma: hitting set of size  $s^{3\ell} \leq s^{(1/10) \cdot m^{1/4}}$ 

#### Plan



#### Plan



**Hyp:**  $s^{n-0.01}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ .

**Hyp:**  $s^{n-0.01}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ .

Let 
$$k = n, \ell = n^5$$
 and  $r = 2$ .  
Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = \left(\frac{\ell}{k}\right)^r = n^8$ .

**Hyp:**  $s^{n-0.01}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ .

Let 
$$k = n, \ell = n^5$$
 and  $r = 2$ .  
Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = \left(\frac{\ell}{k}\right)^r = n^8$ .

Use the hitting set for Formula( $n, s^{300n}, s^{300n}$ ) to get

• Q is k-variate, and 
$$ideg(Q) < d := s^{300(n-0.01)} = s^{300n-3}$$
.

**Hyp:**  $s^{n-0.01}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ .

Let 
$$k = n, \ell = n^5$$
 and  $r = 2$ .  
Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = \left(\frac{\ell}{k}\right)^r = n^8$ .

Use the hitting set for Formula( $n, s^{300n}, s^{300n}$ ) to get

• Q is k-variate, and 
$$ideg(Q) < d := s^{300(n-0.01)} = s^{300n-3}$$
.

**Hyp:**  $s^{n-0.01}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ .

Let 
$$k = n$$
,  $\ell = n^5$  and  $r = 2$ .  
Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = \left(\frac{\ell}{k}\right)^r = n^8$ .

Use the hitting set for Formula( $n, s^{300n}, s^{300n}$ ) to get

• Q is k-variate, and  $ideg(Q) < d := s^{300(n-0.01)} = s^{300n-3}$ .

**Claim:**  $0 \neq P \in \text{Formula}(m, s, s) \implies P(Q[[\ell, k, r]]) \neq 0$ 

**Hyp:**  $s^{n-0.01}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ .

Let 
$$k = n$$
,  $\ell = n^5$  and  $r = 2$ .  
Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = \left(\frac{\ell}{k}\right)^r = n^8$ .

Use the hitting set for Formula $(n, s^{300n}, s^{300n})$  to get

• Q is k-variate, and  $ideg(Q) < d := s^{300(n-0.01)} = s^{300n-3}$ .

**Claim:**  $0 \neq P \in \text{Formula}(m, s, s) \implies P(Q[[\ell, k, r]]) \neq 0$ **Proof:** If not, there is a nonzero multiple  $\tilde{Q}$  of Q, whose degree is at most

 $s \cdot (rd) \leq s^{300n}$ ,

**Hyp:**  $s^{n-0.01}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ .

Let 
$$k = n$$
,  $\ell = n^5$  and  $r = 2$ .  
Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = \left(\frac{\ell}{k}\right)^r = n^8$ .

Use the hitting set for Formula( $n, s^{300n}, s^{300n}$ ) to get

• Q is k-variate, and  $ideg(Q) < d := s^{300(n-0.01)} = s^{300n-3}$ .

**Claim:** 
$$0 \neq P \in \text{Formula}(m, s, s) \implies P(Q[[\ell, k, r]]) \neq 0$$

$$s \cdot ((rd) \cdot d^{r-1}) \cdot (s+1)$$

**Hyp:**  $s^{n-0.01}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ .

Let 
$$k = n$$
,  $\ell = n^5$  and  $r = 2$ .  
Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = \left(\frac{\ell}{k}\right)^r = n^8$ .

Use the hitting set for Formula $(n, s^{300n}, s^{300n})$  to get

• Q is k-variate, and  $ideg(Q) < d := s^{300(n-0.01)} = s^{300n-3}$ .

 $\mathbf{Claim: } 0 \neq P \in \mathrm{Formula}(m, s, s) \Longrightarrow P(Q[\![\ell, k, r]\!]) \neq 0$ 

**Proof:** If not, there is a nonzero multiple  $\tilde{Q}$  of Q, whose degree is at most  $s \cdot (rd) \leq s^{300n}$ , computable by a formula of size

$$s \cdot ((rd) \cdot d^{r-1}) \cdot (s+1)$$

Complexity to compute an (r-1)-variate polynomial of ideg d

**Hyp:**  $s^{n-0.01}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ .

Let 
$$k = n$$
,  $\ell = n^5$  and  $r = 2$ .  
Let  $S_1, \dots, S_m$  be an  $(\ell, k, r)$ -design with  $m = \left(\frac{\ell}{k}\right)^r = n^8$ .

Use the hitting set for Formula $(n, s^{300n}, s^{300n})$  to get

• Q is k-variate, and  $ideg(Q) < d := s^{300(n-0.01)} = s^{300n-3}$ .

 $\mathbf{Claim: } 0 \neq P \in \mathrm{Formula}(m, s, s) \Longrightarrow P(Q[\![\ell, k, r]\!]) \neq 0$ 

**Proof:** If not, there is a nonzero multiple  $\tilde{Q}$  of Q, whose degree is at most  $s \cdot (rd) \leq s^{300n}$ , computable by a formula of size

$$s \cdot ((rd) \cdot d^{r-1}) \cdot (s+1)$$

Complexity to compute an (r-1)-variate polynomial of ideg d

**Hyp:**  $s^{n-0.01}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ .

Let 
$$k = n, \ell = n^5$$
 and  $r = 2$ .  
Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = \left(\frac{\ell}{k}\right)^r = n^8$ .

Use the hitting set for  $Formula(n, s^{300n}, s^{300n})$  to get

• Q is k-variate, and  $ideg(Q) < d := s^{300(n-0.01)} = s^{300n-3}$ .

**Claim:** 
$$0 \neq P \in \text{Formula}(m, s, s) \implies P(Q[[\ell, k, r]]) \neq 0$$

**Proof:** If not, there is a nonzero multiple  $\tilde{Q}$  of Q, whose degree is at most  $s \cdot (rd) \leq s^{300n}$ , computable by a formula of size

$$s \cdot ((rd) \cdot d^{r-1}) \cdot (s+1)$$

Complexity to compute an univariate polynomial of degree d

**Hyp:**  $s^{n-0.01}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ .

Let 
$$k = n$$
,  $\ell = n^5$  and  $r = 2$ .  
Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = \left(\frac{\ell}{k}\right)^r = n^8$ .

Use the hitting set for Formula $(n, s^{300n}, s^{300n})$  to get

• Q is k-variate, and  $ideg(Q) < d := s^{300(n-0.01)} = s^{300n-3}$ .

**Claim:**  $0 \neq P \in \text{Formula}(m, s, s) \implies P(Q[[\ell, k, r]]) \neq 0$ 

$$s \cdot 10d \cdot (s+1)$$

**Hyp:**  $s^{n-0.01}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ .

Let 
$$k = n$$
,  $\ell = n^5$  and  $r = 2$ .  
Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = \left(\frac{\ell}{k}\right)^r = n^8$ .

Use the hitting set for Formula( $n, s^{300n}, s^{300n}$ ) to get

• Q is k-variate, and  $ideg(Q) < d := s^{300(n-0.01)} = s^{300n-3}$ .

**Claim:** 
$$0 \neq P \in \text{Formula}(m, s, s) \implies P(Q[[\ell, k, r]]) \neq 0$$

$$s \cdot 10d \cdot (s+1) \le s^3 \cdot s^{300n-3}$$

**Hyp:**  $s^{n-0.01}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ .

Let 
$$k = n$$
,  $\ell = n^5$  and  $r = 2$ .  
Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = \left(\frac{\ell}{k}\right)^r = n^8$ .

Use the hitting set for Formula $(n, s^{300n}, s^{300n})$  to get

• Q is k-variate, and  $ideg(Q) < d := s^{300(n-0.01)} = s^{300n-3}$ .

**Claim:** 
$$0 \neq P \in \text{Formula}(m, s, s) \implies P(Q[[\ell, k, r]]) \neq 0$$

$$s \cdot 10d \cdot (s+1) \le s^3 \cdot s^{300n-3} \le s^{300n}$$
 ... no way...

**Hyp:**  $s^{n-0.01}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ .

Let 
$$k = n$$
,  $\ell = n^5$  and  $r = 2$ .  
Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = \left(\frac{\ell}{k}\right)^r = n^8$ .

Use the hitting set for Formula( $n, s^{300n}, s^{300n}$ ) to get

• Q is k-variate, and  $ideg(Q) < d := s^{300(n-0.01)} = s^{300n-3}$ .

**Claim:**  $0 \neq P \in \text{Formula}(m, s, s) \implies P(Q[[\ell, k, r]]) \neq 0$ 

**Hyp:**  $s^{n-0.01}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ .

Let 
$$k = n$$
,  $\ell = n^5$  and  $r = 2$ .  
Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = \left(\frac{\ell}{k}\right)^r = n^8$ .

Use the hitting set for Formula $(n, s^{300n}, s^{300n})$  to get

• Q is k-variate, and  $ideg(Q) < d := s^{300(n-0.01)} = s^{300n-3}$ .

 $\mathbf{Claim: } 0 \neq P \in \mathrm{Formula}(m, s, s) \Longrightarrow P(Q[\![\ell, k, r]\!]) \neq 0$ 

 $P(Q[\![\ell,k,r]\!])$  is a formula on  $\ell=n^5$  variables.

**Hyp:**  $s^{n-0.01}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ .

Let 
$$k = n$$
,  $\ell = n^5$  and  $r = 2$ .  
Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = \left(\frac{\ell}{k}\right)^r = n^8$ .

Use the hitting set for Formula( $n, s^{300n}, s^{300n}$ ) to get

• Q is k-variate, and  $ideg(Q) < d := s^{300(n-0.01)} = s^{300n-3}$ .

 $\mathbf{Claim: } 0 \neq P \in \mathrm{Formula}(m, s, s) \Longrightarrow P(Q[[\ell, k, r]]) \neq 0$ 

 $P(Q[\![\ell, k, r]\!])$  is a formula on  $\ell = n^5$  variables of degree  $s \cdot k \cdot s^{300n-3} \leq s^{300n}$ .

**Hyp:**  $s^{n-0.01}$  hitting sets for  $\mathscr{C}(n, s, s)$ , for any  $s \ge n$ .

Let 
$$k = n$$
,  $\ell = n^5$  and  $r = 2$ .  
Let  $S_1, \ldots, S_m$  be an  $(\ell, k, r)$ -design with  $m = \left(\frac{\ell}{k}\right)^r = n^8$ .

Use the hitting set for  $Formula(n, s^{300n}, s^{300n})$  to get

• Q is k-variate, and  $ideg(Q) < d := s^{300(n-0.01)} = s^{300n-3}$ .

**Claim:** 
$$0 \neq P \in \text{Formula}(m, s, s) \implies P(Q[[\ell, k, r]]) \neq 0$$

 $P(Q[\![\ell, k, r]\!])$  is a formula on  $\ell = n^5$  variables of degree  $s \cdot k \cdot s^{300n-3} \leq s^{300n}$ . [O-DL-S-Z] lemma: a hitting set of size  $s^{300n \cdot n^5} \leq s^{m/50}$  for Formula(m, s, s).

A similar statement also holds for bounded depth formulas, with some slack in depth between the hypothesis and conclusion.

- A similar statement also holds for bounded depth formulas, with some slack in depth between the hypothesis and conclusion.
- It is crucial that the exponent of s in the hypothesis is independent of s.

- A similar statement also holds for bounded depth formulas, with some slack in depth between the hypothesis and conclusion.
- It is crucial that the exponent of s in the hypothesis is independent of s.

**Question:** Can saying something non-trivial from a hypothesis for just s = poly(n) circuits?

- A similar statement also holds for bounded depth formulas, with some slack in depth between the hypothesis and conclusion.
- It is crucial that the exponent of s in the hypothesis is independent of s.

**Question:** Can saying something non-trivial from a hypothesis for just s = poly(n) circuits?

► To obtain the hitting set for C(s, s, s), the algorithm would use hitting sets for C(n<sub>0</sub>, s', s') for various s' ≤ s<sup>tiny(s)</sup>.

- A similar statement also holds for bounded depth formulas, with some slack in depth between the hypothesis and conclusion.
- It is crucial that the exponent of s in the hypothesis is independent of s.

**Question:** Can saying something non-trivial from a hypothesis for just s = poly(n) circuits?

► To obtain the hitting set for  $\mathscr{C}(s, s, s)$ , the algorithm would use hitting sets for  $\mathscr{C}(n_0, s', s')$  for various  $s' \leq s^{\text{tiny}(s)}$ .

**Question:** Is there a *hardness amplification* (à la [CILM]) in this setting?

- A similar statement also holds for bounded depth formulas, with some slack in depth between the hypothesis and conclusion.
- It is crucial that the exponent of s in the hypothesis is independent of s.

**Question:** Can saying something non-trivial from a hypothesis for just s = poly(n) circuits?

► To obtain the hitting set for  $\mathscr{C}(s, s, s)$ , the algorithm would use hitting sets for  $\mathscr{C}(n_0, s', s')$  for various  $s' \leq s^{\text{tiny}(s)}$ .

**Question:** Is there a *hardness amplification* (à la [CILM]) in this setting?