
Near-optimal
Bootstrapping of

Hitting Sets

Mrinal Kumar Ramprasad Saptharishi Anamay Tengse
Simons Institute TIFR, Mumbai TIFR, Mumbai

Simons Institute
December 2018

Algebraic Circuits

x1 x2 x3

+ + + + + +

× × ×

+

f (x1, x2, x3)

Algebraic Formulas

1 x1 1 x2 1 x3 1 x4

+ + + +

×
f (x1, x2, x3, x4)

Algebraic Formulas

1 x1 1 x2 1 x3 1 x4

+ + + +

×
f (x1, x2, x3, x4)

▶ A tree, made up of+ and× gates. Leaves containing variables or
constants

Algebraic Formulas

1 x1 1 x2 1 x3 1 x4

+ + + +

×
f (x1, x2, x3, x4)

▶ A tree, made up of+ and× gates. Leaves containing variables or
constants. Size = number of leaves

Algebraic Formulas

1 x1 1 x2 1 x3 1 x4

+ + + +

×
f (x1, x2, x3, x4)

▶ A tree, made up of+ and× gates. Leaves containing variables or
constants. Size = number of leaves

▶ Size(f (g1, . . . , gn)) ≤ Size(f) ·maxi (Size(gi))

Algebraic Formulas

1 x1 1 x2 1 x3 1 x4

+ + + +

×
f (x1, x2, x3, x4)

▶ A tree, made up of+ and× gates. Leaves containing variables or
constants. Size = number of leaves

▶ Size(f (g1, . . . , gn)) ≤ Size(f) ·maxi (Size(gi))

▶ Formula(n, d , s): n-variate, degree≤ d polynomials computable
by size s formulas. (note: d ≤ s)

Polynomial Identity Testing

1 x1 1 x2 1 x3 1 x4

+ + + +

×

Is this zero?

This box contains a polynomial fromC (n, d , s)

Blackbox Polynomial Identity Testing

1 x1 1 x2 1 x3 1 x4

+ + + +

×

Is this zero?

This box contains a polynomial fromC (n, d , s)

Blackbox Polynomial Identity Testing

1 x1 1 x2 1 x3 1 x4

+ + + +

×

Is this zero?

This box contains a polynomial fromC (n, d , s)

Only have evaluation access to the circuit.

Blackbox Polynomial Identity Testing

1 x1 1 x2 1 x3 1 x4

+ + + +

×

Is this zero?

This box contains a polynomial fromC (n, d , s)

Only have evaluation access to the circuit.

Equivalent to constructing a hitting set H :
For every nonzero P ∈C (n, d , s), there is some a ∈H such
that P (a) ̸= 0.

Hitting Sets

Counting argument
There are non-explicit hitting sets of poly(s) size forC (n, d , s).

Lemma ([Ore*, DeMillo-Lipton, Schwartz-Zippel])
If S ⊆ F with |S | ≥ d + 1, then Sn is a hitting set forC (n, d , s).

That is, we have an explicit, but trivial, hitting set of (d + 1)n size.

Question: Are there small explicit hitting sets forC (n, d , s)?

*: See [Bishnoi-Clark-Potukuchi-Schmitt]

Hitting Sets

Counting argument
There are non-explicit hitting sets of poly(s) size forC (n, d , s).

Lemma ([Ore*, DeMillo-Lipton, Schwartz-Zippel])
If S ⊆ F with |S | ≥ d + 1, then Sn is a hitting set forC (n, d , s).

That is, we have an explicit, but trivial, hitting set of (d + 1)n size.

Question: Are there small explicit hitting sets forC (n, d , s)?

*: See [Bishnoi-Clark-Potukuchi-Schmitt]

Hitting Sets

Counting argument
There are non-explicit hitting sets of poly(s) size forC (n, d , s).

Lemma ([Ore*, DeMillo-Lipton, Schwartz-Zippel])
If S ⊆ F with |S | ≥ d + 1, then Sn is a hitting set forC (n, d , s).

That is, we have an explicit, but trivial, hitting set of (d + 1)n size.

Question: Are there small explicit hitting sets forC (n, d , s)?

*: See [Bishnoi-Clark-Potukuchi-Schmitt]

Hitting Sets

Counting argument
There are non-explicit hitting sets of poly(s) size forC (n, d , s).

Lemma ([Ore*, DeMillo-Lipton, Schwartz-Zippel])
If S ⊆ F with |S | ≥ d + 1, then Sn is a hitting set forC (n, d , s).

That is, we have an explicit, but trivial, hitting set of (d + 1)n size.

Question: Are there small explicit hitting sets forC (n, d , s)?

*: See [Bishnoi-Clark-Potukuchi-Schmitt]

Improving not-too-bad hitting sets

Theorem ([Agrawal-Ghosh-Saxena 2018])
Say n large enough.
Suppose, for each s ≥ n, there is an explicit hitting set forCircuits(n, s , s)
of size at most

(s + 1)n
0.49

. (Trivial hitting set size: (s + 1)n)

Improving not-too-bad hitting sets

Theorem ([Agrawal-Ghosh-Saxena 2018])
Say n large enough.
Suppose, for each s ≥ n, there is an explicit hitting set forCircuits(n, s , s)
of size at most

(s + 1)n
0.49

. (Trivial hitting set size: (s + 1)n)

Then there is an explicit hitting set forCircuits(s , s , s) of size at most

s tiny(s).

Improving not-too-bad hitting sets

Theorem ([Agrawal-Ghosh-Saxena 2018])
Say n large enough.
Suppose, for each s ≥ n, there is an explicit hitting set forCircuits(n, s , s)
of size at most

(s + 1)n
0.49

. (Trivial hitting set size: (s + 1)n)

Then there is an explicit hitting set forCircuits(s , s , s) of size at most

s exp(exp(O(log∗ s))).

Improving not-too-bad hitting sets

Theorem ([Agrawal-Ghosh-Saxena 2018])
Say n large enough.
Suppose, for each s ≥ n, there is an explicit hitting set forCircuits(n, s , s)
of size at most

(s + 1)n
0.49

. (Trivial hitting set size: (s + 1)n)

Then there is an explicit hitting set forCircuits(s , s , s) of size at most

s tiny(s).

Improving almost-trivial hitting sets

Theorem ([Kumar-S-Tengse])
Say n large enough.
Suppose, for each s ≥ n, there is an explicit hitting set forCircuits(n, s , s)
of size at most

(s + 1)n−0.01. (Trivial hitting set size: (s + 1)n)

Then there is an explicit hitting set forCircuits(s , s , s) of size at most

s tiny(s).

Improving almost-trivial hitting sets

Theorem ([Kumar-S-Tengse])
Say n large enough.
Suppose, for each s ≥ n, there is an explicit hitting set for Formula(n, s , s)
of size at most

(s + 1)n−0.01. (Trivial hitting set size: (s + 1)n)

Then there is an explicit hitting set for Formula(s , s , s) of size at most

s tiny(s).

Improving almost-trivial hitting sets

Theorem ([Kumar-S-Tengse])
Say n large enough.
Suppose, for each s ≥ n, there is an explicit hitting set forC (n, s , s)
of size at most

(s + 1)n−0.01. (Trivial hitting set size: (s + 1)n)

Then there is an explicit hitting set forC (s , s , s) of size at most

s tiny(s).

(whereC is any class well-behaved under sums, projections and compositions)

A very high-level overview

Non-trivial Hitting Sets

Explicit Lower Bounds

[Heintz-Schnorr, Agrawal][Kabanets-Impagliazzo]

From a non-trivial hitting set, get a lower bound. Use that to get a better
hitting set. And so on ...

A very high-level overview

Non-trivial Hitting Sets

Explicit Lower Bounds

[Heintz-Schnorr, Agrawal]

[Kabanets-Impagliazzo]

From a non-trivial hitting set, get a lower bound. Use that to get a better
hitting set. And so on ...

A very high-level overview

Non-trivial Hitting Sets

Explicit Lower Bounds

[Heintz-Schnorr, Agrawal]

[Kabanets-Impagliazzo]

From a non-trivial hitting set, get a lower bound. Use that to get a better
hitting set. And so on ...

A very high-level overview

Non-trivial Hitting Sets

Explicit Lower Bounds

[Heintz-Schnorr, Agrawal][Kabanets-Impagliazzo]

From a non-trivial hitting set, get a lower bound. Use that to get a better
hitting set. And so on ...

Preliminaries:

Hardness vs Randomness

for algebraic models

Lower bounds from hitting sets

H is a hitting set forC (n, d , s) if

for all 0 ̸= P ∈C (n, d , s), there is some a ∈H such that P (a) ̸= 0.

Observation
If P is a nonzero polynomial that vanishes on H , then P cannot be a
member ofC (n, d , s).

Theorem ([Heintz-Schnorr, Agrawal])
For any k ≤ n such that k |H |1/k ≤ d , we can find a nonzero k-variate
polynomial Q of individual degree less than |H |1/k such that Q requires
size more than s .

Lower bounds from hitting sets

H is a hitting set forC (n, d , s) if

for all 0 ̸= P ∈C (n, d , s), there is some a ∈H such that P (a) ̸= 0.

Observation
If P is a nonzero polynomial that vanishes on H , then P cannot be a
member ofC (n, d , s).

Theorem ([Heintz-Schnorr, Agrawal])
For any k ≤ n such that k |H |1/k ≤ d , we can find a nonzero k-variate
polynomial Q of individual degree less than |H |1/k such that Q requires
size more than s .

Lower bounds from hitting sets

H is a hitting set forC (n, d , s) if

for all 0 ̸= P ∈C (n, d , s), there is some a ∈H such that P (a) ̸= 0.

Observation
If P is a nonzero polynomial that vanishes on H , then P cannot be a
member ofC (n, d , s).

Theorem ([Heintz-Schnorr, Agrawal])
For any k ≤ n such that k |H |1/k ≤ d , we can find a nonzero k-variate
polynomial Q of individual degree less than |H |1/k such that Q requires
size more than s .

Hitting sets from lower bounds

Theorem ([Kabanets-Impagliazzo] (Informal))
If Q is hard-enough, then for any small algebraic circuit computing P , we
have

P (x1, . . . , xm) ̸= 0 ⇐⇒ P (Q(y1), . . . ,Q(y m)) ̸= 0

even if y1, . . . , y m are almost disjoint.

Hitting sets from lower bounds
Aside: Combinatorial Designs

Hitting sets from lower bounds
Aside: Combinatorial Designs

Definition (Combinatorial designs)
{S1, . . . , Sm} ⊆ [ℓ] is an (ℓ, k , r)-design if |Si |= k and

���Si ∩ S j

���< r .

Hitting sets from lower bounds
Aside: Combinatorial Designs

Definition (Combinatorial designs)
{S1, . . . , Sm} ⊆ [ℓ] is an (ℓ, k , r)-design if |Si |= k and

���Si ∩ S j

���< r .

Fact
For all∗ ℓ≥ k2 and r ≤ k , we have explicit (ℓ, k , r)-designs with
m =
�
ℓ
k

�r
.

Hitting sets from lower bounds
Aside: Combinatorial Designs

Definition (Combinatorial designs)
{S1, . . . , Sm} ⊆ [ℓ] is an (ℓ, k , r)-design if |Si |= k and

���Si ∩ S j

���< r .

Fact
For all∗ ℓ≥ k2 and r ≤ k , we have explicit (ℓ, k , r)-designs with
m =
�
ℓ
k

�r
.

ℓ
k

k

|F|= (ℓ/k).

Hitting sets from lower bounds
Aside: Combinatorial Designs

Definition (Combinatorial designs)
{S1, . . . , Sm} ⊆ [ℓ] is an (ℓ, k , r)-design if |Si |= k and

���Si ∩ S j

���< r .

Fact
For all∗ ℓ≥ k2 and r ≤ k , we have explicit (ℓ, k , r)-designs with
m =
�
ℓ
k

�r
.

ℓ
k

k

|F|= (ℓ/k).
For p(z) ∈ F[z] with deg(p)< r ,
Sp = {(i , p(i)) : i ∈ [k]}.

Hitting sets from lower bounds
Aside: Combinatorial Designs

Definition (Combinatorial designs)
{S1, . . . , Sm} ⊆ [ℓ] is an (ℓ, k , r)-design if |Si |= k and

���Si ∩ S j

���< r .

Fact
For all∗ ℓ≥ k2 and r ≤ k , we have explicit (ℓ, k , r)-designs with
m =
�
ℓ
k

�r
.

ℓ
k

k

|F|= (ℓ/k).
For p(z) ∈ F[z] with deg(p)< r ,
Sp = {(i , p(i)) : i ∈ [k]}.

Hitting sets from lower bounds
Aside: Combinatorial Designs

Definition (Combinatorial designs)
{S1, . . . , Sm} ⊆ [ℓ] is an (ℓ, k , r)-design if |Si |= k and

���Si ∩ S j

���< r .

Fact
For all∗ ℓ≥ k2 and r ≤ k , we have explicit (ℓ, k , r)-designs with
m =
�
ℓ
k

�r
.

ℓ
k

k

|F|= (ℓ/k).
For p(z) ∈ F[z] with deg(p)< r ,
Sp = {(i , p(i)) : i ∈ [k]}.

Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kabanets-Impagliazzo])

Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kabanets-Impagliazzo])
Let P (x1, . . . , xm) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.
degree< d such that P (Q⟦ℓ, k , r⟧) = 0.
Then Q has small circuits.

Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kabanets-Impagliazzo])
Let P (x1, . . . , xm) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.
degree< d such that P (Q⟦ℓ, k , r⟧) = 0.
Then Q has small circuits.

P

x1 x2 x3 x4 · · · xm

Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kabanets-Impagliazzo])
Let P (x1, . . . , xm) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.
degree< d such that P (Q⟦ℓ, k , r⟧) = 0.
Then Q has small circuits.

P

S1

x2 x3 x4 · · · xm

Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kabanets-Impagliazzo])
Let P (x1, . . . , xm) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.
degree< d such that P (Q⟦ℓ, k , r⟧) = 0.
Then Q has small circuits.

P

S1 S2

x3 x4 · · · xm

Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kabanets-Impagliazzo])
Let P (x1, . . . , xm) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.
degree< d such that P (Q⟦ℓ, k , r⟧) = 0.
Then Q has small circuits.

P

S1 S2 S3

x4 · · · xm

Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kabanets-Impagliazzo])
Let P (x1, . . . , xm) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.
degree< d such that P (Q⟦ℓ, k , r⟧) = 0.
Then Q has small circuits.

P

S1 S2 S3

= P̃ (x3,xrest, ȳ |S3
, ȳ |rest)

x3 x4 · · · xm

Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kabanets-Impagliazzo])
Let P (x1, . . . , xm) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.
degree< d such that P (Q⟦ℓ, k , r⟧) = 0.
Then Q has small circuits.

P

S1 S2 S3

= P̃ (x3, ᾱ, ȳ |S3
, ȳ |rest)

x3 α4 · · · αm

Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kabanets-Impagliazzo])
Let P (x1, . . . , xm) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.
degree< d such that P (Q⟦ℓ, k , r⟧) = 0.
Then Q has small circuits.

P

S1 ∩ S3 S2 ∩ S3 S3

= P̃ (x3, ᾱ, ȳ |S3
, β̄)

x3 α4 · · · αm

Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kabanets-Impagliazzo])
Let P (x1, . . . , xm) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.
degree< d such that P (Q⟦ℓ, k , r⟧) = 0.
Then Q has small circuits.

P

S1 ∩ S3 S2 ∩ S3 S3

x3 α4 · · · αm

= P ′(x3, y |S3
)

Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kabanets-Impagliazzo])
Let P (x1, . . . , xm) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.
degree< d such that P (Q⟦ℓ, k , r⟧) = 0.
Then Q has small circuits.

P

S1 ∩ S3 S2 ∩ S3 S3

x3 α4 · · · αm

= P ′(x3, y |S3
) Size≤ s · �r d · d r−1

�
Degree≤D · d r

Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kabanets-Impagliazzo])
Let P (x1, . . . , xm) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.
degree< d such that P (Q⟦ℓ, k , r⟧) = 0.
Then Q has small circuits.

P

S1 ∩ S3 S2 ∩ S3 S3

x3 α4 · · · αm

= P ′(x3, y |S3
) Size≤ s · �r d · d r−1

�
Degree≤D · d r

(x3−Q) divides P ′.

Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kabanets-Impagliazzo])
Let P (x1, . . . , xm) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.
degree< d such that P (Q⟦ℓ, k , r⟧) = 0.
Then Q has small circuits.

P

S1 ∩ S3 S2 ∩ S3 S3

x3 α4 · · · αm

= P ′(x3, y |S3
) Size≤ s · �r d · d r−1

�
Degree≤D · d r

(x3−Q) divides P ′.
[Kaltofen, Bürgisser]:
Factors have small circuits.

Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kabanets-Impagliazzo])
Let P (x1, . . . , xm) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.
degree< d such that P (Q⟦ℓ, k , r⟧) = 0.
Then Q has circuits of size (s · r · d r ·D)O(1).

P

S1 ∩ S3 S2 ∩ S3 S3

x3 α4 · · · αm

= P ′(x3, y |S3
) Size≤ s · �r d · d r−1

�
Degree≤D · d r

(x3−Q) divides P ′.
[Kaltofen, Bürgisser]:
Factors have small circuits.

Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kabanets-Impagliazzo])
Suppose Q does not have circuits of size (s · r · d r ·D)O(1).
Then, for any nonzero polynomial P (x1, . . . , xm) of degree at most D and
circuit size at most s , we have that P (Q⟦ℓ, k , r⟧) ̸= 0.

Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kabanets-Impagliazzo])
Let P (x1, . . . , xm) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.
degree< d such that P (Q⟦ℓ, k , r⟧) = 0.
Then Q has circuits of size (s · r · d r ·D)O(1).

P

S1 ∩ S3 S2 ∩ S3 S3

x3 α4 · · · αm

= P ′(x3, y |S3
) Size≤ s · �r d · d r−1

�
Degree≤D · d r

(x3−Q) divides P ′.
[Kaltofen, Bürgisser]:
Factors have small circuits.

Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kabanets-Impagliazzo])
Let P (x1, . . . , xm) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.
degree< d such that P (Q⟦ℓ, k , r⟧) = 0.
Then Q has circuits of size (s · r · d r ·D)O(1).

P

S1 ∩ S3 S2 ∩ S3 S3

x3 α4 · · · αm

= P ′(x3, y |S3
) Size≤ s · �r d · d r−1

�
Degree≤D · d r

(x3−Q) divides P ′.
[Kaltofen, Bürgisser]:
Factors have small circuits.

Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kabanets-Impagliazzo])
Let P (x1, . . . , xm) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.
degree< d such that P (Q⟦ℓ, k , r⟧) = 0.
Then Q has circuits of size (s · r · d r ·D)O(1).

P

S1 ∩ S3 S2 ∩ S3 S3

x3 α4 · · · αm

= P ′(x3, y |S3
) Size≤ s · �r d · d r−1

�
Degree≤D · d r

(x3−Q) divides P ′.

Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kabanets-Impagliazzo])
Let P (x1, . . . , xm) is a nonzero polynomial of degree at most D that is
computable by a size s circuit. Suppose Q is a k-variate polynomial of ind.
degree< d such that P (Q⟦ℓ, k , r⟧) = 0.
Then Q has circuits of size (s · r · d r ·D)O(1).

P

S1 ∩ S3 S2 ∩ S3 S3

x3 α4 · · · αm

= P ′(x3, y |S3
) Size≤ s · �r d · d r−1

�
Degree≤D · d r

(x3−Q) divides P ′.
P ′(0, y |S3

) is a multiple of Q .
(after dividing by x3 ; interpolation)

Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kumar-S-Tengse])
Let P (x1, . . . , xm) is a nonzero polynomial of degree at most D that is
computable by a size s formula. Suppose Q is a k-variate polynomial of ind.
degree< d such that P (Q⟦ℓ, k , r⟧) = 0.
Then a low-degree multiple of Q has formulas of size (s · r · d r · (D+1)).

P

S1 ∩ S3 S2 ∩ S3 S3

x3 α4 · · · αm

= P ′(x3, y |S3
) Size≤ s · �r d · d r−1

�
Degree≤D · d r

(x3−Q) divides P ′.
P ′(0, y |S3

) is a multiple of Q .
(after dividing by x3 ; interpolation)

Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kumar-S-Tengse])
Let P (x1, . . . , xm) is a nonzero polynomial of degree at most D that is
computable by a size s formula. Suppose Q is a k-variate polynomial of ind.
degree< d such that P (Q⟦ℓ, k , r⟧) = 0.
Then a low-degree multiple of Q has formulas of size (s · r · d r · (D+1)).

Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kumar-S-Tengse])
Suppose Q has the property that no multiple of Q of degree at most D · d r
has a formula of size (s · r · d r · (D + 1)).
Then, for any nonzero polynomial P (x1, . . . , xm) of degree at most D and
formula size at most s , we have that P (Q⟦ℓ, k , r⟧) ̸= 0.

Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kumar-S-Tengse])
Suppose Q has the property that no multiple of Q of degree at most D · d r
has a formula of size (s · r · d r · (D + 1)).
Then, for any nonzero polynomial P (x1, . . . , xm) of degree at most D and
formula size at most s , we have that P (Q⟦ℓ, k , r⟧) ̸= 0.

Corollary
Suppose Q vanishes on a hitting set for Formula(k , d ′, s ′) with
d ′ = (D · d r) and s ′ = s · r · d r · (D + 1). Then, if
P ∈ Formula(m, D , s), we have

P ̸= 0⇐⇒ P (Q⟦ℓ, k , r⟧) ̸= 0.

Hitting sets from lower bounds
Q⟦ℓ, k , r⟧ := �Q(y |S1

), . . . ,Q(y |Sm
)
�

Lemma ([Kumar-S-Tengse])
Suppose Q has the property that no multiple of Q of degree at most D · d r
has a formula of size (s · r · d r · (D + 1)).
Then, for any nonzero polynomial P (x1, . . . , xm) of degree at most D and
formula size at most s , we have that P (Q⟦ℓ, k , r⟧) ̸= 0.

Corollary
Suppose Q vanishes on a hitting set for Formula(k , d ′, s ′) with
d ′ = (D · d r) and s ′ = s · r · d r · (D + 1). Then, if
P ∈ Formula(m, D , s), we have

P ̸= 0⇐⇒ P (Q⟦ℓ, k , r⟧) ̸= 0.

From hitting sets for k-variate formulas, we obtain a hitting set for
m-variate formulas.

Template for “Hardness to Randomness”

▶ Construct an (ℓ, k , r)-design S1, . . . , Sm ⊆ [ℓ]
▶ Use Hyp to take a hitting set forC (ℓ, s c , s c) to construct a hard

k-variate polynomial Q .

▶ Use the hardness of Q to argue that

0 ̸= P ∈C (m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0

Template for “Hardness to Randomness”

Hyp: Given a k-variate polynomial Q that is s c -hard.
Goal: Construct “better” hitting sets forC (m, s , s) for all s ≥ m

▶ Construct an (ℓ, k , r)-design S1, . . . , Sm ⊆ [ℓ]
▶ Use Hyp to take a hitting set forC (ℓ, s c , s c) to construct a hard

k-variate polynomial Q .

▶ Use the hardness of Q to argue that

0 ̸= P ∈C (m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0

Template for “Hardness to Randomness”

Hyp: Given a k-variate polynomial Q that is s c -hard.
Goal: Construct “better” hitting sets forC (m, s , s) for all s ≥ m

▶ Construct an (ℓ, k , r)-design S1, . . . , Sm ⊆ [ℓ]

▶ Use Hyp to take a hitting set forC (ℓ, s c , s c) to construct a hard
k-variate polynomial Q .

▶ Use the hardness of Q to argue that

0 ̸= P ∈C (m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0

Template for “Hardness to Randomness”

Hyp: Given a k-variate polynomial Q that is s c -hard.
Goal: Construct “better” hitting sets forC (m, s , s) for all s ≥ m

▶ Construct an (ℓ, k , r)-design S1, . . . , Sm ⊆ [ℓ]

▶ Use Hyp to take a hitting set forC (ℓ, s c , s c) to construct a hard
k-variate polynomial Q .

▶ Use the hardness of Q to argue that

0 ̸= P ∈C (m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0

Template for “Hardness to Randomness”

Hyp: Given a k-variate polynomial Q that is s c -hard.
Goal: Construct “better” hitting sets forC (m, s , s) for all s ≥ m

▶ Construct an (ℓ, k , r)-design S1, . . . , Sm ⊆ [ℓ]

▶ Use Hyp to take a hitting set forC (ℓ, s c , s c) to construct a hard
k-variate polynomial Q .

▶ Use the hardness of Q to argue that

0 ̸= P ∈C (m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0

▶ Brute-force on the polynomial P (Q⟦ℓ, k , r⟧) to test if this is zero.

Template for “Hardness to Randomness”

Hyp: Hitting sets forC (ℓ, s , s) for all s ≥ ℓ.
Goal: Construct “better” hitting sets forC (m, s , s) for all s ≥ m

▶ Construct an (ℓ, k , r)-design S1, . . . , Sm ⊆ [ℓ]

▶ Use Hyp to take a hitting set forC (ℓ, s c , s c) to construct a hard
k-variate polynomial Q .

▶ Use the hardness of Q to argue that

0 ̸= P ∈C (m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0

▶ Brute-force on the polynomial P (Q⟦ℓ, k , r⟧) to test if this is zero.

Template for “Hardness to Randomness”

Hyp: Hitting sets forC (ℓ, s , s) for all s ≥ ℓ.
Goal: Construct “better” hitting sets forC (m, s , s) for all s ≥ m

▶ Construct an (ℓ, k , r)-design S1, . . . , Sm ⊆ [ℓ]
▶ Use Hyp to take a hitting set forC (ℓ, s c , s c) to construct a hard

k-variate polynomial Q .

▶ Use the hardness of Q to argue that

0 ̸= P ∈C (m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0

▶ Brute-force on the polynomial P (Q⟦ℓ, k , r⟧) to test if this is zero.

Template for “Hardness to Randomness”

Hyp: Hitting sets forC (ℓ, s , s) for all s ≥ ℓ.
Goal: Construct “better” hitting sets forC (m, s , s) for all s ≥ m

▶ Construct an (ℓ, k , r)-design S1, . . . , Sm ⊆ [ℓ]
▶ Use Hyp to take a hitting set forC (ℓ, s c , s c) to construct a hard

k-variate polynomial Q .

▶ Use the hardness of Q to argue that

0 ̸= P ∈C (m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0

▶ P (Q⟦ℓ, k , r⟧) ∈C (ℓ, s ′, s ′) for a small-ish s ′. Use Hyp on it.

Why does bootstrapping work?

0 ̸= P ∈C (m, s , s) (think of s = m5).

If Q is a k-variate polynomial (k = 1000 log m) that is s5-hard, then we
can do a variable reduction from m to ℓ=O(log2 m) that preserves
nonzeroness.

P ′ = P (Q⟦ℓ, k , r⟧) ∈C (ℓ, s ′, s ′) for a small-ish s ′.

Note: s ′ is already exponential in ℓ. Hence, to apply this once more, we
k =O(logℓ) variate polynomial that is (s ′)5 = exp(exp(k))-hard.

Unlike the boolean setting, we can find such polynomials of suitably large
degree.
Thus, there is nothing stopping you from doing this again and again.

Why does bootstrapping work?

0 ̸= P ∈C (m, s , s) (think of s = m5).

If Q is a k-variate polynomial (k = 1000 log m) that is s5-hard, then we
can do a variable reduction from m to ℓ=O(log2 m) that preserves
nonzeroness.

P ′ = P (Q⟦ℓ, k , r⟧) ∈C (ℓ, s ′, s ′) for a small-ish s ′.

Note: s ′ is already exponential in ℓ. Hence, to apply this once more, we
k =O(logℓ) variate polynomial that is (s ′)5 = exp(exp(k))-hard.

Unlike the boolean setting, we can find such polynomials of suitably large
degree.
Thus, there is nothing stopping you from doing this again and again.

Why does bootstrapping work?

0 ̸= P ∈C (m, s , s) (think of s = m5).

If Q is a k-variate polynomial (k = 1000 log m) that is s5-hard, then we
can do a variable reduction from m to ℓ=O(log2 m) that preserves
nonzeroness.

P ′ = P (Q⟦ℓ, k , r⟧) ∈C (ℓ, s ′, s ′) for a small-ish s ′.

Note: s ′ is already exponential in ℓ. Hence, to apply this once more, we
k =O(logℓ) variate polynomial that is (s ′)5 = exp(exp(k))-hard.

Unlike the boolean setting, we can find such polynomials of suitably large
degree.
Thus, there is nothing stopping you from doing this again and again.

Why does bootstrapping work?

0 ̸= P ∈C (m, s , s) (think of s = m5).

If Q is a k-variate polynomial (k = 1000 log m) that is s5-hard, then we
can do a variable reduction from m to ℓ=O(log2 m) that preserves
nonzeroness.

P ′ = P (Q⟦ℓ, k , r⟧) ∈C (ℓ, s ′, s ′) for a small-ish s ′.

Note: s ′ is already exponential in ℓ.

Hence, to apply this once more, we
k =O(logℓ) variate polynomial that is (s ′)5 = exp(exp(k))-hard.

Unlike the boolean setting, we can find such polynomials of suitably large
degree.
Thus, there is nothing stopping you from doing this again and again.

Why does bootstrapping work?

0 ̸= P ∈C (m, s , s) (think of s = m5).

If Q is a k-variate polynomial (k = 1000 log m) that is s5-hard, then we
can do a variable reduction from m to ℓ=O(log2 m) that preserves
nonzeroness.

P ′ = P (Q⟦ℓ, k , r⟧) ∈C (ℓ, s ′, s ′) for a small-ish s ′.

Note: s ′ is already exponential in ℓ. Hence, to apply this once more, we
k =O(logℓ) variate polynomial that is (s ′)5 = exp(exp(k))-hard.

Unlike the boolean setting, we can find such polynomials of suitably large
degree.
Thus, there is nothing stopping you from doing this again and again.

Why does bootstrapping work?

0 ̸= P ∈C (m, s , s) (think of s = m5).

If Q is a k-variate polynomial (k = 1000 log m) that is s5-hard, then we
can do a variable reduction from m to ℓ=O(log2 m) that preserves
nonzeroness.

P ′ = P (Q⟦ℓ, k , r⟧) ∈C (ℓ, s ′, s ′) for a small-ish s ′.

Note: s ′ is already exponential in ℓ. Hence, to apply this once more, we
k =O(logℓ) variate polynomial that is (s ′)5 = exp(exp(k))-hard.

Unlike the boolean setting, we can find such polynomials of suitably large
degree.

Thus, there is nothing stopping you from doing this again and again.

Why does bootstrapping work?

0 ̸= P ∈C (m, s , s) (think of s = m5).

If Q is a k-variate polynomial (k = 1000 log m) that is s5-hard, then we
can do a variable reduction from m to ℓ=O(log2 m) that preserves
nonzeroness.

P ′ = P (Q⟦ℓ, k , r⟧) ∈C (ℓ, s ′, s ′) for a small-ish s ′.

Note: s ′ is already exponential in ℓ. Hence, to apply this once more, we
k =O(logℓ) variate polynomial that is (s ′)5 = exp(exp(k))-hard.

Unlike the boolean setting, we can find such polynomials of suitably large
degree.
Thus, there is nothing stopping you from doing this again and again.

Plan

For all s ≥ n0:
PIT(n0, s , s): s n0−0.01

For all s ≥ n1:
PIT(n1, s , s): s n1/50

For all s ≥ n2:
PIT(n2, s , s): s n1/4

2

For all s ≥ n:
PIT(n, s , s): s g (n)

with g (n)≤ n1/4

For all s ≥ m = 2n1/4 :
PIT(m, s , s): s h(m), where
h(m) = poly(g (poly log m))

Bootstrapping

For s large enough,
PIT(s , s , s): s tiny(s)

Plan

For all s ≥ n0:
PIT(n0, s , s): s n0−0.01

For all s ≥ n1:
PIT(n1, s , s): s n1/50

For all s ≥ n2:
PIT(n2, s , s): s n1/4

2

For all s ≥ n:
PIT(n, s , s): s g (n)

with g (n)≤ n1/4

For all s ≥ m = 2n1/4 :
PIT(m, s , s): s h(m), where
h(m) = poly(g (poly log m))

Bootstrapping

For s large enough,
PIT(s , s , s): s tiny(s)

Plan

For all s ≥ n0:
PIT(n0, s , s): s n0−0.01

For all s ≥ n1:
PIT(n1, s , s): s n1/50

For all s ≥ n2:
PIT(n2, s , s): s n1/4

2

For all s ≥ n:
PIT(n, s , s): s g (n)

with g (n)≤ n1/4

For all s ≥ m = 2n1/4 :
PIT(m, s , s): s h(m), where
h(m) = poly(g (poly log m))

Bootstrapping

For s large enough,
PIT(s , s , s): s tiny(s)

Plan

For all s ≥ n0:
PIT(n0, s , s): s n0−0.01

For all s ≥ n1:
PIT(n1, s , s): s n1/50

For all s ≥ n2:
PIT(n2, s , s): s n1/4

2

For all s ≥ n:
PIT(n, s , s): s g (n)

with g (n)≤ n1/4

For all s ≥ m = 2n1/4 :
PIT(m, s , s): s h(m), where
h(m) = poly(g (poly log m))

Bootstrapping

For s large enough,
PIT(s , s , s): s tiny(s)

Plan

For all s ≥ n0:
PIT(n0, s , s): s n0−0.01

For all s ≥ n1:
PIT(n1, s , s): s n1/50

For all s ≥ n2:
PIT(n2, s , s): s n1/4

2

For all s ≥ n:
PIT(n, s , s): s g (n)

with g (n)≤ n1/4

For all s ≥ m = 2n1/4 :
PIT(m, s , s): s h(m), where
h(m) = poly(g (poly log m))

Bootstrapping

For s large enough,
PIT(s , s , s): s tiny(s)

Plan

For all s ≥ n0:
PIT(n0, s , s): s n0−0.01

For all s ≥ n1:
PIT(n1, s , s): s n1/50

For all s ≥ n2:
PIT(n2, s , s): s n1/4

2

For all s ≥ n:
PIT(n, s , s): s g (n)

with g (n)≤ n1/4

For all s ≥ m = 2n1/4 :
PIT(m, s , s): s h(m), where
h(m) = poly(g (poly log m))

Bootstrapping

For s large enough,
PIT(s , s , s): s tiny(s)

Plan

For all s ≥ n0:
PIT(n0, s , s): s n0−0.01

For all s ≥ n1:
PIT(n1, s , s): s n1/50

For all s ≥ n2:
PIT(n2, s , s): s n1/4

2

For all s ≥ n:
PIT(n, s , s): s g (n)

with g (n)≤ n1/4

For all s ≥ m = 2n1/4 :
PIT(m, s , s): s h(m), where
h(m) = poly(g (poly log m))

Bootstrapping

For s large enough,
PIT(s , s , s): s tiny(s)

Plan

For all s ≥ n0:
PIT(n0, s , s): s n0−0.01

For all s ≥ n1:
PIT(n1, s , s): s n1/50

For all s ≥ n2:
PIT(n2, s , s): s n1/4

2

For all s ≥ n:
PIT(n, s , s): s g (n)

with g (n)≤ n1/4

For all s ≥ m = 2n1/4 :
PIT(m, s , s): s h(m), where
h(m) = poly(g (poly log m))

Bootstrapping

For s large enough,
PIT(s , s , s): s tiny(s)

Plan

For all s ≥ n0:
PIT(n0, s , s): s n0−0.01

For all s ≥ n1:
PIT(n1, s , s): s n1/50

For all s ≥ n2:
PIT(n2, s , s): s n1/4

2

For all s ≥ n:
PIT(n, s , s): s g (n)

with g (n)≤ n1/4

For all s ≥ m = 2n1/4 :
PIT(m, s , s): s h(m), where
h(m) = poly(g (poly log m))

Bootstrapping

For s large enough,
PIT(s , s , s): s tiny(s)

Plan

For all s ≥ n0:
PIT(n0, s , s): s n0−0.01

For all s ≥ n1:
PIT(n1, s , s): s n1/50

For all s ≥ n2:
PIT(n2, s , s): s n1/4

2

For all s ≥ n:
PIT(n, s , s): s g (n)

with g (n)≤ n1/4

For all s ≥ m = 2n1/4 :
PIT(m, s , s): s h(m), where
h(m) = poly(g (poly log m))

Bootstrapping

For s large enough,
PIT(s , s , s): s tiny(s)

Plan

For all s ≥ n0:
PIT(n0, s , s): s n0−0.01

For all s ≥ n1:
PIT(n1, s , s): s n1/50

For all s ≥ n2:
PIT(n2, s , s): s n1/4

2

For all s ≥ n:
PIT(n, s , s): s g (n)

with g (n)≤ n1/4

For all s ≥ m = 2n1/4 :
PIT(m, s , s): s h(m), where
h(m) = poly(g (poly log m))

Bootstrapping

For s large enough,
PIT(s , s , s): s tiny(s)

Bootstrapping Hitting Sets
Lemma (Bootstrapping slightly non-trivial hitting sets)
Let n be large enough (n > 1010). Suppose, for all s ≥ n, there is an explicit
hitting set for Formula(n, s , s) of size at most

s g (n), with g (n)≤
�

n1/4

10

�
.

Bootstrapping Hitting Sets
Lemma (Bootstrapping slightly non-trivial hitting sets)
Let n be large enough (n > 1010). Suppose, for all s ≥ n, there is an explicit
hitting set for Formula(n, s , s) of size at most

s g (n), with g (n)≤
�

n1/4

10

�
.

Then, for m = 2n1/4 and all s ≥ m, we have an explicit hitting set for
Formula(m, s , s) of size at most

s h(m), with h(m) ≤ 20(g (n))2

Bootstrapping Hitting Sets
Lemma (Bootstrapping slightly non-trivial hitting sets)
Let n be large enough (n > 1010). Suppose, for all s ≥ n, there is an explicit
hitting set for Formula(n, s , s) of size at most

s g (n), with g (n)≤
�

n1/4

10

�
.

Then, for m = 2n1/4 and all s ≥ m, we have an explicit hitting set for
Formula(m, s , s) of size at most

s h(m), with h(m) ≤ 20(g (n))2 = 20(g (log4 m))2.

Bootstrapping Hitting Sets
Lemma (Bootstrapping slightly non-trivial hitting sets)
Let n be large enough (n > 1010). Suppose, for all s ≥ n, there is an explicit
hitting set for Formula(n, s , s) of size at most

s g (n), with g (n)≤
�

n1/4

10

�
.

Then, for m = 2n1/4 and all s ≥ m, we have an explicit hitting set for
Formula(m, s , s) of size at most

s h(m), with h(m) ≤ 20(g (n))2

Bootstrapping Hitting Sets
Lemma (Bootstrapping slightly non-trivial hitting sets)
Let n be large enough (n > 1010). Suppose, for all s ≥ n, there is an explicit
hitting set for Formula(n, s , s) of size at most

s g (n), with g (n)≤
�

n1/4

10

�
.

Then, for m = 22(1/4)n
1/4

and all s ≥ m, we have an explicit hitting set for
Formula(m, s , s) of size at most

s h(m), with h(m) ≤ 201+2(g (n))4

Bootstrapping Hitting Sets
Lemma (Bootstrapping slightly non-trivial hitting sets)
Let n be large enough (n > 1010). Suppose, for all s ≥ n, there is an explicit
hitting set for Formula(n, s , s) of size at most

s g (n), with g (n)≤
�

n1/4

10

�
.

Then, for m = 2c n1/4

and all s ≥ m, we have an explicit hitting set for
Formula(m, s , s) of size at most

s h(m), with h(m) ≤ 201+2(g (n))4

Bootstrapping Hitting Sets
Lemma (Bootstrapping slightly non-trivial hitting sets)
Let n be large enough (n > 1010). Suppose, for all s ≥ n, there is an explicit
hitting set for Formula(n, s , s) of size at most

s g (n), with g (n)≤
�

n1/4

10

�
.

Then, for m = 2c cn1/4

and all s ≥ m, we have an explicit hitting set for
Formula(m, s , s) of size at most

s h(m), with h(m) ≤ 201+2+4(g (n))8

Bootstrapping Hitting Sets
Lemma (Bootstrapping slightly non-trivial hitting sets)
Let n be large enough (n > 1010). Suppose, for all s ≥ n, there is an explicit
hitting set for Formula(n, s , s) of size at most

s g (n), with g (n)≤
�

n1/4

10

�
.

Then, for m = 2c c cn1/4

and all s ≥ m, we have an explicit hitting set for
Formula(m, s , s) of size at most

s h(m), with h(m) ≤ 201+2+4+8(g (n))16

Bootstrapping Hitting Sets
Lemma (Bootstrapping slightly non-trivial hitting sets)
Let n be large enough (n > 1010). Suppose, for all s ≥ n, there is an explicit
hitting set for Formula(n, s , s) of size at most

s g (n), with g (n)≤
�

n1/4

10

�
.

Then, we have an explicit hitting set for Formula(s , s , s) of size

s exp(exp(O(log∗ s))).

Proof of the bootstrapping lemma

Hyp: s g (n) hitting sets forC (n, s , s), for any s ≥ n, with g (n)≤ n1/4

10 .

Proof of the bootstrapping lemma

Hyp: s g (n) hitting sets forC (n, s , s), for any s ≥ n, with g (n)≤ n1/4

10 .

Let k =
p

n, ℓ= n and r = n1/4.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m = 2n1/4 .

Proof of the bootstrapping lemma

Hyp: s g (n) hitting sets forC (n, s , s), for any s ≥ n, with g (n)≤ n1/4

10 .

Let k =
p

n, ℓ= n and r = n1/4.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m = 2n1/4 .

Using the hitting set H for Formula(n, s5, s5) of size s5g (n), find Q
vanishing on H such that:
▶ Q is k-variate, and ideg(Q)< d := s5g (n)/k .

Proof of the bootstrapping lemma

Hyp: s g (n) hitting sets forC (n, s , s), for any s ≥ n, with g (n)≤ n1/4

10 .

Let k =
p

n, ℓ= n and r = n1/4.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m = 2n1/4 .

Using the hitting set H for Formula(n, s5, s5) of size s5g (n), find Q
vanishing on H such that:
▶ Q is k-variate, and ideg(Q)< d := s5g (n)/k .

Claim: 0 ̸= P ∈ Formula(m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0.

Proof of the bootstrapping lemma

Hyp: s g (n) hitting sets forC (n, s , s), for any s ≥ n, with g (n)≤ n1/4

10 .

Let k =
p

n, ℓ= n and r = n1/4.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m = 2n1/4 .

Using the hitting set H for Formula(n, s5, s5) of size s5g (n), find Q
vanishing on H such that:
▶ Q is k-variate, and ideg(Q)< d := s5g (n)/k .

Claim: 0 ̸= P ∈ Formula(m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0.
Proof.
Q vanishes on a hitting set for Formula(k , d ′, s ′) as

d ′ = d D r = s5g (n)/k · s · r ≤ s5,
s ′ = s r d r (D + 1)≤ s4 · s5g (n)·r/k ≤ s5.

Use the previous corollary.

Proof of the bootstrapping lemma

Hyp: s g (n) hitting sets forC (n, s , s), for any s ≥ n, with g (n)≤ n1/4

10 .

Let k =
p

n, ℓ= n and r = n1/4.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m = 2n1/4 .

Using the hitting set H for Formula(n, s5, s5) of size s5g (n), find Q
vanishing on H such that:
▶ Q is k-variate, and ideg(Q)< d := s5g (n)/k .

Claim: 0 ̸= P ∈ Formula(m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0.

Proof of the bootstrapping lemma

Hyp: s g (n) hitting sets forC (n, s , s), for any s ≥ n, with g (n)≤ n1/4

10 .

Let k =
p

n, ℓ= n and r = n1/4.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m = 2n1/4 .

Using the hitting set H for Formula(n, s5, s5) of size s5g (n), find Q
vanishing on H such that:
▶ Q is k-variate, and ideg(Q)< d := s5g (n)/k .

Claim: 0 ̸= P ∈ Formula(m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0.

P (Q⟦ℓ, k , r⟧) is a formula of size,degree at most s · s10g (n) ≤ s20g (n).

Proof of the bootstrapping lemma

Hyp: s g (n) hitting sets forC (n, s , s), for any s ≥ n, with g (n)≤ n1/4

10 .

Let k =
p

n, ℓ= n and r = n1/4.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m = 2n1/4 .

Using the hitting set H for Formula(n, s5, s5) of size s5g (n), find Q
vanishing on H such that:
▶ Q is k-variate, and ideg(Q)< d := s5g (n)/k .

Claim: 0 ̸= P ∈ Formula(m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0.

P (Q⟦ℓ, k , r⟧) is a formula of size,degree at most s · s10g (n) ≤ s20g (n).

Using the hypothesis again, we get a hitting set of size s20(g (n))2 for
Formula(m, s , s).

Plan

For all s ≥ n0:
PIT(n0, s , s): s n0−0.01

For all s ≥ n1:
PIT(n1, s , s): s n1/50

For all s ≥ n2:
PIT(n2, s , s): s n1/4

2

For all s ≥ n:
PIT(n, s , s): s g (n)

with g (n)≤ n1/4

For all s ≥ m = 2n1/4 :
PIT(m, s , s): s h(m), where
h(m) = poly(g (poly log m))

For s large enough,
PIT(s , s , s): s tiny(s)

✓ ✓ ✓

Plan

For all s ≥ n0:
PIT(n0, s , s): s n0−0.01

For all s ≥ n1:
PIT(n1, s , s): s n1/50

For all s ≥ n2:
PIT(n2, s , s): s n1/4

2

For all s ≥ n:
PIT(n, s , s): s g (n)

with g (n)≤ n1/4

For all s ≥ m = 2n1/4 :
PIT(m, s , s): s h(m), where
h(m) = poly(g (poly log m))

For s large enough,
PIT(s , s , s): s tiny(s)

✓ ✓ ✓

Déjà vu

Hyp: s g (n) hitting sets forC (n, s , s), for any s ≥ n, with g (n)≤ n
50 .

Déjà vu

Hyp: s g (n) hitting sets forC (n, s , s), for any s ≥ n, with g (n)≤ n
50 .

Let k = n, ℓ= n2 and r = 10.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m = k10.

Déjà vu

Hyp: s g (n) hitting sets forC (n, s , s), for any s ≥ n, with g (n)≤ n
50 .

Let k = n, ℓ= n2 and r = 10.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m = k10.

Using the hitting set H for Formula(n, s5, s5) of size s5g (n), find Q
vanishing on H such that:
▶ Q is k-variate, and ideg(Q)< d := s5g (n)/k .

Déjà vu

Hyp: s g (n) hitting sets forC (n, s , s), for any s ≥ n, with g (n)≤ n
50 .

Let k = n, ℓ= n2 and r = 10.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m = k10.

Using the hitting set H for Formula(n, s5, s5) of size s5g (n), find Q
vanishing on H such that:
▶ Q is k-variate, and ideg(Q)< d := s5g (n)/k .

Claim: 0 ̸= P ∈ Formula(m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0.

Déjà vu

Hyp: s g (n) hitting sets forC (n, s , s), for any s ≥ n, with g (n)≤ n
50 .

Let k = n, ℓ= n2 and r = 10.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m = k10.

Using the hitting set H for Formula(n, s5, s5) of size s5g (n), find Q
vanishing on H such that:
▶ Q is k-variate, and ideg(Q)< d := s5g (n)/k .

Claim: 0 ̸= P ∈ Formula(m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0.
Proof.
Q vanishes on a hitting set for Formula(k , d ′, s ′) as

d ′ = d D r = s5g (n)/k · s · r ≤ s5,
s ′ = s r d r (D + 1)≤ s4 · s5g (n)·r/k ≤ s5.

Use the previous corollary.

Déjà vu

Hyp: s g (n) hitting sets forC (n, s , s), for any s ≥ n, with g (n)≤ n
50 .

Let k = n, ℓ= n2 and r = 10.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m = k10.

Using the hitting set H for Formula(n, s5, s5) of size s5g (n), find Q
vanishing on H such that:
▶ Q is k-variate, and ideg(Q)< d := s5g (n)/k .

Claim: 0 ̸= P ∈ Formula(m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0.

Déjà vu

Hyp: s g (n) hitting sets forC (n, s , s), for any s ≥ n, with g (n)≤ n
50 .

Let k = n, ℓ= n2 and r = 10.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m = k10.

Using the hitting set H for Formula(n, s5, s5) of size s5g (n), find Q
vanishing on H such that:
▶ Q is k-variate, and ideg(Q)< d := s5g (n)/k .

Claim: 0 ̸= P ∈ Formula(m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0.

P (Q⟦ℓ, k , r⟧) is a formula on ℓ= n2 variables of degree
s · k · s g (n)/k ≤ s3.

Déjà vu

Hyp: s g (n) hitting sets forC (n, s , s), for any s ≥ n, with g (n)≤ n
50 .

Let k = n, ℓ= n2 and r = 10.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m = k10.

Using the hitting set H for Formula(n, s5, s5) of size s5g (n), find Q
vanishing on H such that:
▶ Q is k-variate, and ideg(Q)< d := s5g (n)/k .

Claim: 0 ̸= P ∈ Formula(m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0.

P (Q⟦ℓ, k , r⟧) is a formula on ℓ= n2 variables of degree
s · k · s g (n)/k ≤ s3.
[O-DL-S-Z] lemma: hitting set of size s3ℓ

Déjà vu

Hyp: s g (n) hitting sets forC (n, s , s), for any s ≥ n, with g (n)≤ n
50 .

Let k = n, ℓ= n2 and r = 10.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m = k10.

Using the hitting set H for Formula(n, s5, s5) of size s5g (n), find Q
vanishing on H such that:
▶ Q is k-variate, and ideg(Q)< d := s5g (n)/k .

Claim: 0 ̸= P ∈ Formula(m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0.

P (Q⟦ℓ, k , r⟧) is a formula on ℓ= n2 variables of degree
s · k · s g (n)/k ≤ s3.
[O-DL-S-Z] lemma: hitting set of size s3ℓ ≤ s (1/10)·m1/4

Déjà vu

Hyp: s g (n) hitting sets forC (n, s , s), for any s ≥ n, with g (n)≤ n
50 .

Let k = n, ℓ= n2 and r = 10.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m = k10.

Using the hitting set H for Formula(n, s5, s5) of size s5g (n), find Q
vanishing on H such that:
▶ Q is k-variate, and ideg(Q)< d := s5g (n)/k .

Claim: 0 ̸= P ∈ Formula(m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0.

P (Q⟦ℓ, k , r⟧) is a formula on ℓ= n2 variables of degree
s · k · s g (n)/k ≤ s3.
[O-DL-S-Z] lemma: hitting set of size s3ℓ ≤ s (1/10)·m1/4

Plan
For all s ≥ n0:
PIT(n0, s , s): s n0−0.01

For all s ≥ n1:
PIT(n1, s , s): s n1/50

For all s ≥ n2:
PIT(n2, s , s): s n1/4

2

For all s ≥ n:
PIT(n, s , s): s g (n)

with g (n)≤ n1/4

For all s ≥ m = 2n1/4 :
PIT(m, s , s): s h(m), where
h(m) = poly(g (poly log m))

For s large enough,
PIT(s , s , s): s tiny(s)

✓ ✓ ✓

✓

Plan
For all s ≥ n0:
PIT(n0, s , s): s n0−0.01

For all s ≥ n1:
PIT(n1, s , s): s n1/50

For all s ≥ n2:
PIT(n2, s , s): s n1/4

2

For all s ≥ n:
PIT(n, s , s): s g (n)

with g (n)≤ n1/4

For all s ≥ m = 2n1/4 :
PIT(m, s , s): s h(m), where
h(m) = poly(g (poly log m))

For s large enough,
PIT(s , s , s): s tiny(s)

✓ ✓ ✓

✓

Déjà vu

Hyp: s n−0.01 hitting sets forC (n, s , s), for any s ≥ n.

Déjà vu

Hyp: s n−0.01 hitting sets forC (n, s , s), for any s ≥ n.

Let k = n, ℓ= n5 and r = 2.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m =

�
ℓ
k

�r
= n8.

Déjà vu

Hyp: s n−0.01 hitting sets forC (n, s , s), for any s ≥ n.

Let k = n, ℓ= n5 and r = 2.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m =

�
ℓ
k

�r
= n8.

Use the hitting set for Formula(n, s300n , s300n) to get
▶ Q is k-variate, and ideg(Q)< d := s300(n−0.01) = s300n−3.

Déjà vu

Hyp: s n−0.01 hitting sets forC (n, s , s), for any s ≥ n.

Let k = n, ℓ= n5 and r = 2.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m =

�
ℓ
k

�r
= n8.

Use the hitting set for Formula(n, s300n , s300n) to get
▶ Q is k-variate, and ideg(Q)< d := s300(n−0.01) = s300n−3.

Déjà vu

Hyp: s n−0.01 hitting sets forC (n, s , s), for any s ≥ n.

Let k = n, ℓ= n5 and r = 2.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m =

�
ℓ
k

�r
= n8.

Use the hitting set for Formula(n, s300n , s300n) to get
▶ Q is k-variate, and ideg(Q)< d := s300(n−0.01) = s300n−3.

Claim: 0 ̸= P ∈ Formula(m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0

Déjà vu

Hyp: s n−0.01 hitting sets forC (n, s , s), for any s ≥ n.

Let k = n, ℓ= n5 and r = 2.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m =

�
ℓ
k

�r
= n8.

Use the hitting set for Formula(n, s300n , s300n) to get
▶ Q is k-variate, and ideg(Q)< d := s300(n−0.01) = s300n−3.

Claim: 0 ̸= P ∈ Formula(m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0

Proof: If not, there is a nonzero multiple Q̃ of Q , whose degree is at most
s · (r d)≤ s300n ,

Déjà vu

Hyp: s n−0.01 hitting sets forC (n, s , s), for any s ≥ n.

Let k = n, ℓ= n5 and r = 2.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m =

�
ℓ
k

�r
= n8.

Use the hitting set for Formula(n, s300n , s300n) to get
▶ Q is k-variate, and ideg(Q)< d := s300(n−0.01) = s300n−3.

Claim: 0 ̸= P ∈ Formula(m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0

Proof: If not, there is a nonzero multiple Q̃ of Q , whose degree is at most
s · (r d)≤ s300n , computable by a formula of size

s · ((r d) · d r−1) · (s + 1)

Déjà vu

Hyp: s n−0.01 hitting sets forC (n, s , s), for any s ≥ n.

Let k = n, ℓ= n5 and r = 2.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m =

�
ℓ
k

�r
= n8.

Use the hitting set for Formula(n, s300n , s300n) to get
▶ Q is k-variate, and ideg(Q)< d := s300(n−0.01) = s300n−3.

Claim: 0 ̸= P ∈ Formula(m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0

Proof: If not, there is a nonzero multiple Q̃ of Q , whose degree is at most
s · (r d)≤ s300n , computable by a formula of size

s · ((r d) · d r−1) · (s + 1)

Complexity to compute an (r − 1)-variate polynomial of ideg d

Déjà vu

Hyp: s n−0.01 hitting sets forC (n, s , s), for any s ≥ n.

Let k = n, ℓ= n5 and r = 2.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m =

�
ℓ
k

�r
= n8.

Use the hitting set for Formula(n, s300n , s300n) to get
▶ Q is k-variate, and ideg(Q)< d := s300(n−0.01) = s300n−3.

Claim: 0 ̸= P ∈ Formula(m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0

Proof: If not, there is a nonzero multiple Q̃ of Q , whose degree is at most
s · (r d)≤ s300n , computable by a formula of size

s · ((r d) · d r−1) · (s + 1)

Complexity to compute an (r − 1)-variate polynomial of ideg d

Déjà vu

Hyp: s n−0.01 hitting sets forC (n, s , s), for any s ≥ n.

Let k = n, ℓ= n5 and r = 2.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m =

�
ℓ
k

�r
= n8.

Use the hitting set for Formula(n, s300n , s300n) to get
▶ Q is k-variate, and ideg(Q)< d := s300(n−0.01) = s300n−3.

Claim: 0 ̸= P ∈ Formula(m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0

Proof: If not, there is a nonzero multiple Q̃ of Q , whose degree is at most
s · (r d)≤ s300n , computable by a formula of size

s · ((r d) · d r−1) · (s + 1)

Complexity to compute an univariate polynomial of degree d

Déjà vu

Hyp: s n−0.01 hitting sets forC (n, s , s), for any s ≥ n.

Let k = n, ℓ= n5 and r = 2.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m =

�
ℓ
k

�r
= n8.

Use the hitting set for Formula(n, s300n , s300n) to get
▶ Q is k-variate, and ideg(Q)< d := s300(n−0.01) = s300n−3.

Claim: 0 ̸= P ∈ Formula(m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0

Proof: If not, there is a nonzero multiple Q̃ of Q , whose degree is at most
s · (r d)≤ s300n , computable by a formula of size

s · 10d · (s + 1)

Déjà vu

Hyp: s n−0.01 hitting sets forC (n, s , s), for any s ≥ n.

Let k = n, ℓ= n5 and r = 2.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m =

�
ℓ
k

�r
= n8.

Use the hitting set for Formula(n, s300n , s300n) to get
▶ Q is k-variate, and ideg(Q)< d := s300(n−0.01) = s300n−3.

Claim: 0 ̸= P ∈ Formula(m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0

Proof: If not, there is a nonzero multiple Q̃ of Q , whose degree is at most
s · (r d)≤ s300n , computable by a formula of size

s · 10d · (s + 1)≤ s3 · s300n−3

Déjà vu

Hyp: s n−0.01 hitting sets forC (n, s , s), for any s ≥ n.

Let k = n, ℓ= n5 and r = 2.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m =

�
ℓ
k

�r
= n8.

Use the hitting set for Formula(n, s300n , s300n) to get
▶ Q is k-variate, and ideg(Q)< d := s300(n−0.01) = s300n−3.

Claim: 0 ̸= P ∈ Formula(m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0

Proof: If not, there is a nonzero multiple Q̃ of Q , whose degree is at most
s · (r d)≤ s300n , computable by a formula of size

s · 10d · (s + 1)≤ s3 · s300n−3 ≤ s300n ...no way...

Déjà vu

Hyp: s n−0.01 hitting sets forC (n, s , s), for any s ≥ n.

Let k = n, ℓ= n5 and r = 2.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m =

�
ℓ
k

�r
= n8.

Use the hitting set for Formula(n, s300n , s300n) to get
▶ Q is k-variate, and ideg(Q)< d := s300(n−0.01) = s300n−3.

Claim: 0 ̸= P ∈ Formula(m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0

Déjà vu

Hyp: s n−0.01 hitting sets forC (n, s , s), for any s ≥ n.

Let k = n, ℓ= n5 and r = 2.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m =

�
ℓ
k

�r
= n8.

Use the hitting set for Formula(n, s300n , s300n) to get
▶ Q is k-variate, and ideg(Q)< d := s300(n−0.01) = s300n−3.

Claim: 0 ̸= P ∈ Formula(m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0

P (Q⟦ℓ, k , r⟧) is a formula on ℓ= n5 variables.

Déjà vu

Hyp: s n−0.01 hitting sets forC (n, s , s), for any s ≥ n.

Let k = n, ℓ= n5 and r = 2.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m =

�
ℓ
k

�r
= n8.

Use the hitting set for Formula(n, s300n , s300n) to get
▶ Q is k-variate, and ideg(Q)< d := s300(n−0.01) = s300n−3.

Claim: 0 ̸= P ∈ Formula(m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0

P (Q⟦ℓ, k , r⟧) is a formula on ℓ= n5 variables of degree
s · k · s300n−3 ≤ s300n .

Déjà vu

Hyp: s n−0.01 hitting sets forC (n, s , s), for any s ≥ n.

Let k = n, ℓ= n5 and r = 2.
Let S1, . . . , Sm be an (ℓ, k , r)-design with m =

�
ℓ
k

�r
= n8.

Use the hitting set for Formula(n, s300n , s300n) to get
▶ Q is k-variate, and ideg(Q)< d := s300(n−0.01) = s300n−3.

Claim: 0 ̸= P ∈ Formula(m, s , s) =⇒ P (Q⟦ℓ, k , r⟧) ̸= 0

P (Q⟦ℓ, k , r⟧) is a formula on ℓ= n5 variables of degree
s · k · s300n−3 ≤ s300n .
[O-DL-S-Z] lemma: a hitting set of size s300n·n5 ≤ s m/50 for
Formula(m, s , s).

Closing remarks

▶ A similar statement also holds for bounded depth formulas, with
some slack in depth between the hypothesis and conclusion.

▶ It is crucial that the exponent of s in the hypothesis is independent
of s .
Question: Can saying something non-trivial from a hypothesis for
just s = poly(n) circuits?

▶ To obtain the hitting set forC (s , s , s), the algorithm would use
hitting sets forC (n0, s ′, s ′) for various s ′ ≤ s tiny(s).
Question: Is there a hardness amplification (à la [CILM]) in this
setting?

\end{document}

Closing remarks

▶ A similar statement also holds for bounded depth formulas, with
some slack in depth between the hypothesis and conclusion.

▶ It is crucial that the exponent of s in the hypothesis is independent
of s .
Question: Can saying something non-trivial from a hypothesis for
just s = poly(n) circuits?

▶ To obtain the hitting set forC (s , s , s), the algorithm would use
hitting sets forC (n0, s ′, s ′) for various s ′ ≤ s tiny(s).
Question: Is there a hardness amplification (à la [CILM]) in this
setting?

\end{document}

Closing remarks

▶ A similar statement also holds for bounded depth formulas, with
some slack in depth between the hypothesis and conclusion.

▶ It is crucial that the exponent of s in the hypothesis is independent
of s .

Question: Can saying something non-trivial from a hypothesis for
just s = poly(n) circuits?

▶ To obtain the hitting set forC (s , s , s), the algorithm would use
hitting sets forC (n0, s ′, s ′) for various s ′ ≤ s tiny(s).
Question: Is there a hardness amplification (à la [CILM]) in this
setting?

\end{document}

Closing remarks

▶ A similar statement also holds for bounded depth formulas, with
some slack in depth between the hypothesis and conclusion.

▶ It is crucial that the exponent of s in the hypothesis is independent
of s .
Question: Can saying something non-trivial from a hypothesis for
just s = poly(n) circuits?

▶ To obtain the hitting set forC (s , s , s), the algorithm would use
hitting sets forC (n0, s ′, s ′) for various s ′ ≤ s tiny(s).
Question: Is there a hardness amplification (à la [CILM]) in this
setting?

\end{document}

Closing remarks

▶ A similar statement also holds for bounded depth formulas, with
some slack in depth between the hypothesis and conclusion.

▶ It is crucial that the exponent of s in the hypothesis is independent
of s .
Question: Can saying something non-trivial from a hypothesis for
just s = poly(n) circuits?

▶ To obtain the hitting set forC (s , s , s), the algorithm would use
hitting sets forC (n0, s ′, s ′) for various s ′ ≤ s tiny(s).

Question: Is there a hardness amplification (à la [CILM]) in this
setting?

\end{document}

Closing remarks

▶ A similar statement also holds for bounded depth formulas, with
some slack in depth between the hypothesis and conclusion.

▶ It is crucial that the exponent of s in the hypothesis is independent
of s .
Question: Can saying something non-trivial from a hypothesis for
just s = poly(n) circuits?

▶ To obtain the hitting set forC (s , s , s), the algorithm would use
hitting sets forC (n0, s ′, s ′) for various s ′ ≤ s tiny(s).
Question: Is there a hardness amplification (à la [CILM]) in this
setting?

\end{document}

Closing remarks

▶ A similar statement also holds for bounded depth formulas, with
some slack in depth between the hypothesis and conclusion.

▶ It is crucial that the exponent of s in the hypothesis is independent
of s .
Question: Can saying something non-trivial from a hypothesis for
just s = poly(n) circuits?

▶ To obtain the hitting set forC (s , s , s), the algorithm would use
hitting sets forC (n0, s ′, s ′) for various s ′ ≤ s tiny(s).
Question: Is there a hardness amplification (à la [CILM]) in this
setting?

\end{document}

	Introduction
	Proof overview
	Plan: Step 3
	Plan: Step 2
	Plan: Step 1
	Conclusions

