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Algebraic Formulas

1 x1 1 x2 1 x3 1 x4

+ + + +

×
f (x1, x2, x3, x4)

▶ A tree, made up of+ and× gates. Leaves containing variables or
constants. Size = number of leaves

▶ Size( f (g1, . . . , gn)) ≤ Size( f ) ·maxi (Size(gi ))

▶ Formula(n, d , s): n-variate, degree≤ d polynomials computable
by size s formulas. (note: d ≤ s)
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Blackbox Polynomial Identity Testing

1 x1 1 x2 1 x3 1 x4

+ + + +

×

Is this zero?

This box contains a polynomial fromC (n, d , s)

Only have evaluation access to the circuit.

Equivalent to constructing a hitting set H :
For every nonzero P ∈C (n, d , s), there is some a ∈H such
that P (a) ̸= 0.



Hitting Sets

Counting argument
There are non-explicit hitting sets of poly(s) size forC (n, d , s).

Lemma ([Ore*, DeMillo-Lipton, Schwartz-Zippel])
If S ⊆ F with |S | ≥ d + 1, then Sn is a hitting set forC (n, d , s).

That is, we have an explicit, but trivial, hitting set of (d + 1)n size.

Question: Are there small explicit hitting sets forC (n, d , s)?

*: See [Bishnoi-Clark-Potukuchi-Schmitt]
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Theorem ([Kumar-S-Tengse])
Say n large enough.
Suppose, for each s ≥ n, there is an explicit hitting set for Formula(n, s , s)
of size at most
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Improving almost-trivial hitting sets

Theorem ([Kumar-S-Tengse])
Say n large enough.
Suppose, for each s ≥ n, there is an explicit hitting set forC (n, s , s)
of size at most

(s + 1)n−0.01. (Trivial hitting set size: (s + 1)n)

Then there is an explicit hitting set forC (s , s , s) of size at most

s tiny(s).

(whereC is any class well-behaved under sums, projections and compositions)
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Preliminaries:

Hardness vs Randomness

for algebraic models



Lower bounds from hitting sets

H is a hitting set forC (n, d , s) if

for all 0 ̸= P ∈C (n, d , s), there is some a ∈H such that P (a) ̸= 0.

Observation
If P is a nonzero polynomial that vanishes on H , then P cannot be a
member ofC (n, d , s).

Theorem ([Heintz-Schnorr, Agrawal])
For any k ≤ n such that k |H |1/k ≤ d , we can find a nonzero k-variate
polynomial Q of individual degree less than |H |1/k such that Q requires
size more than s .
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Hitting sets from lower bounds

Theorem ([Kabanets-Impagliazzo] (Informal))
If Q is hard-enough, then for any small algebraic circuit computing P , we
have

P (x1, . . . , xm) ̸= 0 ⇐⇒ P (Q(y1), . . . ,Q(y m)) ̸= 0

even if y1, . . . , y m are almost disjoint.



Hitting sets from lower bounds
Aside: Combinatorial Designs



Hitting sets from lower bounds
Aside: Combinatorial Designs

Definition (Combinatorial designs)
{S1, . . . , Sm} ⊆ [ℓ] is an (ℓ, k , r )-design if |Si |= k and

���Si ∩ S j

���< r .



Hitting sets from lower bounds
Aside: Combinatorial Designs

Definition (Combinatorial designs)
{S1, . . . , Sm} ⊆ [ℓ] is an (ℓ, k , r )-design if |Si |= k and

���Si ∩ S j

���< r .

Fact
For all∗ ℓ≥ k2 and r ≤ k , we have explicit (ℓ, k , r )-designs with
m =
�
ℓ
k

�r
.



Hitting sets from lower bounds
Aside: Combinatorial Designs

Definition (Combinatorial designs)
{S1, . . . , Sm} ⊆ [ℓ] is an (ℓ, k , r )-design if |Si |= k and

���Si ∩ S j

���< r .

Fact
For all∗ ℓ≥ k2 and r ≤ k , we have explicit (ℓ, k , r )-designs with
m =
�
ℓ
k

�r
.

ℓ
k

k

|F|= (ℓ/k).



Hitting sets from lower bounds
Aside: Combinatorial Designs

Definition (Combinatorial designs)
{S1, . . . , Sm} ⊆ [ℓ] is an (ℓ, k , r )-design if |Si |= k and

���Si ∩ S j

���< r .

Fact
For all∗ ℓ≥ k2 and r ≤ k , we have explicit (ℓ, k , r )-designs with
m =
�
ℓ
k

�r
.

ℓ
k

k

|F|= (ℓ/k).
For p(z) ∈ F[z] with deg(p)< r ,
Sp = {(i , p(i)) : i ∈ [k]}.



Hitting sets from lower bounds
Aside: Combinatorial Designs

Definition (Combinatorial designs)
{S1, . . . , Sm} ⊆ [ℓ] is an (ℓ, k , r )-design if |Si |= k and

���Si ∩ S j

���< r .

Fact
For all∗ ℓ≥ k2 and r ≤ k , we have explicit (ℓ, k , r )-designs with
m =
�
ℓ
k

�r
.

ℓ
k

k

|F|= (ℓ/k).
For p(z) ∈ F[z] with deg(p)< r ,
Sp = {(i , p(i)) : i ∈ [k]}.



Hitting sets from lower bounds
Aside: Combinatorial Designs

Definition (Combinatorial designs)
{S1, . . . , Sm} ⊆ [ℓ] is an (ℓ, k , r )-design if |Si |= k and

���Si ∩ S j

���< r .

Fact
For all∗ ℓ≥ k2 and r ≤ k , we have explicit (ℓ, k , r )-designs with
m =
�
ℓ
k

�r
.

ℓ
k

k

|F|= (ℓ/k).
For p(z) ∈ F[z] with deg(p)< r ,
Sp = {(i , p(i)) : i ∈ [k]}.



Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kabanets-Impagliazzo])



Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kabanets-Impagliazzo])
Let P (x1, . . . , xm) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.
degree< d such that P (Q⟦ℓ, k , r⟧) = 0.
Then Q has small circuits.



Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kabanets-Impagliazzo])
Let P (x1, . . . , xm) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.
degree< d such that P (Q⟦ℓ, k , r⟧) = 0.
Then Q has small circuits.

P

x1 x2 x3 x4 · · · xm



Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kabanets-Impagliazzo])
Let P (x1, . . . , xm) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.
degree< d such that P (Q⟦ℓ, k , r⟧) = 0.
Then Q has small circuits.

P

S1

x2 x3 x4 · · · xm



Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kabanets-Impagliazzo])
Let P (x1, . . . , xm) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.
degree< d such that P (Q⟦ℓ, k , r⟧) = 0.
Then Q has small circuits.

P

S1 S2

x3 x4 · · · xm



Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kabanets-Impagliazzo])
Let P (x1, . . . , xm) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.
degree< d such that P (Q⟦ℓ, k , r⟧) = 0.
Then Q has small circuits.

P

S1 S2 S3

x4 · · · xm



Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kabanets-Impagliazzo])
Let P (x1, . . . , xm) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.
degree< d such that P (Q⟦ℓ, k , r⟧) = 0.
Then Q has small circuits.

P

S1 S2 S3

= P̃ (x3,xrest, ȳ |S3
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Why does bootstrapping work?

0 ̸= P ∈C (m, s , s) (think of s = m5).

If Q is a k-variate polynomial (k = 1000 log m) that is s5-hard, then we
can do a variable reduction from m to ℓ=O(log2 m) that preserves
nonzeroness.

P ′ = P (Q⟦ℓ, k , r⟧) ∈C (ℓ, s ′, s ′) for a small-ish s ′.

Note: s ′ is already exponential in ℓ. Hence, to apply this once more, we
k =O(logℓ) variate polynomial that is (s ′)5 = exp(exp(k))-hard.

Unlike the boolean setting, we can find such polynomials of suitably large
degree.
Thus, there is nothing stopping you from doing this again and again.
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For all s ≥ n2:
PIT(n2, s , s): s n1/4

2

For all s ≥ n:
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with g (n)≤ n1/4

For all s ≥ m = 2n1/4 :
PIT(m, s , s): s h(m), where
h(m) = poly(g (poly log m))
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For s large enough,
PIT(s , s , s): s tiny(s)
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Bootstrapping Hitting Sets
Lemma (Bootstrapping slightly non-trivial hitting sets)
Let n be large enough (n > 1010). Suppose, for all s ≥ n, there is an explicit
hitting set for Formula(n, s , s) of size at most

s g (n), with g (n)≤
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Lemma (Bootstrapping slightly non-trivial hitting sets)
Let n be large enough (n > 1010). Suppose, for all s ≥ n, there is an explicit
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Then, we have an explicit hitting set for Formula(s , s , s) of size

s exp(exp(O(log∗ s))).
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Using the hitting set H for Formula(n, s5, s5) of size s5g (n), find Q
vanishing on H such that:
▶ Q is k-variate, and ideg(Q)< d := s5g (n)/k .

Claim: 0 ̸= P ∈ Formula(m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0.
Proof.
Q vanishes on a hitting set for Formula(k , d ′, s ′) as

d ′ = d D r = s5g (n)/k · s · r ≤ s5,
s ′ = s r d r (D + 1)≤ s4 · s5g (n)·r/k ≤ s5.

Use the previous corollary.
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Plan

For all s ≥ n0:
PIT(n0, s , s): s n0−0.01

For all s ≥ n1:
PIT(n1, s , s): s n1/50

For all s ≥ n2:
PIT(n2, s , s): s n1/4

2

For all s ≥ n:
PIT(n, s , s): s g (n)

with g (n)≤ n1/4

For all s ≥ m = 2n1/4 :
PIT(m, s , s): s h(m), where
h(m) = poly(g (poly log m))

For s large enough,
PIT(s , s , s): s tiny(s)

✓ ✓ ✓
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Closing remarks

▶ A similar statement also holds for bounded depth formulas, with
some slack in depth between the hypothesis and conclusion.

▶ It is crucial that the exponent of s in the hypothesis is independent
of s .
Question: Can saying something non-trivial from a hypothesis for
just s = poly(n) circuits?

▶ To obtain the hitting set forC (s , s , s), the algorithm would use
hitting sets forC (n0, s ′, s ′) for various s ′ ≤ s tiny(s).
Question: Is there a hardness amplification (à la [CILM]) in this
setting?
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