Near-optimal Bootstrapping of Hitting Sets

Mrinal Kumar
Simons Institute

Ramprasad Saptharishi
TIFR, Mumbai

Anamay Tengse
TIFR, Mumbai

Simons Institute
December 2018

Algebraic Circuits

Algebraic Formulas

Algebraic Formulas

- A tree, made up of + and \times gates. Leaves containing variables or constants

Algebraic Formulas

- A tree, made up of + and \times gates. Leaves containing variables or constants. Size $=$ number of leaves

Algebraic Formulas

- A tree, made up of + and \times gates. Leaves containing variables or constants. Size $=$ number of leaves
$-\operatorname{Size}\left(f\left(g_{1}, \ldots, g_{n}\right)\right) \leq \operatorname{Size}(f) \cdot \max _{i}\left(\operatorname{Size}\left(g_{i}\right)\right)$

Algebraic Formulas

- A tree, made up of + and \times gates. Leaves containing variables or constants. Size $=$ number of leaves
$-\operatorname{Size}\left(f\left(g_{1}, \ldots, g_{n}\right)\right) \leq \operatorname{Size}(f) \cdot \max _{i}\left(\operatorname{Size}\left(g_{i}\right)\right)$
- Formula (n, d, s) : n-variate, degree $\leq d$ polynomials computable by size s formulas. (note: $d \leq s$)

Polynomial Identity Testing

Blackbox Polynomial Identity Testing

 Is this zero?This box contains a polynomial from $\mathscr{C}(n, d, s)$

Blackbox Polynomial Identity Testing

Is this zero?

This box contains a polynomial from $\mathscr{C}(n, d, s)$

Only have evaluation access to the circuit.

Blackbox Polynomial Identity Testing

Is this zero?

This box contains a polynomial from $\mathscr{C}(n, d, s)$

Only have evaluation access to the circuit.
Equivalent to constructing a hitting set H :
For every nonzero $P \in \mathscr{C}(n, d, s)$, there is some $\bar{a} \in H$ such that $P(\bar{a}) \neq 0$.

Hitting Sets

Hitting Sets

Counting argument

There are non-explicit hitting sets of $\operatorname{poly}(s)$ size for $\mathscr{C}(n, d, s)$.

Hitting Sets

Counting argument

There are non-explicit hitting sets of $\operatorname{poly}(s)$ size for $\mathscr{C}(n, d, s)$.

Lemma ([Ore*, DeMillo-Lipton, Schwartz-Zippel])
If $S \subseteq \mathbb{F}$ with $|S| \geq d+1$, then S^{n} is a hitting set for $\mathscr{C}(n, d, s)$.
That is, we have an explicit, but trivial, hitting set of $(d+1)^{n}$ size.

Hitting Sets

Counting argument

There are non-explicit hitting sets of $\operatorname{poly}(s)$ size for $\mathscr{C}(n, d, s)$.

Lemma ([Ore*, DeMillo-Lipton, Schwartz-Zippel])
If $S \subseteq \mathbb{F}$ with $|S| \geq d+1$, then S^{n} is a hitting set for $\mathscr{C}(n, d, s)$.
That is, we have an explicit, but trivial, hitting set of $(d+1)^{n}$ size.

Question: Are there small explicit hitting sets for $\mathscr{C}(n, d, s)$?

Improving not-too-bad hitting sets

Theorem ([Agrawal-Ghosh-Saxena 2018])

Say n large enough.
Suppose, for each $s \geq n$, there is an explicit hitting set for $\operatorname{Circuits}(n, s, s)$ of size at most

$$
(s+1)^{n^{0.49}} .
$$

(Trivial hitting set size: $\left.(s+1)^{n}\right)$

Improving not-too-bad hitting sets

Theorem ([Agrawal-Ghosh-Saxena 2018])

Say n large enough.
Suppose, for each $s \geq n$, there is an explicit hitting set for $\operatorname{Circuits}(n, s, s)$ of size at most

$$
(s+1)^{n^{0.49}} .
$$

(Trivial hitting set size: $\left.(s+1)^{n}\right)$

Then there is an explicit hitting set for Circuits (s, s, s) of size at most

$$
s^{\operatorname{tin} y(s)}
$$

Improving not-too-bad hitting sets

Theorem ([Agrawal-Ghosh-Saxena 2018])

Say n large enough.
Suppose, for each $s \geq n$, there is an explicit hitting set for $\operatorname{Circuits}(n, s, s)$ of size at most

$$
(s+1)^{n^{0.49}} .
$$

(Trivial hitting set size: $\left.(s+1)^{n}\right)$

Then there is an explicit hitting set for Circuits (s, s, s) of size at most

$$
s^{\exp \left(\exp \left(O\left(\log ^{*} s\right)\right)\right)}
$$

Improving not-too-bad hitting sets

Theorem ([Agrawal-Ghosh-Saxena 2018])

Say n large enough.
Suppose, for each $s \geq n$, there is an explicit hitting set for $\operatorname{Circuits}(n, s, s)$ of size at most

$$
(s+1)^{n^{0.49}} .
$$

(Trivial hitting set size: $\left.(s+1)^{n}\right)$

Then there is an explicit hitting set for Circuits (s, s, s) of size at most

$$
s^{\operatorname{tin} y(s)}
$$

Improving almost-trivial hitting sets

Theorem ([Kumar-S-Tengse])

Say n large enough.
Suppose, for each $s \geq n$, there is an explicit hitting set for $\operatorname{Circuits}(n, s, s)$ of size at most

$$
\left.(s+1)^{n-0.01} . \quad \text { (Trivial hitting set size: }(s+1)^{n}\right)
$$

Then there is an explicit hitting set for Circuits (s, s, s) of size at most

$$
s^{\operatorname{tiny}(s)}
$$

Improving almost-trivial hitting sets

Theorem ([Kumar-S-Tengse])

Say n large enough.
Suppose, for each $s \geq n$, there is an explicit hitting set for $\operatorname{Formula}(n, s, s)$ of size at most

$$
\left.(s+1)^{n-0.01} . \quad \text { (Trivial hitting set size: }(s+1)^{n}\right)
$$

Then there is an explicit hitting set for Formula (s, s, s) of size at most

$$
s^{\operatorname{tiny}(s)}
$$

Improving almost-trivial hitting sets

Theorem ([Kumar-S-Tengse])

Say n large enough.
Suppose, for each $s \geq n$, there is an explicit hitting set for $\mathscr{C}(n, s, s)$ of size at most

$$
\left.(s+1)^{n-0.01} . \quad \text { (Trivial hitting set size: }(s+1)^{n}\right)
$$

Then there is an explicit hitting set for $\mathscr{C}(s, s, s)$ of size at most

$$
s^{\operatorname{tiny}(s)}
$$

(where \mathscr{C} is any class well-behaved under sums, projections and compositions)

A very high-level overview

Non-trivial Hitting Sets

Explicit Lower Bounds

A very high-level overview

A very high-level overview

A very high-level overview

From a non-trivial hitting set, get a lower bound. Use that to get a better hitting set. And so on ...

Preliminaries:

Hardness vs Randomness

for algebraic models

Lower bounds from hitting sets

H is a hitting set for $\mathscr{C}(n, d, s)$ if
for all $0 \neq P \in \mathscr{C}(n, d, s)$, there is some $\bar{a} \in H$ such that $P(\bar{a}) \neq 0$.

Lower bounds from hitting sets

H is a hitting set for $\mathscr{C}(n, d, s)$ if
for all $0 \neq P \in \mathscr{C}(n, d, s)$, there is some $\bar{a} \in H$ such that $P(\bar{a}) \neq 0$.

Observation

If P is a nonzero polynomial that vanishes on H, then P cannot be a member of $\mathscr{C}(n, d, s)$.

Lower bounds from hitting sets

H is a hitting set for $\mathscr{C}(n, d, s)$ if
for all $0 \neq P \in \mathscr{C}(n, d, s)$, there is some $\bar{a} \in H$ such that $P(\bar{a}) \neq 0$.

Observation

If P is a nonzero polynomial that vanishes on H, then P cannot be a member of $\mathscr{C}(n, d, s)$.

Theorem ([Heintz-Schnorr, Agrawal])

For any $k \leq n$ such that $k|H|^{1 / k} \leq d$, we can find a nonzero k-variate polynomial Q of individual degree less than $|H|^{1 / k}$ such that Q requires size more than s.

Hitting sets from lower bounds

Theorem ([Kabanets-Impagliazzo] (Informal))

If Q is hard-enough, then for any small algebraic circuit computing P, we have

$$
P\left(x_{1}, \ldots, x_{m}\right) \neq 0 \Longleftrightarrow P\left(Q\left(\bar{y}_{1}\right), \ldots, Q\left(\bar{y}_{m}\right)\right) \neq 0
$$

even if $\bar{y}_{1}, \ldots, \bar{y}_{m}$ are almost disjoint.

Hitting sets from lower bounds

Aside: Combinatorial Designs

Hitting sets from lower bounds

Aside: Combinatorial Designs

Definition (Combinatorial designs)
$\left\{S_{1}, \ldots, S_{m}\right\} \subseteq[\ell]$ is an (ℓ, k, r)-design if $\left|S_{i}\right|=k$ and $\left|S_{i} \cap S_{j}\right|<r$.

Hitting sets from lower bounds

Aside: Combinatorial Designs

Definition (Combinatorial designs)

$\left\{S_{1}, \ldots, S_{m}\right\} \subseteq[\ell]$ is an (ℓ, k, r)-design if $\left|S_{i}\right|=k$ and $\left|S_{i} \cap S_{j}\right|<r$.

Fact

For all $\ell \geq k^{2}$ and $r \leq k$, we have explicit (ℓ, k, r)-designs with $m=\left(\frac{\ell}{k}\right)^{r}$.

Hitting sets from lower bounds

Aside: Combinatorial Designs

Definition (Combinatorial designs)

$\left\{S_{1}, \ldots, S_{m}\right\} \subseteq[\ell]$ is an (ℓ, k, r)-design if $\left|S_{i}\right|=k$ and $\left|S_{i} \cap S_{j}\right|<r$.
Fact
For all* $\ell \geq k^{2}$ and $r \leq k$, we have explicit (ℓ, k, r)-designs with $m=\left(\frac{\ell}{k}\right)^{r}$.

$$
|\mathbb{F}|=(\ell / k) .
$$

Hitting sets from lower bounds

Aside: Combinatorial Designs

Definition (Combinatorial designs)

$\left\{S_{1}, \ldots, S_{m}\right\} \subseteq[\ell]$ is an (ℓ, k, r)-design if $\left|S_{i}\right|=k$ and $\left|S_{i} \cap S_{j}\right|<r$.
Fact
For all* $\ell \geq k^{2}$ and $r \leq k$, we have explicit (ℓ, k, r)-designs with $m=\left(\frac{\ell}{k}\right)^{r}$.

$$
\begin{aligned}
& |\mathbb{F}|=(\ell / k) . \\
& \text { For } p(z) \in \mathbb{F}[z] \text { with } \operatorname{deg}(p)<r, \\
& S_{p}=\{(i, p(i)): i \in[k]\} .
\end{aligned}
$$

Hitting sets from lower bounds

Aside: Combinatorial Designs

Definition (Combinatorial designs)

$\left\{S_{1}, \ldots, S_{m}\right\} \subseteq[\ell]$ is an (ℓ, k, r)-design if $\left|S_{i}\right|=k$ and $\left|S_{i} \cap S_{j}\right|<r$.
Fact
For all ${ }^{*} \ell \geq k^{2}$ and $r \leq k$, we have explicit (ℓ, k, r)-designs with $m=\left(\frac{\ell}{k}\right)^{r}$.

$$
\begin{aligned}
& |\mathbb{F}|=(\ell / k) . \\
& \text { For } p(z) \in \mathbb{F}[z] \text { with } \operatorname{deg}(p)<r, \\
& S_{p}=\{(i, p(i)): i \in[k]\} .
\end{aligned}
$$

Hitting sets from lower bounds

Aside: Combinatorial Designs

Definition (Combinatorial designs)

$\left\{S_{1}, \ldots, S_{m}\right\} \subseteq[\ell]$ is an (ℓ, k, r)-design if $\left|S_{i}\right|=k$ and $\left|S_{i} \cap S_{j}\right|<r$.
Fact
For all ${ }^{*} \ell \geq k^{2}$ and $r \leq k$, we have explicit (ℓ, k, r)-designs with $m=\left(\frac{\ell}{k}\right)^{r}$.

$$
\begin{aligned}
& |\mathbb{F}|=(\ell / k) . \\
& \text { For } p(z) \in \mathbb{F}[z] \text { with } \operatorname{deg}(p)<r, \\
& S_{p}=\{(i, p(i)): i \in[k]\} .
\end{aligned}
$$

Hitting sets from lower bounds

$$
Q \llbracket \ell, k, r \rrbracket:=\left(Q\left(\left.\bar{y}\right|_{S_{1}}\right), \ldots, Q\left(\left.\bar{y}\right|_{S_{m}}\right)\right)
$$

Hitting sets from lower bounds

$$
Q \llbracket \ell, k, r \rrbracket:=\left(Q\left(\left.\bar{y}\right|_{S_{1}}\right), \ldots, Q\left(\bar{y}| |_{S_{m}}\right)\right)
$$

Lemma ([Kabanets-Impagliazzo])

Let $P\left(x_{1}, \ldots, x_{m}\right)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree $<d$ such that $P(Q \llbracket \ell, k, r \rrbracket)=0$.
Then Q has small circuits.

Hitting sets from lower bounds

$$
Q \llbracket \ell, k, r \rrbracket:=\left(Q\left(\left.\bar{y}\right|_{S_{1}}\right), \ldots, Q\left(\left.\bar{y}\right|_{S_{m}}\right)\right)
$$

Lemma ([Kabanets-Impagliazzo])

Let $P\left(x_{1}, \ldots, x_{m}\right)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree $<d$ such that $P(Q \llbracket \ell, k, r \rrbracket)=0$.
Then Q has small circuits.

Hitting sets from lower bounds

$$
Q \llbracket \ell, k, r \rrbracket:=\left(Q\left(\left.\bar{y}\right|_{S_{1}}\right), \ldots, Q\left(\bar{y}| |_{S_{m}}\right)\right)
$$

Lemma ([Kabanets-Impagliazzo])

Let $P\left(x_{1}, \ldots, x_{m}\right)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree $<d$ such that $P(Q \llbracket \ell, k, r \rrbracket)=0$.
Then Q has small circuits.

Hitting sets from lower bounds

$$
Q \llbracket \ell, k, r \rrbracket:=\left(Q\left(\left.\bar{y}\right|_{S_{1}}\right), \ldots, Q\left(\bar{y}| |_{S_{m}}\right)\right)
$$

Lemma ([Kabanets-Impagliazzo])

Let $P\left(x_{1}, \ldots, x_{m}\right)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree $<d$ such that $P(Q \llbracket \ell, k, r \rrbracket)=0$.
Then Q has small circuits.

Hitting sets from lower bounds

$$
Q \llbracket \ell, k, r \rrbracket:=\left(Q\left(\left.\bar{y}\right|_{S_{1}}\right), \ldots, Q\left(\bar{y}| |_{S_{m}}\right)\right)
$$

Lemma ([Kabanets-Impagliazzo])

Let $P\left(x_{1}, \ldots, x_{m}\right)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree $<d$ such that $P(Q \llbracket \ell, k, r \rrbracket)=0$.
Then Q has small circuits.

Hitting sets from lower bounds

$$
Q \llbracket \ell, k, r \rrbracket:=\left(Q\left(\left.\bar{y}\right|_{S_{1}}\right), \ldots, Q\left(\left.\bar{y}\right|_{S_{m}}\right)\right)
$$

Lemma ([Kabanets-Impagliazzo])

Let $P\left(x_{1}, \ldots, x_{m}\right)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree $<d$ such that $P(Q \llbracket \ell, k, r \rrbracket)=0$.
Then Q has small circuits.

Hitting sets from lower bounds

$$
Q \llbracket \ell, k, r \rrbracket:=\left(Q\left(\left.\bar{y}\right|_{S_{1}}\right), \ldots, Q\left(\bar{y}| |_{S_{m}}\right)\right)
$$

Lemma ([Kabanets-Impagliazzo])

Let $P\left(x_{1}, \ldots, x_{m}\right)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree $<d$ such that $P(Q \llbracket \ell, k, r \rrbracket)=0$.
Then Q has small circuits.

Hitting sets from lower bounds

$$
Q \llbracket \ell, k, r \rrbracket:=\left(Q\left(\left.\bar{y}\right|_{S_{1}}\right), \ldots, Q\left(\left.\bar{y}\right|_{S_{m}}\right)\right)
$$

Lemma ([Kabanets-Impagliazzo])

Let $P\left(x_{1}, \ldots, x_{m}\right)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree $<d$ such that $P(Q \llbracket \ell, k, r \rrbracket)=0$.
Then Q has small circuits.

Hitting sets from lower bounds

$$
Q \llbracket \ell, k, r \rrbracket:=\left(Q\left(\left.\bar{y}\right|_{S_{1}}\right), \ldots, Q\left(\left.\bar{y}\right|_{S_{m}}\right)\right)
$$

Lemma ([Kabanets-Impagliazzo])

Let $P\left(x_{1}, \ldots, x_{m}\right)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree $<d$ such that $P(Q \llbracket \ell, k, r \rrbracket)=0$.
Then Q has small circuits.

Hitting sets from lower bounds

$$
Q \llbracket \ell, k, r \rrbracket:=\left(Q\left(\left.\bar{y}\right|_{S_{1}}\right), \ldots, Q\left(\bar{y}| |_{S_{m}}\right)\right)
$$

Lemma ([Kabanets-Impagliazzo])

Let $P\left(x_{1}, \ldots, x_{m}\right)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree $<d$ such that $P(Q \llbracket \ell, k, r \rrbracket)=0$.
Then Q has small circuits.

Size $\leq s \cdot\left(r d \cdot d^{r-1}\right)$
Degree $\leq D \cdot d r$

Hitting sets from lower bounds

$$
Q \llbracket \ell, k, r \rrbracket:=\left(Q\left(\left.\bar{y}\right|_{S_{1}}\right), \ldots, Q\left(\left.\bar{y}\right|_{S_{m}}\right)\right)
$$

Lemma ([Kabanets-Impagliazzo])

Let $P\left(x_{1}, \ldots, x_{m}\right)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree $<d$ such that $P(Q \llbracket \ell, k, r \rrbracket)=0$.
Then Q has small circuits.

Hitting sets from lower bounds

$$
Q \llbracket \ell, k, r \rrbracket:=\left(Q\left(\left.\bar{y}\right|_{S_{1}}\right), \ldots, Q\left(\left.\bar{y}\right|_{S_{m}}\right)\right)
$$

Lemma ([Kabanets-Impagliazzo])

Let $P\left(x_{1}, \ldots, x_{m}\right)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree $<d$ such that $P(Q \llbracket \ell, k, r \rrbracket)=0$.
Then Q has small circuits.

$$
\begin{aligned}
& \text { Size } \leq s \cdot\left(r d \cdot d^{r-1}\right) \\
& \text { Degree } \leq D \cdot d r
\end{aligned}
$$

$\left(x_{3}-Q\right)$ divides P^{\prime}.
[Kaltofen, Bürgisser]:
Factors have small circuits.

Hitting sets from lower bounds

$$
Q \llbracket \ell, k, r \rrbracket:=\left(Q\left(\left.\bar{y}\right|_{S_{1}}\right), \ldots, Q\left(\left.\bar{y}\right|_{S_{m}}\right)\right)
$$

Lemma ([Kabanets-Impagliazzo])

Let $P\left(x_{1}, \ldots, x_{m}\right)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree $<d$ such that $P(Q \llbracket \ell, k, r \rrbracket)=0$.
Then Q has circuits of size $\left(s \cdot r \cdot d^{r} \cdot D\right)^{O(1)}$.

$$
\begin{aligned}
& \text { Size } \leq s \cdot\left(r d \cdot d^{r-1}\right) \\
& \text { Degree } \leq D \cdot d r
\end{aligned}
$$

$\left(x_{3}-Q\right)$ divides P^{\prime}.
[Kaltofen, Bürgisser]:
Factors have small circuits.

Hitting sets from lower bounds

$$
Q \llbracket \ell, k, r \rrbracket:=\left(Q\left(\left.\bar{y}\right|_{S_{1}}\right), \ldots, Q\left(\left.\bar{y}\right|_{S_{m}}\right)\right)
$$

Lemma ([Kabanets-Impagliazzo])

Suppose Q does not have circuits of size $\left(s \cdot r \cdot d^{r} \cdot D\right)^{O(1)}$. Then, for any nonzero polynomial $P\left(x_{1}, \ldots, x_{m}\right)$ of degree at most D and circuit size at most s, we have that $P(Q \llbracket \ell, k, r \rrbracket) \neq 0$.

Hitting sets from lower bounds

$$
Q \llbracket \ell, k, r \rrbracket:=\left(Q\left(\left.\bar{y}\right|_{S_{1}}\right), \ldots, Q\left(\left.\bar{y}\right|_{S_{m}}\right)\right)
$$

Lemma ([Kabanets-Impagliazzo])

Let $P\left(x_{1}, \ldots, x_{m}\right)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree $<d$ such that $P(Q \llbracket \ell, k, r \rrbracket)=0$.
Then Q has circuits of size $\left(s \cdot r \cdot d^{r} \cdot D\right)^{O(1)}$.

$$
\begin{aligned}
& \text { Size } \leq s \cdot\left(r d \cdot d^{r-1}\right) \\
& \text { Degree } \leq D \cdot d r
\end{aligned}
$$

$\left(x_{3}-Q\right)$ divides P^{\prime}.
[Kaltofen, Bürgisser]:
Factors have small circuits.

Hitting sets from lower bounds

$$
Q \llbracket \ell, k, r \rrbracket:=\left(Q\left(\left.\bar{y}\right|_{S_{1}}\right), \ldots, Q\left(\left.\bar{y}\right|_{S_{m}}\right)\right)
$$

Lemma ([Kabanets-Impagliazzo])

Let $P\left(x_{1}, \ldots, x_{m}\right)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree $<d$ such that $P(Q \llbracket \ell, k, r \rrbracket)=0$.
Then Q has circuits of size $\left(s \cdot r \cdot d^{r} \cdot D\right)^{O(1)}$.

Hitting sets from lower bounds

$$
Q \llbracket \ell, k, r \rrbracket:=\left(Q\left(\left.\bar{y}\right|_{S_{1}}\right), \ldots, Q\left(\bar{y}| |_{S_{m}}\right)\right)
$$

Lemma ([Kabanets-Impagliazzo])

Let $P\left(x_{1}, \ldots, x_{m}\right)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree $<d$ such that $P(Q \llbracket \ell, k, r \rrbracket)=0$.
Then Q has circuits of size $\left(s \cdot r \cdot d^{r} \cdot D\right)^{O(1)}$.

Hitting sets from lower bounds

$$
Q \llbracket \ell, k, r \rrbracket:=\left(Q\left(\left.\bar{y}\right|_{S_{1}}\right), \ldots, Q\left(\bar{y}| |_{S_{m}}\right)\right)
$$

Lemma ([Kabanets-Impagliazzo])

Let $P\left(x_{1}, \ldots, x_{m}\right)$ is a nonzero polynomial of degree at most D that is computable by a size s circuit. Suppose Q is a k-variate polynomial of ind. degree $<d$ such that $P(Q \llbracket \ell, k, r \rrbracket)=0$.
Then Q has circuits of size $\left(s \cdot r \cdot d^{r} \cdot D\right)^{O(1)}$.

Hitting sets from lower bounds

$$
Q \llbracket \ell, k, r \rrbracket:=\left(Q\left(\left.\bar{y}\right|_{S_{1}}\right), \ldots, Q\left(\bar{y}| |_{S_{m}}\right)\right)
$$

Lemma ([Kumar-S-Tengse])

Let $P\left(x_{1}, \ldots, x_{m}\right)$ is a nonzero polynomial of degree at most D that is computable by a size s formula. Suppose Q is a k-variate polynomial of ind. degree $<d$ such that $P(Q \llbracket \ell, k, r \rrbracket)=0$.
Then a low-degree multiple of Q has formulas of size $\left(s \cdot r \cdot d^{r} \cdot(D+1)\right)$.

Hitting sets from lower bounds

$$
Q \llbracket \ell, k, r \rrbracket:=\left(Q\left(\left.\bar{y}\right|_{S_{1}}\right), \ldots, Q\left(\left.\bar{y}\right|_{S_{m}}\right)\right)
$$

Lemma ([Kumar-S-Tengse])

Let $P\left(x_{1}, \ldots, x_{m}\right)$ is a nonzero polynomial of degree at most D that is computable by a size s formula. Suppose Q is a k-variate polynomial of ind. degree $<d$ such that $P(Q \llbracket \ell, k, r \rrbracket)=0$. Then a low-degree multiple of Q has formulas of size $\left(s \cdot r \cdot d^{r} \cdot(D+1)\right)$.

Hitting sets from lower bounds

$$
Q \llbracket \ell, k, r \rrbracket:=\left(Q\left(\left.\bar{y}\right|_{S_{1}}\right), \ldots, Q\left(\left.\bar{y}\right|_{S_{m}}\right)\right)
$$

Lemma ([Kumar-S-Tengse])

Suppose Q has the property that no multiple of Q of degree at most $D \cdot d r$ has a formula of size $\left(s \cdot r \cdot d^{r} \cdot(D+1)\right)$.
Then, for any nonzero polynomial $P\left(x_{1}, \ldots, x_{m}\right)$ of degree at most D and formula size at most s, we have that $P(Q \llbracket \ell, k, r \rrbracket) \neq 0$.

Hitting sets from lower bounds

$$
Q \llbracket \ell, k, r \rrbracket:=\left(Q\left(\left.\bar{y}\right|_{S_{1}}\right), \ldots, Q\left(\left.\bar{y}\right|_{S_{m}}\right)\right)
$$

Lemma ([Kumar-S-Tengse])

Suppose Q has the property that no multiple of Q of degree at most $D \cdot d r$ has a formula of size $\left(s \cdot r \cdot d^{r} \cdot(D+1)\right)$.
Then, for any nonzero polynomial $P\left(x_{1}, \ldots, x_{m}\right)$ of degree at most D and formula size at most s, we have that $P(Q \llbracket \ell, k, r \rrbracket) \neq 0$.

Corollary

Suppose Q vanishes on a hitting set for Formula $\left(k, d^{\prime}, s^{\prime}\right)$ with $d^{\prime}=(D \cdot d r)$ and $s^{\prime}=s \cdot r \cdot d^{r} \cdot(D+1)$. Then, if $P \in \operatorname{Formula}(m, D, s)$, we have

$$
P \neq 0 \Longleftrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0 .
$$

Hitting sets from lower bounds

$$
Q \llbracket \ell, k, r \rrbracket:=\left(Q\left(\left.\bar{y}\right|_{S_{1}}\right), \ldots, Q\left(\left.\bar{y}\right|_{S_{m}}\right)\right)
$$

Lemma ([Kumar-S-Tengse])

Suppose Q has the property that no multiple of Q of degree at most $D \cdot d r$ has a formula of size $\left(s \cdot r \cdot d^{r} \cdot(D+1)\right)$.
Then, for any nonzero polynomial $P\left(x_{1}, \ldots, x_{m}\right)$ of degree at most D and formula size at most s, we have that $P(Q \llbracket \ell, k, r \rrbracket) \neq 0$.

Corollary

Suppose Q vanishes on a hitting set for Formula $\left(k, d^{\prime}, s^{\prime}\right)$ with $d^{\prime}=(D \cdot d r)$ and $s^{\prime}=s \cdot r \cdot d^{r} \cdot(D+1)$. Then, if $P \in \operatorname{Formula}(m, D, s)$, we have

$$
P \neq 0 \Longleftrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0 .
$$

From hitting sets for k-variate formulas, we obtain a hitting set for m-variate formulas.

Template for "Hardness to Randomness"

Template for "Hardness to Randomness"

Hyp: Given a k-variate polynomial Q that is s^{c}-hard.
Goal: Construct "better" hitting sets for $\mathscr{C}(m, s, s)$ for all $s \geq m$

Template for "Hardness to Randomness"

Hyp: Given a k-variate polynomial Q that is s^{c}-hard.
Goal: Construct "better" hitting sets for $\mathscr{C}(m, s, s)$ for all $s \geq m$

- Construct an (ℓ, k, r)-design $S_{1}, \ldots, S_{m} \subseteq[\ell]$

Template for "Hardness to Randomness"

Hyp: Given a k-variate polynomial Q that is s^{c}-hard.
Goal: Construct "better" hitting sets for $\mathscr{C}(m, s, s)$ for all $s \geq m$

- Construct an (ℓ, k, r)-design $S_{1}, \ldots, S_{m} \subseteq[\ell]$
- Use the hardness of Q to argue that

$$
0 \neq P \in \mathscr{C}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0
$$

Template for "Hardness to Randomness"

Hyp: Given a k-variate polynomial Q that is s^{c}-hard.
Goal: Construct "better" hitting sets for $\mathscr{C}(m, s, s)$ for all $s \geq m$

- Construct an (ℓ, k, r)-design $S_{1}, \ldots, S_{m} \subseteq[\ell]$
- Use the hardness of Q to argue that

$$
0 \neq P \in \mathscr{C}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0
$$

- Brute-force on the polynomial $P(Q \llbracket \ell, k, r \rrbracket)$ to test if this is zero.

Template for "Hardness to Randomness"

Hyp: Hitting sets for $\mathscr{C}(\ell, s, s)$ for all $s \geq \ell$.
Goal: Construct "better" hitting sets for $\mathscr{C}(m, s, s)$ for all $s \geq m$

- Construct an (ℓ, k, r)-design $S_{1}, \ldots, S_{m} \subseteq[\ell]$
- Use the hardness of Q to argue that

$$
0 \neq P \in \mathscr{C}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0
$$

- Brute-force on the polynomial $P(Q \llbracket \ell, k, r \rrbracket)$ to test if this is zero.

Template for "Hardness to Randomness"

Hyp: Hitting sets for $\mathscr{C}(\ell, s, s)$ for all $s \geq \ell$.
Goal: Construct "better" hitting sets for $\mathscr{C}(m, s, s)$ for all $s \geq m$

- Construct an (ℓ, k, r)-design $S_{1}, \ldots, S_{m} \subseteq[\ell]$
- Use Hyp to take a hitting set for $\mathscr{C}\left(\ell, s^{c}, s^{c}\right)$ to construct a hard k-variate polynomial Q.
- Use the hardness of Q to argue that

$$
0 \neq P \in \mathscr{C}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0
$$

- Brute-force on the polynomial $P(Q \llbracket \ell, k, r \rrbracket)$ to test if this is zero.

Template for "Hardness to Randomness"

Hyp: Hitting sets for $\mathscr{C}(\ell, s, s)$ for all $s \geq \ell$.
Goal: Construct "better" hitting sets for $\mathscr{C}(m, s, s)$ for all $s \geq m$

- Construct an (ℓ, k, r)-design $S_{1}, \ldots, S_{m} \subseteq[\ell]$
- Use Hyp to take a hitting set for $\mathscr{C}\left(\ell, s^{c}, s^{c}\right)$ to construct a hard k-variate polynomial Q.
- Use the hardness of Q to argue that

$$
0 \neq P \in \mathscr{C}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0
$$

- $P(Q \llbracket \ell, k, r \rrbracket) \in \mathscr{C}\left(\ell, s^{\prime}, s^{\prime}\right)$ for a small-ish s^{\prime}. Use Hyp on it.

Why does bootstrapping work?

$0 \neq P \in \mathscr{C}(m, s, s)$ (think of $\left.s=m^{5}\right)$.

Why does bootstrapping work?

$0 \neq P \in \mathscr{C}(m, s, s)$ (think of $\left.s=m^{5}\right)$.
If Q is a k-variate polynomial $(k=1000 \log m)$ that is s^{5}-hard, then we can do a variable reduction from m to $\ell=O\left(\log ^{2} m\right)$ that preserves nonzeroness.

Why does bootstrapping work?

$0 \neq P \in \mathscr{C}(m, s, s)$ (think of $\left.s=m^{5}\right)$.
If Q is a k-variate polynomial $(k=1000 \log m)$ that is s^{5}-hard, then we can do a variable reduction from m to $\ell=O\left(\log ^{2} m\right)$ that preserves nonzeroness.
$P^{\prime}=P(Q \llbracket \ell, k, r \rrbracket) \in \mathscr{C}\left(\ell, s^{\prime}, s^{\prime}\right)$ for a small-ish s^{\prime}.

Why does bootstrapping work?

$0 \neq P \in \mathscr{C}(m, s, s)$ (think of $\left.s=m^{5}\right)$.
If Q is a k-variate polynomial $(k=1000 \log m)$ that is s^{5}-hard, then we can do a variable reduction from m to $\ell=O\left(\log ^{2} m\right)$ that preserves nonzeroness.
$P^{\prime}=P(Q \llbracket \ell, k, r \rrbracket) \in \mathscr{C}\left(\ell, s^{\prime}, s^{\prime}\right)$ for a small-ish s^{\prime}.
Note: s^{\prime} is already exponential in ℓ.

Why does bootstrapping work?

$0 \neq P \in \mathscr{C}(m, s, s)$ (think of $\left.s=m^{5}\right)$.
If Q is a k-variate polynomial $(k=1000 \log m)$ that is s^{5}-hard, then we can do a variable reduction from m to $\ell=O\left(\log ^{2} m\right)$ that preserves nonzeroness.
$P^{\prime}=P(Q \llbracket \ell, k, r \rrbracket) \in \mathscr{C}\left(\ell, s^{\prime}, s^{\prime}\right)$ for a small-ish s^{\prime}.
Note: s^{\prime} is already exponential in ℓ. Hence, to apply this once more, we $k=O(\log \ell)$ variate polynomial that is $\left(s^{\prime}\right)^{5}=\exp (\exp (k))$-hard.

Why does bootstrapping work?

$0 \neq P \in \mathscr{C}(m, s, s)$ (think of $\left.s=m^{5}\right)$.
If Q is a k-variate polynomial $(k=1000 \log m)$ that is s^{5}-hard, then we can do a variable reduction from m to $\ell=O\left(\log ^{2} m\right)$ that preserves nonzeroness.
$P^{\prime}=P(Q \llbracket \ell, k, r \rrbracket) \in \mathscr{C}\left(\ell, s^{\prime}, s^{\prime}\right)$ for a small-ish s^{\prime}.
Note: s^{\prime} is already exponential in ℓ. Hence, to apply this once more, we $k=O(\log \ell)$ variate polynomial that is $\left(s^{\prime}\right)^{5}=\exp (\exp (k))$-hard.

Unlike the boolean setting, we can find such polynomials of suitably large degree.

Why does bootstrapping work?

$0 \neq P \in \mathscr{C}(m, s, s)$ (think of $\left.s=m^{5}\right)$.
If Q is a k-variate polynomial $(k=1000 \log m)$ that is s^{5}-hard, then we can do a variable reduction from m to $\ell=O\left(\log ^{2} m\right)$ that preserves nonzeroness.
$P^{\prime}=P(Q \llbracket \ell, k, r \rrbracket) \in \mathscr{C}\left(\ell, s^{\prime}, s^{\prime}\right)$ for a small-ish s^{\prime}.
Note: s^{\prime} is already exponential in ℓ. Hence, to apply this once more, we $k=O(\log \ell)$ variate polynomial that is $\left(s^{\prime}\right)^{5}=\exp (\exp (k))$-hard.

Unlike the boolean setting, we can find such polynomials of suitably large degree.
Thus, there is nothing stopping you from doing this again and again.

Plan

Plan

For all $s \geq n_{0}$: $\operatorname{PIT}\left(n_{0}, s, s\right): s^{n_{0}-0.01}$

Plan

Plan

Plan

For all $s \geq n_{0}:$
$\operatorname{PIT}\left(n_{0}, s, s\right): s^{n_{0}-0.01}$

For all $s \geq n_{1}$:
$\operatorname{PIT}\left(n_{1}, s, s\right): s^{n_{1} / 50}$

For all $s \geq n$:
$\operatorname{PIT}(n, s, s): s^{g(n)}$ with $g(n) \leq n^{1 / 4}$

Plan

For all $s \geq n_{0}:$
$\operatorname{PIT}\left(n_{0}, s, s\right): s^{n_{0}-0.01}$

> For all $s \geq n:$
> $\operatorname{PIT}(n, s, s): s^{g(n)}$ with $g(n) \leq n^{1 / 4}$

For all $s \geq n_{1}$:
$\operatorname{PIT}\left(n_{1}, s, s\right): s^{n_{1} / 50}$

For all $s \geq m=2^{n^{1 / 4}}$:
$\operatorname{PIT}(m, s, s): s^{b(m)}$, where
$h(m)=\operatorname{poly}(g(\operatorname{poly} \log m))$

Plan

For all $s \geq n_{0}:$
$\operatorname{PIT}\left(n_{0}, s, s\right): s^{n_{0}-0.01}$

For all $s \geq n$:
$\operatorname{PIT}(n, s, s): s^{g(n)}$ with $g(n) \leq n^{1 / 4}$

For all $s \geq m=2^{n^{1 / 4}}$:
$\operatorname{PIT}(m, s, s): s^{b(m)}$, where
$h(m)=\operatorname{poly}(g($ poly $\log m))$

For all $s \geq n_{1}$:
$\operatorname{PIT}\left(n_{1}, s, s\right): s^{n_{1} / 50}$

For all $s \geq n_{2}$:
$\operatorname{PIT}\left(n_{2}, s, s\right): s^{n_{2}^{1 / 4}}$

Plan

For all $s \geq n_{0}$: $\operatorname{PIT}\left(n_{0}, s, s\right): s^{n_{0}-0.01}$

```
For all \(s \geq n\) :
\(\operatorname{PIT}(n, s, s): s^{g(n)}\) with \(g(n) \leq n^{1 / 4}\)
```

Bootstrapping

For all $s \geq m=2^{n^{1 / 4}}$:
$\operatorname{PIT}(m, s, s): s^{b(m)}$, where
$h(m)=\operatorname{poly}(g(\operatorname{poly} \log m))$

For all $s \geq n_{1}$:
$\operatorname{PIT}\left(n_{1}, s, s\right): s^{n_{1} / 50}$

For all $s \geq n_{2}$:
$\operatorname{PIT}\left(n_{2}, s, s\right): s^{n_{2}^{1 / 4}}$

Plan

For all $s \geq n_{0}$: $\operatorname{PIT}\left(n_{0}, s, s\right): s^{n_{0}-0.01}$

For all $s \geq n$:
$\operatorname{PIT}(n, s, s): s^{g(n)}$ with $g(n) \leq n^{1 / 4}$

Bootstrapping

For all $s \geq m=2^{n^{1 / 4}}$:
$\operatorname{PIT}(m, s, s): s^{b(m)}$, where
$h(m)=\operatorname{poly}(g($ poly $\log m))$

For all $s \geq n_{1}$:
$\operatorname{PIT}\left(n_{1}, s, s\right): s^{n_{1} / 50}$

For all $s \geq n_{2}$:
$\operatorname{PIT}\left(n_{2}, s, s\right): s^{n_{2}^{1 / 4}}$

For s large enough, $\operatorname{PIT}(s, s, s): s^{\operatorname{tin} y(s)}$

Plan

For all $s \geq n_{0}$: $\operatorname{PIT}\left(n_{0}, s, s\right): s^{n_{0}-0.01}$

For all $s \geq n$:
$\operatorname{PIT}(n, s, s): s^{g(n)}$ with $g(n) \leq n^{1 / 4}$

Bootstrapping

For all $s \geq m=2^{n^{1 / 4}}$:
$\operatorname{PIT}(m, s, s): s^{b(m)}$, where
$h(m)=\operatorname{poly}(g($ poly $\log m))$

For all $s \geq n_{1}$:
$\operatorname{PIT}\left(n_{1}, s, s\right): s^{n_{1} / 50}$

For all $s \geq n_{2}$:
$\operatorname{PIT}\left(n_{2}, s, s\right): s^{n_{2}^{1 / 4}}$

For s large enough, $\operatorname{PIT}(s, s, s): s^{\operatorname{tin} y(s)}$

Plan

For all $s \geq n$:
$\operatorname{PIT}(n, s, s): s^{g(n)}$ with $g(n) \leq n^{1 / 4}$

Bootstrapping
For all $s \geq m=2^{n^{1 / 4}}$:
$\operatorname{PIT}(m, s, s): s^{b(m)}$, where
For all $s \geq n_{2}$:
$\operatorname{PIT}\left(n_{2}, s, s\right): s^{n_{2}^{1 / 4}}$ $h(m)=\operatorname{poly}(g(\operatorname{poly} \log m))$

For s large enough, $\operatorname{PIT}(s, s, s): s^{\text {tiny }}(s)$

Bootstrapping Hitting Sets

Lemma (Bootstrapping slightly non-trivial hitting sets)
Let n be large enough $\left(n>10^{10}\right)$. Suppose, for all $s \geq n$, there is an explicit hitting set for Formula (n, s, s) of size at most

$$
s^{g(n)}, \quad \text { with } g(n) \leq\left(\frac{n^{1 / 4}}{10}\right)
$$

Bootstrapping Hitting Sets

Lemma (Bootstrapping slightly non-trivial hitting sets)

Let n be large enough $\left(n>10^{10}\right)$. Suppose, for all $s \geq n$, there is an explicit hitting set for Formula (n, s, s) of size at most

$$
s^{g(n)}, \quad \text { with } g(n) \leq\left(\frac{n^{1 / 4}}{10}\right)
$$

Then, for $m=2^{n^{1 / 4}}$ and all $s \geq m$, we have an explicit hitting set for Formula (m, s, s) of size at most

$$
s^{h(m)}, \quad \text { with } h(m) \leq 20(g(n))^{2}
$$

Bootstrapping Hitting Sets

Lemma (Bootstrapping slightly non-trivial hitting sets)

Let n be large enough $\left(n>10^{10}\right)$. Suppose, for all $s \geq n$, there is an explicit hitting set for Formula (n, s, s) of size at most

$$
s^{g(n)}, \quad \text { with } g(n) \leq\left(\frac{n^{1 / 4}}{10}\right)
$$

Then, for $m=2^{n^{1 / 4}}$ and all $s \geq m$, we have an explicit hitting set for Formula (m, s, s) of size at most

$$
s^{b(m)}, \text { with } h(m) \leq 20(g(n))^{2}=20\left(g\left(\log ^{4} m\right)\right)^{2} \text {. }
$$

Bootstrapping Hitting Sets

Lemma (Bootstrapping slightly non-trivial hitting sets)

Let n be large enough $\left(n>10^{10}\right)$. Suppose, for all $s \geq n$, there is an explicit hitting set for Formula (n, s, s) of size at most

$$
s^{g(n)}, \quad \text { with } g(n) \leq\left(\frac{n^{1 / 4}}{10}\right)
$$

Then, for $m=2^{n^{1 / 4}}$ and all $s \geq m$, we have an explicit hitting set for Formula (m, s, s) of size at most

$$
s^{h(m)}, \quad \text { with } h(m) \leq 20(g(n))^{2}
$$

Bootstrapping Hitting Sets

Lemma (Bootstrapping slightly non-trivial hitting sets)

Let n be large enough $\left(n>10^{10}\right)$. Suppose, for all $s \geq n$, there is an explicit hitting set for Formula (n, s, s) of size at most

$$
s^{g(n)}, \quad \text { with } g(n) \leq\left(\frac{n^{1 / 4}}{10}\right)
$$

Then, for $m=2^{2^{(1 / 4) n^{1 / 4}}}$ and all $s \geq m$, we have an explicit hitting set for Formula (m, s, s) of size at most

$$
s^{b(m)}, \text { with } h(m) \leq 20^{1+2}(g(n))^{4}
$$

Bootstrapping Hitting Sets

Lemma (Bootstrapping slightly non-trivial hitting sets)

Let n be large enough $\left(n>10^{10}\right)$. Suppose, for all $s \geq n$, there is an explicit hitting set for Formula (n, s, s) of size at most

$$
s^{g(n)}, \quad \text { with } g(n) \leq\left(\frac{n^{1 / 4}}{10}\right)
$$

Then, for $m=2^{c^{n^{1 / 4}}}$ and all $s \geq m$, we have an explicit hitting set for Formula (m, s, s) of size at most

$$
s^{h(m)}, \quad \text { with } h(m) \leq 20^{1+2}(g(n))^{4}
$$

Bootstrapping Hitting Sets

Lemma (Bootstrapping slightly non-trivial hitting sets)

Let n be large enough $\left(n>10^{10}\right)$. Suppose, for all $s \geq n$, there is an explicit hitting set for Formula (n, s, s) of size at most

$$
s^{g(n)}, \quad \text { with } g(n) \leq\left(\frac{n^{1 / 4}}{10}\right)
$$

Then, for $m=2^{c^{c^{n^{1 / 4}}}}$ and all $s \geq m$, we have an explicit hitting set for Formula (m, s, s) of size at most

$$
s^{h(m)}, \quad \text { with } h(m) \leq 20^{1+2+4}(g(n))^{8}
$$

Bootstrapping Hitting Sets

Lemma (Bootstrapping slightly non-trivial hitting sets)

Let n be large enough $\left(n>10^{10}\right)$. Suppose, for all $s \geq n$, there is an explicit hitting set for Formula (n, s, s) of size at most

$$
s^{g(n)}, \quad \text { with } g(n) \leq\left(\frac{n^{1 / 4}}{10}\right)
$$

Then, for $m=2^{c^{c^{c^{1 / 4}}}}$ and all $s \geq m$, we have an explicit hitting set for Formula (m, s, s) of size at most

$$
s^{h(m)}, \quad \text { with } h(m) \leq 20^{1+2+4+8}(g(n))^{16}
$$

Bootstrapping Hitting Sets

Lemma (Bootstrapping slightly non-trivial hitting sets)

Let n be large enough $\left(n>10^{10}\right)$. Suppose, for all $s \geq n$, there is an explicit hitting set for Formula (n, s, s) of size at most

$$
s^{g(n)}, \quad \text { with } g(n) \leq\left(\frac{n^{1 / 4}}{10}\right)
$$

Then, we have an explicit hitting set for Formula (s, s, s) of size

$$
s^{\exp \left(\exp \left(O\left(\log ^{*} s\right)\right)\right)}
$$

Proof of the bootstrapping lemma

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$, with $g(n) \leq \frac{n^{1 / 4}}{10}$.

Proof of the bootstrapping lemma

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$, with $g(n) \leq \frac{n^{1 / 4}}{10}$.
Let $k=\sqrt{n}, \ell=n$ and $r=n^{1 / 4}$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=2^{n^{1 / 4}}$.

Proof of the bootstrapping lemma

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$, with $g(n) \leq \frac{n^{1 / 4}}{10}$.

Let $k=\sqrt{n}, \ell=n$ and $r=n^{1 / 4}$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=2^{n^{1 / 4}}$.
Using the hitting set H for Formula $\left(n, s^{5}, s^{5}\right)$ of size $s^{5 g(n)}$, find Q vanishing on H such that:

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{5 g(n) / k}$.

Proof of the bootstrapping lemma

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$, with $g(n) \leq \frac{n^{1 / 4}}{10}$.

Let $k=\sqrt{n}, \ell=n$ and $r=n^{1 / 4}$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=2^{n^{1 / 4}}$.
Using the hitting set H for Formula $\left(n, s^{5}, s^{5}\right)$ of size $s^{5 g(n)}$, find Q vanishing on H such that:

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{5 g(n) / k}$.

Claim: $0 \neq P \in \operatorname{Formula}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0$.

Proof of the bootstrapping lemma

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$, with $g(n) \leq \frac{n^{1 / 4}}{10}$.
Let $k=\sqrt{n}, \ell=n$ and $r=n^{1 / 4}$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=2^{n^{1 / 4}}$.
Using the hitting set H for Formula $\left(n, s^{5}, s^{5}\right)$ of size $s^{5 g(n)}$, find Q vanishing on H such that:

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{5 g(n) / k}$.

Claim: $0 \neq P \in \operatorname{Formula}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0$.

Proof.

Q vanishes on a hitting set for Formula $\left(k, d^{\prime}, s^{\prime}\right)$ as

$$
\begin{aligned}
& d^{\prime}=d D r=s^{5 g(n) / k} \cdot s \cdot r \leq s^{5}, \\
& s^{\prime}=s r d^{r}(D+1) \leq s^{4} \cdot s^{5 g(n) \cdot r / k} \leq s^{5} .
\end{aligned}
$$

Use the previous corollary.

Proof of the bootstrapping lemma

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$, with $g(n) \leq \frac{n^{1 / 4}}{10}$.

Let $k=\sqrt{n}, \ell=n$ and $r=n^{1 / 4}$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=2^{n^{1 / 4}}$.
Using the hitting set H for Formula $\left(n, s^{5}, s^{5}\right)$ of size $s^{5 g(n)}$, find Q vanishing on H such that:

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{5 g(n) / k}$.

Claim: $0 \neq P \in \operatorname{Formula}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0$.

Proof of the bootstrapping lemma

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$, with $g(n) \leq \frac{n^{1 / 4}}{10}$.

Let $k=\sqrt{n}, \ell=n$ and $r=n^{1 / 4}$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=2^{n^{1 / 4}}$.
Using the hitting set H for $\operatorname{Formula}\left(n, s^{5}, s^{5}\right)$ of size $s^{5 g(n)}$, find Q vanishing on H such that:

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{5 g(n) / k}$.

Claim: $0 \neq P \in \operatorname{Formula}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0$.
$P(Q \llbracket \ell, k, r \rrbracket)$ is a formula of size, degree at most $s \cdot s^{10 g(n)} \leq s^{20 g(n)}$.

Proof of the bootstrapping lemma

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$, with $g(n) \leq \frac{n^{1 / 4}}{10}$.
Let $k=\sqrt{n}, \ell=n$ and $r=n^{1 / 4}$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=2^{n^{1 / 4}}$.
Using the hitting set H for $\operatorname{Formula}\left(n, s^{5}, s^{5}\right)$ of size $s^{5 g(n)}$, find Q vanishing on H such that:

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{5 g(n) / k}$.

Claim: $0 \neq P \in \operatorname{Formula}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0$.
$P(Q \llbracket \ell, k, r \rrbracket)$ is a formula of size, degree at most $s \cdot s^{10 g(n)} \leq s^{20 g(n)}$.
Using the hypothesis again, we get a hitting set of size $s^{20(g(n))^{2}}$ for Formula (m, s, s).

Plan

For all $s \geq n$:
$\operatorname{PIT}(n, s, s): s^{g(n)}$ with $g(n) \leq n^{1 / 4}$

For all $s \geq m=2^{n^{1 / 4}}$:
$\operatorname{PIT}(m, s, s): s^{b(m)}$, where

For all $s \geq n_{2}$: $\operatorname{PIT}\left(n_{2}, s, s\right): s^{n_{2}^{1 / 4}}$ $h(m)=\operatorname{poly}(g(\operatorname{poly} \log m))$

For s large enough, $\operatorname{PIT}(s, s, s): s^{\text {tiny }}(s)$

Plan

For all $s \geq n_{1}:$
$\operatorname{PIT}\left(n_{1}, s, s\right): s^{n_{1} / 50}$

For all $s \geq n_{2}$: $\operatorname{PIT}\left(n_{2}, s, s\right): s^{n_{2}^{1 / 4}}$

Déjà vu

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$, with $g(n) \leq \frac{n}{50}$.

Déjà vu

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$, with $g(n) \leq \frac{n}{50}$.
Let $k=n, \ell=n^{2}$ and $r=10$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=k^{10}$.

Déjà vu

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$, with $g(n) \leq \frac{n}{50}$.
Let $k=n, \ell=n^{2}$ and $r=10$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=k^{10}$.
Using the hitting set H for $\operatorname{Formula}\left(n, s^{5}, s^{5}\right)$ of size $s^{5 g(n)}$, find Q vanishing on H such that:

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{5 g(n) / k}$.

Déjà vu

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$, with $g(n) \leq \frac{n}{50}$.
Let $k=n, \ell=n^{2}$ and $r=10$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=k^{10}$.
Using the hitting set H for Formula $\left(n, s^{5}, s^{5}\right)$ of size $s^{5 g(n)}$, find Q vanishing on H such that:

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{5 g(n) / k}$.

Claim: $0 \neq P \in \operatorname{Formula}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0$.

Déjà vu

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$, with $g(n) \leq \frac{n}{50}$.
Let $k=n, \ell=n^{2}$ and $r=10$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=k^{10}$.
Using the hitting set H for Formula $\left(n, s^{5}, s^{5}\right)$ of size $s^{5 g(n)}$, find Q vanishing on H such that:

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{5 g(n) / k}$.

Claim: $0 \neq P \in \operatorname{Formula}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0$. Proof.
Q vanishes on a hitting set for Formula $\left(k, d^{\prime}, s^{\prime}\right)$ as

$$
\begin{aligned}
& d^{\prime}=d D r=s^{5 g(n) / k} \cdot s \cdot r \leq s^{5}, \\
& s^{\prime}=s r d^{r}(D+1) \leq s^{4} \cdot s^{5 g(n) \cdot r / k} \leq s^{5} .
\end{aligned}
$$

Use the previous corollary.

Déjà vu

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$, with $g(n) \leq \frac{n}{50}$.
Let $k=n, \ell=n^{2}$ and $r=10$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=k^{10}$.
Using the hitting set H for Formula $\left(n, s^{5}, s^{5}\right)$ of size $s^{5 g(n)}$, find Q vanishing on H such that:

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{5 g(n) / k}$.

Claim: $0 \neq P \in \operatorname{Formula}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0$.

Déjà vu

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$, with $g(n) \leq \frac{n}{50}$.
Let $k=n, \ell=n^{2}$ and $r=10$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=k^{10}$.
Using the hitting set H for Formula $\left(n, s^{5}, s^{5}\right)$ of size $s^{5 g(n)}$, find Q vanishing on H such that:

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{5 g(n) / k}$.

Claim: $0 \neq P \in \operatorname{Formula}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0$.
$P(Q \llbracket \ell, k, r \rrbracket)$ is a formula on $\ell=n^{2}$ variables of degree $s \cdot k \cdot s^{g(n) / k} \leq s^{3}$.

Déjà vu

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$, with $g(n) \leq \frac{n}{50}$.
Let $k=n, \ell=n^{2}$ and $r=10$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=k^{10}$.
Using the hitting set H for Formula $\left(n, s^{5}, s^{5}\right)$ of size $s^{5 g(n)}$, find Q vanishing on H such that:

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{5 g(n) / k}$.

Claim: $0 \neq P \in \operatorname{Formula}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0$.
$P(Q \llbracket \ell, k, r \rrbracket)$ is a formula on $\ell=n^{2}$ variables of degree $s \cdot k \cdot s^{g(n) / k} \leq s^{3}$.
[O-DL-S-Z] lemma: hitting set of size $s^{3 \ell}$

Déjà vu

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$, with $g(n) \leq \frac{n}{50}$.
Let $k=n, \ell=n^{2}$ and $r=10$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=k^{10}$.
Using the hitting set H for Formula $\left(n, s^{5}, s^{5}\right)$ of size $s^{5 g(n)}$, find Q vanishing on H such that:

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{5 g(n) / k}$.

Claim: $0 \neq P \in \operatorname{Formula}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0$.
$P(Q \llbracket \ell, k, r \rrbracket)$ is a formula on $\ell=n^{2}$ variables of degree $s \cdot k \cdot s^{g(n) / k} \leq s^{3}$.
[O-DL-S-Z] lemma: hitting set of size $s^{3 l} \leq s^{(1 / 10) \cdot m^{1 / 4}}$

Déjà vu

Hyp: $s^{g(n)}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$, with $g(n) \leq \frac{n}{50}$.
Let $k=n, \ell=n^{2}$ and $r=10$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=k^{10}$.
Using the hitting set H for Formula $\left(n, s^{5}, s^{5}\right)$ of size $s^{5 g(n)}$, find Q vanishing on H such that:

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{5 g(n) / k}$.

Claim: $0 \neq P \in \operatorname{Formula}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0$.
$P(Q \llbracket \ell, k, r \rrbracket)$ is a formula on $\ell=n^{2}$ variables of degree $s \cdot k \cdot s^{g(n) / k} \leq s^{3}$.
[O-DL-S-Z] lemma: hitting set of size $s^{3 l} \leq s^{(1 / 10) \cdot m^{1 / 4}}$

Plan

For all $s \geq n_{0}:$
$\operatorname{PIT}\left(n_{0}, s, s\right): s^{n_{0}-0.01}$

For all $s \geq n_{1}:$
$\operatorname{PIT}\left(n_{1}, s, s\right): s^{n_{1} / 50}$

For all $s \geq n_{2}$:
$\operatorname{PIT}\left(n_{2}, s, s\right): s^{n_{2}^{1 / 4}}$

Plan

For all $s \geq n_{0}:$
$\operatorname{PIT}\left(n_{0}, s, s\right): s^{n_{0}-0.01}$

For all $s \geq m=2^{n^{1 / 4}}:$
$\operatorname{PIT}(m, s, s): s^{h(m)}$, where $h(m)=\operatorname{poly}(g(\operatorname{poly} \log m))$

For all $s \geq n_{1}$:
$\operatorname{PIT}\left(n_{1}, s, s\right): s^{n_{1} / 50}$

Déjà vu

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$.

Déjà vu

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$.
Let $k=n, \ell=n^{5}$ and $r=2$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=\left(\frac{\ell}{k}\right)^{r}=n^{8}$.

Déjà vu

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$.
Let $k=n, \ell=n^{5}$ and $r=2$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=\left(\frac{\ell}{k}\right)^{r}=n^{8}$.
Use the hitting set for Formula $\left(n, s^{300 n}, s^{300 n}\right)$ to get

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{300(n-0.01)}=s^{300 n-3}$.

Déjà vu

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$.
Let $k=n, \ell=n^{5}$ and $r=2$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=\left(\frac{\ell}{k}\right)^{r}=n^{8}$.
Use the hitting set for Formula $\left(n, s^{300 n}, s^{300 n}\right)$ to get

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{300(n-0.01)}=s^{300 n-3}$.

Déjà vu

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$.
Let $k=n, \ell=n^{5}$ and $r=2$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=\left(\frac{\ell}{k}\right)^{r}=n^{8}$.
Use the hitting set for $\operatorname{Formula}\left(n, s^{300 n}, s^{300 n}\right)$ to get

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{300(n-0.01)}=s^{300 n-3}$.

Claim: $0 \neq P \in \operatorname{Formula}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0$

Déjà vu

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$.
Let $k=n, \ell=n^{5}$ and $r=2$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=\left(\frac{\ell}{k}\right)^{r}=n^{8}$.
Use the hitting set for $\operatorname{Formula}\left(n, s^{300 n}, s^{300 n}\right)$ to get

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{300(n-0.01)}=s^{300 n-3}$.

Claim: $0 \neq P \in \operatorname{Formula}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0$
Proof: If not, there is a nonzero multiple \tilde{Q} of Q, whose degree is at most $s \cdot(r d) \leq s^{300 n}$,

Déjà vu

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$.
Let $k=n, \ell=n^{5}$ and $r=2$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=\left(\frac{\ell}{k}\right)^{r}=n^{8}$.
Use the hitting set for $\operatorname{Formula}\left(n, s^{300 n}, s^{300 n}\right)$ to get

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{300(n-0.01)}=s^{300 n-3}$.

Claim: $0 \neq P \in \operatorname{Formula}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0$
Proof: If not, there is a nonzero multiple \tilde{Q} of Q, whose degree is at most $s \cdot(r d) \leq s^{300 n}$, computable by a formula of size

$$
s \cdot\left((r d) \cdot d^{r-1}\right) \cdot(s+1)
$$

Déjà vu

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$.
Let $k=n, \ell=n^{5}$ and $r=2$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=\left(\frac{\ell}{k}\right)^{r}=n^{8}$.
Use the hitting set for $\operatorname{Formula}\left(n, s^{300 n}, s^{300 n}\right)$ to get

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{300(n-0.01)}=s^{300 n-3}$.

Claim: $0 \neq P \in \operatorname{Formula}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0$
Proof: If not, there is a nonzero multiple \tilde{Q} of Q, whose degree is at most $s \cdot(r d) \leq s^{300 n}$, computable by a formula of size

$$
s \cdot\left((r d) \cdot d^{r-1}\right) \cdot(s+1)
$$

Complexity to compute an $(r-1)$-variate polynomial of ideg d

Déjà vu

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$.
Let $k=n, \ell=n^{5}$ and $r=2$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=\left(\frac{\ell}{k}\right)^{r}=n^{8}$.
Use the hitting set for $\operatorname{Formula}\left(n, s^{300 n}, s^{300 n}\right)$ to get

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{300(n-0.01)}=s^{300 n-3}$.

Claim: $0 \neq P \in \operatorname{Formula}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0$
Proof: If not, there is a nonzero multiple \tilde{Q} of Q, whose degree is at most $s \cdot(r d) \leq s^{300 n}$, computable by a formula of size

$$
s \cdot\left((r d) \cdot d^{r-1}\right) \cdot(s+1)
$$

Complexity to compute an $(r-1)$-variate polynomial of ideg d

Déjà vu

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$.
Let $k=n, \ell=n^{5}$ and $r=2$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=\left(\frac{\ell}{k}\right)^{r}=n^{8}$.
Use the hitting set for $\operatorname{Formula}\left(n, s^{300 n}, s^{300 n}\right)$ to get

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{300(n-0.01)}=s^{300 n-3}$.

Claim: $0 \neq P \in \operatorname{Formula}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0$
Proof: If not, there is a nonzero multiple \tilde{Q} of Q, whose degree is at most $s \cdot(r d) \leq s^{300 n}$, computable by a formula of size

$$
s \cdot\left((r d) \cdot d^{r-1}\right) \cdot(s+1)
$$

Complexity to compute an univariate polynomial of degree d

Déjà vu

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$.
Let $k=n, \ell=n^{5}$ and $r=2$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=\left(\frac{\ell}{k}\right)^{r}=n^{8}$.
Use the hitting set for $\operatorname{Formula}\left(n, s^{300 n}, s^{300 n}\right)$ to get

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{300(n-0.01)}=s^{300 n-3}$.

Claim: $0 \neq P \in \operatorname{Formula}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0$
Proof: If not, there is a nonzero multiple \tilde{Q} of Q, whose degree is at most $s \cdot(r d) \leq s^{300 n}$, computable by a formula of size

$$
s \cdot 10 d \cdot(s+1)
$$

Déjà vu

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$.
Let $k=n, \ell=n^{5}$ and $r=2$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=\left(\frac{\ell}{k}\right)^{r}=n^{8}$.
Use the hitting set for $\operatorname{Formula}\left(n, s^{300 n}, s^{300 n}\right)$ to get

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{300(n-0.01)}=s^{300 n-3}$.

Claim: $0 \neq P \in \operatorname{Formula}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0$
Proof: If not, there is a nonzero multiple \tilde{Q} of Q, whose degree is at most $s \cdot(r d) \leq s^{300 n}$, computable by a formula of size

$$
s \cdot 10 d \cdot(s+1) \leq s^{3} \cdot s^{300 n-3}
$$

Déjà vu

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$.
Let $k=n, \ell=n^{5}$ and $r=2$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=\left(\frac{\ell}{k}\right)^{r}=n^{8}$.
Use the hitting set for $\operatorname{Formula}\left(n, s^{300 n}, s^{300 n}\right)$ to get

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{300(n-0.01)}=s^{300 n-3}$.

Claim: $0 \neq P \in \operatorname{Formula}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0$
Proof: If not, there is a nonzero multiple \tilde{Q} of Q, whose degree is at most $s \cdot(r d) \leq s^{300 n}$, computable by a formula of size

$$
s \cdot 10 d \cdot(s+1) \leq s^{3} \cdot s^{300 n-3} \leq s^{300 n} \quad \ldots \text { no way... }
$$

Déjà vu

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$.
Let $k=n, \ell=n^{5}$ and $r=2$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=\left(\frac{\ell}{k}\right)^{r}=n^{8}$.
Use the hitting set for $\operatorname{Formula}\left(n, s^{300 n}, s^{300 n}\right)$ to get

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{300(n-0.01)}=s^{300 n-3}$.

Claim: $0 \neq P \in \operatorname{Formula}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0$

Déjà vu

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$.
Let $k=n, \ell=n^{5}$ and $r=2$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=\left(\frac{\ell}{k}\right)^{r}=n^{8}$.
Use the hitting set for $\operatorname{Formula}\left(n, s^{300 n}, s^{300 n}\right)$ to get

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{300(n-0.01)}=s^{300 n-3}$.

Claim: $0 \neq P \in \operatorname{Formula}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0$
$P(Q \llbracket \ell, k, r \rrbracket)$ is a formula on $\ell=n^{5}$ variables.

Déjà vu

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$.
Let $k=n, \ell=n^{5}$ and $r=2$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=\left(\frac{\ell}{k}\right)^{r}=n^{8}$.
Use the hitting set for $\operatorname{Formula}\left(n, s^{300 n}, s^{300 n}\right)$ to get

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{300(n-0.01)}=s^{300 n-3}$.

Claim: $0 \neq P \in \operatorname{Formula}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0$
$P(Q \llbracket \ell, k, r \rrbracket)$ is a formula on $\ell=n^{5}$ variables of degree $s \cdot k \cdot s^{300 n-3} \leq s^{300 n}$.

Déjà vu

Hyp: $s^{n-0.01}$ hitting sets for $\mathscr{C}(n, s, s)$, for any $s \geq n$.
Let $k=n, \ell=n^{5}$ and $r=2$.
Let S_{1}, \ldots, S_{m} be an (ℓ, k, r)-design with $m=\left(\frac{\ell}{k}\right)^{r}=n^{8}$.
Use the hitting set for $\operatorname{Formula}\left(n, s^{300 n}, s^{300 n}\right)$ to get

- Q is k-variate, and $\operatorname{ideg}(Q)<d:=s^{300(n-0.01)}=s^{300 n-3}$.

Claim: $0 \neq P \in \operatorname{Formula}(m, s, s) \Longrightarrow P(Q \llbracket \ell, k, r \rrbracket) \neq 0$
$P(Q \llbracket \ell, k, r \rrbracket)$ is a formula on $\ell=n^{5}$ variables of degree $s \cdot k \cdot s^{300 n-3} \leq s^{300 n}$.
[O-DL-S-Z] lemma: a hitting set of size $s^{300 n \cdot n^{5}} \leq s^{m / 50}$ for Formula (m, s, s).

Closing remarks

Closing remarks

- A similar statement also holds for bounded depth formulas, with some slack in depth between the hypothesis and conclusion.

Closing remarks

- A similar statement also holds for bounded depth formulas, with some slack in depth between the hypothesis and conclusion.
- It is crucial that the exponent of s in the hypothesis is independent of s.

Closing remarks

- A similar statement also holds for bounded depth formulas, with some slack in depth between the hypothesis and conclusion.
- It is crucial that the exponent of s in the hypothesis is independent of s.

Question: Can saying something non-trivial from a hypothesis for just $s=\operatorname{poly}(n)$ circuits?

Closing remarks

- A similar statement also holds for bounded depth formulas, with some slack in depth between the hypothesis and conclusion.
- It is crucial that the exponent of s in the hypothesis is independent of s.

Question: Can saying something non-trivial from a hypothesis for just $s=\operatorname{poly}(n)$ circuits?

- To obtain the hitting set for $\mathscr{C}(s, s, s)$, the algorithm would use hitting sets for $\mathscr{C}\left(n_{0}, s^{\prime}, s^{\prime}\right)$ for various $s^{\prime} \leq s^{\operatorname{tin} y}(s)$.

Closing remarks

- A similar statement also holds for bounded depth formulas, with some slack in depth between the hypothesis and conclusion.
- It is crucial that the exponent of s in the hypothesis is independent of s.

Question: Can saying something non-trivial from a hypothesis for just $s=\operatorname{poly}(n)$ circuits?

- To obtain the hitting set for $\mathscr{C}(s, s, s)$, the algorithm would use hitting sets for $\mathscr{C}\left(n_{0}, s^{\prime}, s^{\prime}\right)$ for various $s^{\prime} \leq s^{\operatorname{tin} y(s)}$.

Question: Is there a hardness amplification (à la [CILM]) in this setting?

Closing remarks

- A similar statement also holds for bounded depth formulas, with some slack in depth between the hypothesis and conclusion.
- It is crucial that the exponent of s in the hypothesis is independent of s.

Question: Can saying something non-trivial from a hypothesis for just $s=\operatorname{poly}(n)$ circuits?

- To obtain the hitting set for $\mathscr{C}(s, s, s)$, the algorithm would use hitting sets for $\mathscr{C}\left(n_{0}, s^{\prime}, s^{\prime}\right)$ for various $s^{\prime} \leq s^{\operatorname{tin} y}(s)$.

Question: Is there a hardness amplification (à la [CILM]) in this setting?

\end\{document\}

}