# Derandomization from algebraic hardness

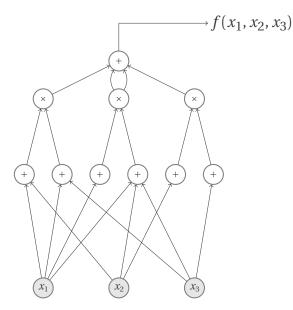
#### TREADING THE BORDERS

**Zeyu Guo** IIT Kanpur → U. Haifa **Mrinal Kumar** U. Toronto  $\rightarrow$  IITB

Ramprasad Saptharishi TIFR, Mumbai Noam Solomon Harvard University

IIT Bombay June 2019

# **Algebraic Circuits**



Aren't we all tired of this picture?

► **Lower Bounds:** Can we find an explicit family of polynomials  $\{P_n\}$  that require large circuits?

► **Lower Bounds:** Can we find an explicit family of polynomials  $\{P_n\}$  that require large circuits?

Polynomial Identity Testing: Given a circuit C, can we check if C is computing the zero polynomial (deterministically)?

► **Lower Bounds:** Can we find an explicit family of polynomials  $\{P_n\}$  that require large circuits?

- Polynomial Identity Testing: Given a circuit C, can we check if C is computing the zero polynomial (deterministically)?
  - ▶ **Hitting sets:** Find a set of points *H* such that any "small" circuit *C* that is computing a nonzero polynomial *must* satisfy  $C(\mathbf{a}) \neq 0$  for some  $\mathbf{a} \in H$ .

► **Lower Bounds:** Can we find an explicit family of polynomials  $\{P_n\}$  that require large circuits?

- Polynomial Identity Testing: Given a circuit C, can we check if C is computing the zero polynomial (deterministically)?
  - ▶ **Hitting sets:** Find a set of points *H* such that any "small" circuit *C* that is computing a nonzero polynomial *must* satisfy  $C(\mathbf{a}) \neq 0$  for some  $\mathbf{a} \in H$ .

These two problems are intimately connected to each other.

#### Lemma ([Ore, Demillo-Lipton, Schwartz, Zippel])

If  $P(x_1, ..., x_n)$  is a nonzero polynomial of degree d, and  $S \subseteq \mathbb{F}$  of size at least d + 1, then  $P(\mathbf{a}) \neq 0$  for some  $\mathbf{a} \in S^n$ .

#### Lemma ([Ore, Demillo-Lipton, Schwartz, Zippel])

If  $P(x_1,...,x_n)$  is a nonzero polynomial of degree d, and  $S \subseteq \mathbb{F}$  of size at least d + 1, then  $P(\mathbf{a}) \neq 0$  for some  $\mathbf{a} \in S^n$ .

We have an explicit hitting set of size  $(d + 1)^n$  for  $\mathscr{C}(n, d, *)$ .

#### Lemma ([Ore, Demillo-Lipton, Schwartz, Zippel])

If  $P(x_1,...,x_n)$  is a nonzero polynomial of degree d, and  $S \subseteq \mathbb{F}$  of size at least d + 1, then  $P(\mathbf{a}) \neq 0$  for some  $\mathbf{a} \in S^n$ .

We have an explicit hitting set of size  $(d + 1)^n$  for  $\mathscr{C}(n, d, *)$ .

**Q:** Are there smaller hitting sets for  $\mathscr{C}(n, d, s)$ ?

#### Lemma ([Ore, Demillo-Lipton, Schwartz, Zippel])

If  $P(x_1,...,x_n)$  is a nonzero polynomial of degree d, and  $S \subseteq \mathbb{F}$  of size at least d + 1, then  $P(\mathbf{a}) \neq 0$  for some  $\mathbf{a} \in S^n$ .

We have an explicit hitting set of size  $(d + 1)^n$  for  $\mathscr{C}(n, d, *)$ .

**Q:** Are there smaller hitting sets for  $\mathscr{C}(n, d, s)$ ? **A:** Yes; almost any set of size  $O(s^2)$  will work.

#### Lemma ([Ore, Demillo-Lipton, Schwartz, Zippel])

If  $P(x_1,...,x_n)$  is a nonzero polynomial of degree d, and  $S \subseteq \mathbb{F}$  of size at least d + 1, then  $P(\mathbf{a}) \neq 0$  for some  $\mathbf{a} \in S^n$ .

We have an explicit hitting set of size  $(d + 1)^n$  for  $\mathscr{C}(n, d, *)$ .

**Q:** Are there smaller hitting sets for  $\mathscr{C}(n, d, s)$ ? **A:** Yes; almost any set of size  $O(s^2)$  will work.

Q: Can you give just one explicit example?

#### Lemma ([Ore, Demillo-Lipton, Schwartz, Zippel])

If  $P(x_1,...,x_n)$  is a nonzero polynomial of degree d, and  $S \subseteq \mathbb{F}$  of size at least d + 1, then  $P(\mathbf{a}) \neq 0$  for some  $\mathbf{a} \in S^n$ .

We have an explicit hitting set of size  $(d + 1)^n$  for  $\mathscr{C}(n, d, *)$ .

**Q:** Are there smaller hitting sets for  $\mathscr{C}(n, d, s)$ ? **A:** Yes; almost any set of size  $O(s^2)$  will work.

**Q:** Can you give just one explicit example? **A:** Umm...

"How difficult could it be to find hay in a haystack?" — Howard Karloff

"How difficult could it be to find hay in a haystack?" — Howard Karloff

You care a lot about hay.

"How difficult could it be to find hay in a haystack?" — Howard Karloff

- You care a lot about hay.
- Almost everything in a haystack is hay.

"How difficult could it be to find hay in a haystack?" — Howard Karloff

- You care a lot about hay.
- Almost everything in a haystack is hay.
- Find hay.

(Why do we still keep finding needles all the time?)

"How difficult could it be to find hay in a haystack?" — Howard Karloff

- You care a lot about hard polynomials.
- Almost every polynomial is a hard polynomial.
- Find a hard polynomial.

(Why do we still keep finding needles all the time?)

"How difficult could it be to find hay in a haystack?" — Howard Karloff

- You care a lot about hitting sets.
- Almost every set of poly-size is a hitting set.
- Find a hitting set.

(Why do we still keep finding needles all the time?)

"How difficult could it be to find hay in a haystack?" — Howard Karloff

- You care a lot about hay.
- Almost everything in a haystack is hay.
- Find hay.

(Why do we still keep finding needles all the time?)

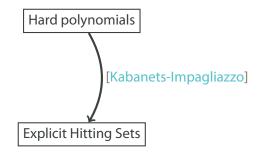
Question: Can we use one pseudorandom object to build another?

#### Lower bounds and hitting sets

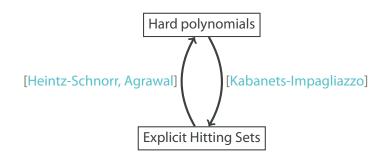
Hard polynomials

Explicit Hitting Sets

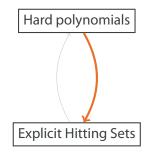
#### Lower bounds and hitting sets

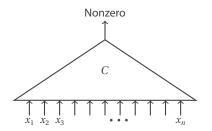


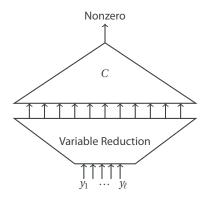
#### Lower bounds and hitting sets

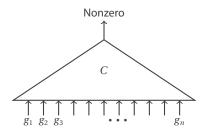


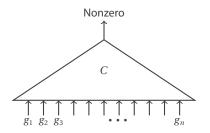
#### Lower bounds $\rightarrow$ hitting sets







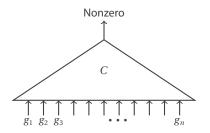




#### **Definition (Generator)**

A map  $\mathscr{G} = (g_1, ..., g_n) \in \mathbb{F}[y_1, ..., y_\ell]^n$  is a hitting-set generator for a class  $\mathscr{C}$  if

$$\forall \ C \in \mathscr{C} \quad , \quad C \neq 0 \Longleftrightarrow C \circ \mathscr{G} \neq 0.$$



#### **Definition (Generator)**

A map  $\mathscr{G} = (g_1, ..., g_n) \in \mathbb{F}[y_1, ..., y_\ell]^n$  is a hitting-set generator for a class  $\mathscr{C}$  if

$$\forall \ C \in \mathcal{C} \quad , \quad C \neq 0 \Longleftrightarrow C \circ \mathcal{G} \neq 0.$$

The degree of the generator is  $\max_i (\deg g_i)$ . The stretch is  $\ell \to n$ .

#### **Definition (Generator)**

A map  $\mathscr{G} = (g_1, ..., g_n) \in \mathbb{F}[y_1, ..., y_\ell]^n$  is a hitting-set generator for a class  $\mathscr{C}$  if

$$\forall \ C \in \mathscr{C} \quad , \quad C \neq 0 \Longleftrightarrow C \circ \mathscr{G} \neq 0.$$

The degree of the generator is  $\max_i (\deg g_i)$ . The stretch is  $\ell \to n$ .

#### **Definition (Generator)**

A map  $\mathscr{G} = (g_1, ..., g_n) \in \mathbb{F}[y_1, ..., y_\ell]^n$  is a hitting-set generator for a class  $\mathscr{C}$  if

 $\forall \ C \in \mathcal{C} \quad , \quad C \neq 0 \Longleftrightarrow C \circ \mathcal{G} \neq 0.$ 

The degree of the generator is  $\max_i (\deg g_i)$ . The stretch is  $\ell \to n$ .

#### Lemma

Let  $\mathscr{G} = (g_1, ..., g_n) \in \mathbb{F}[y_1, ..., y_\ell]^n$  be an explicit hitting-set generator for  $\mathscr{C}(n, D, s)$  of degree d. Then, we have

• An explicit hitting set H of size  $(dD+1)^{\ell}$ 

| Hardness assumption | Hitting set size |
|---------------------|------------------|
|                     |                  |

|                        | Hardness assumption                                                                                                                                                   | Hitting set size                                                                           |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| [Kabanets-Impagliazzo] | $\left\{ p_n  ight\}$ requires $n^{\omega(1)}$ size<br>$\left\{ p_n  ight\}$ requires $2^{n^{\Omega(1)}}$ size<br>$\left\{ p_n  ight\}$ requires $2^{\Omega(n)}$ size | $2^{s^{\varepsilon}}, \forall \varepsilon > 0$<br>$2^{\text{polylog}s}$<br>$s^{O(\log s)}$ |
|                        |                                                                                                                                                                       |                                                                                            |

|                        | Hardness assumption                                                                                                                                                   | Hitting set size                                                                           |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| [Kabanets-Impagliazzo] | $\left\{ p_n  ight\}$ requires $n^{\omega(1)}$ size<br>$\left\{ p_n  ight\}$ requires $2^{n^{\Omega(1)}}$ size<br>$\left\{ p_n  ight\}$ requires $2^{\Omega(n)}$ size | $2^{s^{\varepsilon}}, \forall \varepsilon > 0$<br>$2^{\text{polylog}s}$<br>$s^{O(\log s)}$ |
| [Kumar-S-Tengse]       | $\left\{ p_{k,d}  ight\}_d$ requires $d^{\Omega(1)}$ size                                                                                                             | $s^{\exp(\exp(\log^* s))}$                                                                 |
|                        |                                                                                                                                                                       |                                                                                            |

|                        | Hardness assumption                                                                                                                                             | Hitting set size                                                               |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| [Kabanets-Impagliazzo] | $\left\{ p_n  ight\}$ requires $n^{\omega(1)}$ size $\left\{ p_n  ight\}$ requires $2^{n^{\Omega(1)}}$ size $\left\{ p_n  ight\}$ requires $2^{\Omega(n)}$ size | $2^{s^{\varepsilon}}, \forall \varepsilon > 0$<br>2polylogs<br>$s^{O(\log s)}$ |
| [Kumar-S-Tengse]       | $\left\{ p_{k,d}  ight\}_d$ requires $d^{\Omega(1)}$ size                                                                                                       | $s^{\exp(\exp(\log^* s))}$                                                     |
|                        | ???                                                                                                                                                             | s <sup>O(1)</sup>                                                              |
|                        |                                                                                                                                                                 |                                                                                |

|                        | Hardness assumption                                                                                                                                                   | Hitting set size                                                                           |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| [Kabanets-Impagliazzo] | $\left\{ p_n  ight\}$ requires $n^{\omega(1)}$ size<br>$\left\{ p_n  ight\}$ requires $2^{n^{\Omega(1)}}$ size<br>$\left\{ p_n  ight\}$ requires $2^{\Omega(n)}$ size | $2^{s^{\varepsilon}}, \forall \varepsilon > 0$<br>$2^{\text{polylog}s}$<br>$s^{O(\log s)}$ |
| [Kumar-S-Tengse]       | $\left\{ p_{k,d}  ight\}_d$ requires $d^{\Omega(1)}$ size                                                                                                             | $s^{\exp(\exp(\log^* s))}$                                                                 |
| This work              | $\left\{p_{k,d} ight\}_{d}$ requires $d^{3+arepsilon}$ size                                                                                                           | s <sup>O(1)</sup>                                                                          |
|                        |                                                                                                                                                                       |                                                                                            |

# **Generators assuming hardness**

|                        | Hardness assumption                                                                                                                                                   | Hitting set size                                                               |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| [Kabanets-Impagliazzo] | $\left\{ p_n  ight\}$ requires $n^{\omega(1)}$ size<br>$\left\{ p_n  ight\}$ requires $2^{n^{\Omega(1)}}$ size<br>$\left\{ p_n  ight\}$ requires $2^{\Omega(n)}$ size | $2^{s^{\varepsilon}}, \forall \varepsilon > 0$<br>2polylogs<br>$s^{O(\log s)}$ |
| [Kumar-S-Tengse]       | $\left\{ p_{k,d}  ight\}_d$ requires $d^{\Omega(1)}$ size                                                                                                             | $s^{\exp(\exp(\log^* s))}$                                                     |
| This work              | $ \{p_{k,d}\}_d \text{ requires } d^{3+\varepsilon} \text{ size} $ $ \{p_{k,d}\}_d \text{ requires } d^{1+\varepsilon} \overline{\text{size}} $                       | \$ <sup>O(1)</sup>                                                             |
|                        | $\left\{p_{k,d}\right\}_d$ requires $d^{1+\varepsilon}$ size                                                                                                          | s <sup>O(1)</sup>                                                              |

# **Our results**

#### **Theorem ([Guo-Kumar-S-Solomon])**

For any k-variate polynomial P of degree d,

## Theorem ([Guo-Kumar-S-Solomon])

For any k-variate polynomial P of degree d, there is an explicit map

$$\mathscr{G}_P = (g_1, \dots, g_n) \in \mathbb{F}[y_1, \dots, y_k, z_1, \dots, z_k]^n$$

such that

## Theorem ([Guo-Kumar-S-Solomon])

For any k-variate polynomial P of degree d, there is an explicit map

$$\mathscr{G}_P = (g_1, \ldots, g_n) \in \mathbb{F}[y_1, \ldots, y_k, z_1, \ldots, z_k]^n$$

such that

•  $\deg(\mathscr{G}_P) = d$  and  $\mathscr{G}_P$  is  $d^{O(k)}$ -explicit,

## Theorem ([Guo-Kumar-S-Solomon])

For any k-variate polynomial P of degree d, there is an explicit map

$$\mathscr{G}_P = (g_1, \ldots, g_n) \in \mathbb{F}[y_1, \ldots, y_k, z_1, \ldots, z_k]^n$$

such that

- $\deg(\mathscr{G}_P) = d$  and  $\mathscr{G}_P$  is  $d^{O(k)}$ -explicit,
- For any nonzero circuit  $C \in \mathscr{C}(n, D, s)$ ,

if  $C \circ \mathscr{G}_P = 0$  , then size  $(P) \ll d^k$ 

### Theorem ([Guo-Kumar-S-Solomon])

For any k-variate polynomial P of degree d, there is an explicit map

$$\mathscr{G}_P = (g_1, \ldots, g_n) \in \mathbb{F}[y_1, \ldots, y_k, z_1, \ldots, z_k]^n$$

such that

- $\deg(\mathscr{G}_P) = d$  and  $\mathscr{G}_P$  is  $d^{O(k)}$ -explicit,
- For any nonzero circuit  $C \in \mathscr{C}(n, D, s)$ ,

if 
$$C \circ \mathscr{G}_P = 0$$
, then size  $(P) \le n^{10k} \cdot s \cdot d^3 \cdot D$ 

## Theorem ([Guo-Kumar-S-Solomon])

For any k-variate polynomial P of degree d, there is an explicit map

$$\mathscr{G}_P = (g_1, \ldots, g_n) \in \mathbb{F}[y_1, \ldots, y_k, z_1, \ldots, z_k]^n$$

such that

- $\deg(\mathscr{G}_P) = d$  and  $\mathscr{G}_P$  is  $d^{O(k)}$ -explicit,
- For any nonzero circuit  $C \in \mathscr{C}(n, D, s)$ ,

if 
$$C \circ \mathscr{G}_P = 0$$
, then size  $(P) \le n^{10k} \cdot s \cdot d^3 \cdot D \ll d^k$ 

 $(Think of d = n^{1000})$ 

## Theorem ([Guo-Kumar-S-Solomon])

For any k-variate polynomial P of degree d, there is an explicit map

$$\mathscr{G}_P = (g_1, \ldots, g_n) \in \mathbb{F}[y_1, \ldots, y_k, z_1, \ldots, z_k]^n$$

such that

- $\deg(\mathscr{G}_P) = d$  and  $\mathscr{G}_P$  is  $d^{O(k)}$ -explicit,
- For any nonzero circuit  $C \in \mathscr{C}(n, D, s)$ ,

if 
$$C \circ \mathscr{G}_P = 0$$
, then size  $(P) \le n^{10k} \cdot s \cdot d^3 \cdot D \ll d^k$ 

 $(Think of d = n^{1000})$ 

In other words, if *P* is hard enough, then  $\mathcal{G}_P$  is a hitting-set generator for  $\mathcal{C}(n, D, s)$ .

## Theorem ([Guo-Kumar-S-Solomon])

For any k-variate polynomial P of degree d, there is an explicit map

$$\mathscr{G}_P = (g_1, \ldots, g_n) \in \mathbb{F}[y_1, \ldots, y_k, z_1, \ldots, z_k]^n$$

such that

- $\deg(\mathscr{G}_P) = d$  and  $\mathscr{G}_P$  is  $d^{O(k)}$ -explicit,
- For any nonzero circuit  $C \in \mathscr{C}(n, D, s)$ ,

if 
$$C \circ \mathscr{G}_P = 0$$
, then  $\overline{\text{size}}(P) \le n^{10k} \cdot s \cdot d \cdot D \ll d^k$ 

 $(Think of d = n^{1000})$ 

In other words, if *P* is hard enough, then  $\mathcal{G}_P$  is a hitting-set generator for  $\mathcal{C}(n, D, s)$ .

#### Corollary

Let k be a large enough constant and  $\varepsilon > 0$ . Suppose  $\{P_{k,d}\}_d$  is an explicit family of polynomials with deg  $P_{k,d} = d$  such that  $\{P_{k,d}\}_d$  requires size  $d^{3+\varepsilon}$  (or size  $d^{1+\varepsilon}$ ).

Then, there is an explicit hitting set for  $\mathscr{C}(s, s, s)$  of size poly(s).

#### Corollary

Let k be a large enough constant and  $\varepsilon > 0$ . Suppose  $\{P_{k,d}\}_d$  is an explicit family of polynomials with deg  $P_{k,d} = d$  such that  $\{P_{k,d}\}_d$  requires size  $d^{3+\varepsilon}$  (or size  $d^{1+\varepsilon}$ ).

Then, there is an explicit hitting set for  $\mathscr{C}(s, s, s)$  of size poly(s).

#### **Proof.** Set $d \ge s^{(10k+2)/\varepsilon}$ and $P = P_{k,d}$ .

#### Corollary

Let k be a large enough constant and  $\varepsilon > 0$ . Suppose  $\{P_{k,d}\}_d$  is an explicit family of polynomials with deg  $P_{k,d} = d$  such that  $\{P_{k,d}\}_d$  requires size  $d^{3+\varepsilon}$  (or size  $d^{1+\varepsilon}$ ).

Then, there is an explicit hitting set for  $\mathcal{C}(s, s, s)$  of size poly(s).

#### Proof.

Set  $d \ge s^{(10k+2)/\varepsilon}$  and  $P = P_{k,d}$ . If  $0 \ne C \in \mathscr{C}(s, s, s)$  such that  $C \circ \mathscr{G}_P = 0$ ,

#### Corollary

Let k be a large enough constant and  $\varepsilon > 0$ . Suppose  $\{P_{k,d}\}_d$  is an explicit family of polynomials with deg  $P_{k,d} = d$  such that  $\{P_{k,d}\}_d$  requires size  $d^{3+\varepsilon}$  (or size  $d^{1+\varepsilon}$ ).

Then, there is an explicit hitting set for  $\mathcal{C}(s, s, s)$  of size poly(s).

#### Proof.

Set  $d \ge s^{(10k+2)/\varepsilon}$  and  $P = P_{k,d}$ . If  $0 \ne C \in \mathscr{C}(s, s, s)$  such that  $C \circ \mathscr{G}_P = 0$ , then

size(P)  $\leq s^{10k} \cdot s^2 \cdot d^3$ 

#### Corollary

Let k be a large enough constant and  $\varepsilon > 0$ . Suppose  $\{P_{k,d}\}_d$  is an explicit family of polynomials with deg  $P_{k,d} = d$  such that  $\{P_{k,d}\}_d$  requires size  $d^{3+\varepsilon}$  (or size  $d^{1+\varepsilon}$ ).

Then, there is an explicit hitting set for  $\mathcal{C}(s, s, s)$  of size poly(s).

#### Proof.

Set 
$$d \ge s^{(10k+2)/\varepsilon}$$
 and  $P = P_{k,d}$ .  
If  $0 \ne C \in \mathscr{C}(s, s, s)$  such that  $C \circ \mathscr{G}_P = 0$ , then

size(P) 
$$\leq s^{10k} \cdot s^2 \cdot d^3$$
  
 $\leq d^{3+\varepsilon}$ 

#### Corollary

Let k be a large enough constant and  $\varepsilon > 0$ . Suppose  $\{P_{k,d}\}_d$  is an explicit family of polynomials with deg  $P_{k,d} = d$  such that  $\{P_{k,d}\}_d$  requires size  $d^{3+\varepsilon}$  (or size  $d^{1+\varepsilon}$ ).

Then, there is an explicit hitting set for  $\mathcal{C}(s, s, s)$  of size poly(s).

#### Proof.

Set  $d \ge s^{(10k+2)/\varepsilon}$  and  $P = P_{k,d}$ . If  $0 \ne C \in \mathscr{C}(s, s, s)$  such that  $C \circ \mathscr{G}_P = 0$ , then size $(P) \le s^{10k} \cdot s^2 \cdot d^3$ 

 $\leq d^{3+\varepsilon}$  which is impossible.

#### Corollary

Let k be a large enough constant and  $\varepsilon > 0$ . Suppose  $\{P_{k,d}\}_d$  is an explicit family of polynomials with deg  $P_{k,d} = d$  such that  $\{P_{k,d}\}_d$  requires size  $d^{3+\varepsilon}$  (or size  $d^{1+\varepsilon}$ ).

Then, there is an explicit hitting set for  $\mathscr{C}(s, s, s)$  of size poly(s).

#### Proof.

Set  $d \ge s^{(10k+2)/\varepsilon}$  and  $P = P_{k,d}$ . If  $0 \ne C \in \mathscr{C}(s, s, s)$  such that  $C \circ \mathscr{G}_P = 0$ , then

size(P) 
$$\leq s^{10k} \cdot s^2 \cdot d^3$$
  
 $\leq d^{3+\varepsilon}$  which is impossible.

Hence  $C \circ \mathscr{G}_p$  is a nonzero 2k-variate polynomial of degree at most ds.

#### Corollary

Let k be a large enough constant and  $\varepsilon > 0$ . Suppose  $\{P_{k,d}\}_d$  is an explicit family of polynomials with deg  $P_{k,d} = d$  such that  $\{P_{k,d}\}_d$  requires size  $d^{3+\varepsilon}$  (or size  $d^{1+\varepsilon}$ ).

Then, there is an explicit hitting set for  $\mathcal{C}(s, s, s)$  of size poly(s).

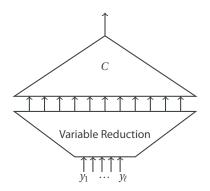
#### Proof.

Set  $d \ge s^{(10k+2)/\varepsilon}$  and  $P = P_{k,d}$ . If  $0 \ne C \in \mathscr{C}(s, s, s)$  such that  $C \circ \mathscr{G}_P = 0$ , then size $(P) \le s^{10k} \cdot s^2 \cdot d^3$ 

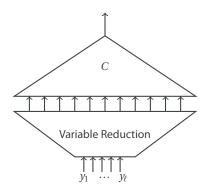
 $\leq d^{3+\varepsilon}$  which is impossible.

Hence  $C \circ \mathscr{G}_P$  is a nonzero 2k-variate polynomial of degree at most ds. Hence, we have a hitting set of size  $(ds)^{2k} = s^{O(k^2/\varepsilon)}$ .

# **Revisiting variable reductions**

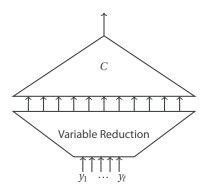


# **Revisiting variable reductions**



**Hitting-set Generator:**  $C \neq 0 \iff C \circ \mathcal{G} \neq 0$ 

# **Revisiting variable reductions**



**Hitting-set Generator:**  $C \neq 0 \iff C \circ \mathscr{G} \neq 0$ **Dream:**  $size(C \circ \mathscr{G}) \approx size(C) + size(\mathscr{G})$ 

$$\mathscr{K} = (1, y, y^2, y^4, \dots, y^{2^{n-1}})$$

$$\mathscr{K} = (1, y, y^2, y^4, \dots, y^{2^{n-1}})$$

$$x_1^{e_1} \cdots x_n^{e_n} \quad \mapsto \quad y^{[e_1 e_2 \cdots e_n]_2}$$

$$\mathscr{K} = (1, y, y^2, y^4, \dots, y^{2^{n-1}})$$

$$x_1^{e_1} \cdots x_n^{e_n} \quad \mapsto \quad y^{[e_1 e_2 \cdots e_n]_2}$$

If *P* is a *n*-variate multilinear polynomial, then  $P \circ \mathcal{K}$  is a univariate polynomial of degree at most  $2^n$ .

$$\mathscr{K}_{t} = \left(1, y_{1}, y_{1}^{2}, \dots, y_{1}^{2^{m-1}}, \dots, 1, y_{t}, \dots, y_{t}^{2^{m-1}}\right) \quad (n = t m)$$

$$x_1^{e_1} \cdots x_n^{e_n} \quad \mapsto \quad y_1^{[e_1 \cdots e_m]_2} \cdots y_t^{[e_* \cdots e_n]_2}$$

If *P* is a *n*-variate multilinear polynomial, then  $P \circ \mathcal{K}$  is a *t*-variate polynomial of degree at most  $2^{n/t}$ .

$$\mathscr{K}_{t} = \left(1, y_{1}, y_{1}^{2}, \dots, y_{1}^{2^{m-1}}, \dots, 1, y_{t}, \dots, y_{t}^{2^{m-1}}\right) \quad (n = t m)$$

$$x_1^{e_1}\cdots x_n^{e_n} \quad \mapsto \quad y_1^{[e_1\cdots e_m]_2}\cdots y_t^{[e_*\cdots e_n]_2}$$

If *P* is a *n*-variate multilinear polynomial, then  $P \circ \mathcal{K}$  is a *t*-variate polynomial of degree at most  $2^{n/t}$ .

[Kabanets-Impagliazzo]: If  $\{P_n\}$ , multilinear, with size $(P_n) > 2^{n/1000}$ , then we have  $s^{O(\log s)}$ -sized hitting sets.

$$\mathscr{K}_{t} = \left(1, y_{1}, y_{1}^{2}, \dots, y_{1}^{2^{m-1}}, \dots, 1, y_{t}, \dots, y_{t}^{2^{m-1}}\right) \quad (n = t m)$$

$$x_1^{e_1} \cdots x_n^{e_n} \quad \mapsto \quad y_1^{[e_1 \cdots e_m]_2} \cdots y_t^{[e_* \cdots e_n]_2}$$

If *P* is a *n*-variate multilinear polynomial, then  $P \circ \mathcal{K}$  is a *t*-variate polynomial of degree at most  $2^{n/t}$ .

[Kabanets-Impagliazzo]: If  $\{P_n\}$ , multilinear, with size $(P_n) > 2^{n/1000}$ , then we have  $s^{O(\log s)}$ -sized hitting sets.

**New:** If, for some constant *t*, suppose  $\overline{\text{size}}(P_n \circ \mathscr{K}_t) \ge 2^{(1+\varepsilon)n/t}$ 

$$\mathscr{K}_{t} = \left(1, y_{1}, y_{1}^{2}, \dots, y_{1}^{2^{m-1}}, \dots, 1, y_{t}, \dots, y_{t}^{2^{m-1}}\right) \quad (n = t m)$$

$$x_1^{e_1}\cdots x_n^{e_n} \quad \mapsto \quad y_1^{[e_1\cdots e_m]_2}\cdots y_t^{[e_*\cdots e_n]_2}$$

If *P* is a *n*-variate multilinear polynomial, then  $P \circ \mathcal{K}$  is a *t*-variate polynomial of degree at most  $2^{n/t}$ .

[Kabanets-Impagliazzo]: If  $\{P_n\}$ , multilinear, with size $(P_n) > 2^{n/1000}$ , then we have  $s^{O(\log s)}$ -sized hitting sets.

**New:** If, for some constant *t*, suppose  $\overline{\text{size}}(P_n \circ \mathscr{K}_t) \ge 2^{(1+\varepsilon)n/t} = d^{1+\varepsilon}$ 

$$\mathscr{K}_{t} = \left(1, y_{1}, y_{1}^{2}, \dots, y_{1}^{2^{m-1}}, \dots, 1, y_{t}, \dots, y_{t}^{2^{m-1}}\right) \quad (n = t m)$$

$$x_1^{e_1} \cdots x_n^{e_n} \quad \mapsto \quad y_1^{[e_1 \cdots e_m]_2} \cdots y_t^{[e_* \cdots e_n]_2}$$

If *P* is a *n*-variate multilinear polynomial, then  $P \circ \mathcal{K}$  is a *t*-variate polynomial of degree at most  $2^{n/t}$ .

[Kabanets-Impagliazzo]: If  $\{P_n\}$ , multilinear, with size $(P_n) > 2^{n/1000}$ , then we have  $s^{O(\log s)}$ -sized hitting sets.

**New:** If, for some constant *t*, suppose  $\overline{\text{size}}(P_n \circ \mathscr{K}_t) \ge 2^{(1+\varepsilon)n/t} = d^{1+\varepsilon}$  then we have poly(s)-sized hitting sets.

# **Consequences for bootstrapping**

#### Theorem. [Kumar-S-Tengse]

Let  $\varepsilon > 0$  and k (large enough) be fixed constants.

If, for all  $s \ge k$ , we have explicit hitting sets for  $\mathscr{C}(k, s, s)$  of size

 $s^{k-\varepsilon}$ ,

then, we have explicit hitting sets for  $\mathscr{C}(s, s, s)$  of size

 $s^{\exp(\exp(\log^* s))}$ 

# **Consequences for bootstrapping**

#### Corollary

Let  $\varepsilon > 0$  and k (large enough) be fixed constants.

If, for all  $s \ge k$ , we have explicit hitting sets for  $\overline{\mathscr{C}}(k, s, s)$  of size

 $s^{k-\varepsilon}$ ,

then, we have explicit hitting sets for  $\overline{\mathscr{C}}(s, s, s)$  of size

s<sup>O(1)</sup>

Circuits and border are crucial for this.

What's all this border stuff?

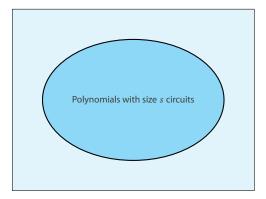
## The Border

All polynomials



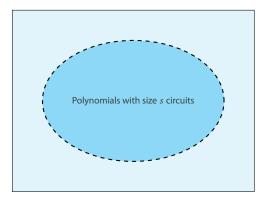
# The Border

All polynomials



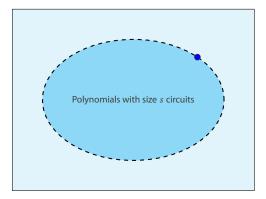
# The Border

All polynomials



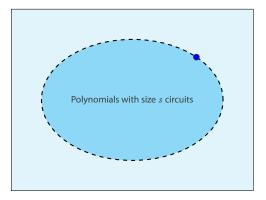
## The Border

All polynomials



## The Border

All polynomials



Does not have size *s* circuits, but arbitrarily close to those that do.

$$\mathscr{C} = \left\{ f : f = \ell_1^d + \ell_2^d , \deg(\ell_1), \deg(\ell_2) = 1 \right\}$$

$$\mathscr{C} = \left\{ f : f = \ell_1^d + \ell_2^d , \deg(\ell_1), \deg(\ell_2) = 1 \right\}$$

Fact  
If 
$$x^{d-1}y = \ell_1^d + \dots + \ell_s^d$$
, then  $s \ge d$ .

$$\mathscr{C} = \left\{ f : f = \ell_1^d + \ell_2^d , \deg(\ell_1), \deg(\ell_2) = 1 \right\}$$

## Fact If $x^{d-1}y = \ell_1^d + \dots + \ell_s^d$ , then $s \ge d$ . Hence, $x^{d-1}y \notin \mathcal{C}$ for any $d \ge 3$ .

$$\mathscr{C} = \left\{ f : f = \ell_1^d + \ell_2^d , \deg(\ell_1), \deg(\ell_2) = 1 \right\}$$

Fact  
If 
$$x^{d-1}y = \ell_1^d + \dots + \ell_s^d$$
, then  $s \ge d$ .  
Hence,  $x^{d-1}y \notin \mathscr{C}$  for any  $d \ge 3$ .

However,

$$C = \frac{(x + \varepsilon y)^d - x^d}{d \cdot \varepsilon}$$

$$\mathscr{C} = \left\{ f : f = \ell_1^d + \ell_2^d , \deg(\ell_1), \deg(\ell_2) = 1 \right\}$$

Fact  
If 
$$x^{d-1}y = \ell_1^d + \dots + \ell_s^d$$
, then  $s \ge d$ .  
Hence,  $x^{d-1}y \notin \mathscr{C}$  for any  $d \ge 3$ .

However,

$$C = \frac{(x + \varepsilon y)^d - x^d}{d \cdot \varepsilon} = x^{d-1}y + O(\varepsilon)$$

$$\mathscr{C} = \left\{ f : f = \ell_1^d + \ell_2^d , \deg(\ell_1), \deg(\ell_2) = 1 \right\}$$

Fact  
If 
$$x^{d-1}y = \ell_1^d + \dots + \ell_s^d$$
, then  $s \ge d$ .  
Hence,  $x^{d-1}y \notin \mathscr{C}$  for any  $d \ge 3$ .

However,

$$C = \frac{(x + \varepsilon y)^d - x^d}{d \cdot \varepsilon} = x^{d-1}y + O(\varepsilon) \xrightarrow{\varepsilon \to 0} x^{d-1}y$$

$$\mathscr{C} = \left\{ f : f = \ell_1^d + \ell_2^d , \deg(\ell_1), \deg(\ell_2) = 1 \right\}$$

Fact  
If 
$$x^{d-1}y = \ell_1^d + \dots + \ell_s^d$$
, then  $s \ge d$ .  
Hence,  $x^{d-1}y \notin \mathcal{C}$  for any  $d \ge 3$ .

However,

$$C = \frac{(x + \varepsilon y)^d - x^d}{d \cdot \varepsilon} = x^{d-1}y + O(\varepsilon) \xrightarrow{\varepsilon \to 0} x^{d-1}y$$

Hence,  $x^{d-1}y \in \overline{\mathscr{C}}$  but not in  $\mathscr{C}$ .

**Task:** Given a circuit *C* of size *s* computing a polynomial *P* of degree *d*. Compute  $P_d$ , the degree *d* homogeneous part of *P*.

**Task:** Given a circuit *C* of size *s* computing a polynomial *P* of degree *d*. Compute  $P_d$ , the degree *d* homogeneous part of *P*.

**Standard solution:** "Homogenize" the circuit and extract the degree *d* part. Can be done using a circuit of size  $O(sd^2)$ .

**Task:** Given a circuit *C* of size *s* computing a polynomial *P* of degree *d*. Compute  $P_d$ , the degree *d* homogeneous part of *P*.

**Standard solution:** "Homogenize" the circuit and extract the degree d part. Can be done using a circuit of size  $O(sd^2)$ .

$$C(x_1,\ldots,x_n) = P_0 + P_1 + \cdots + P_d$$

**Task:** Given a circuit *C* of size *s* computing a polynomial *P* of degree *d*. Compute  $P_d$ , the degree *d* homogeneous part of *P*.

**Standard solution:** "Homogenize" the circuit and extract the degree d part. Can be done using a circuit of size  $O(sd^2)$ .

$$C\left(\frac{x_1}{\varepsilon},\ldots,\frac{x_n}{\varepsilon}\right) = P_0 + \frac{P_1}{\varepsilon} + \cdots + \frac{P_d}{\varepsilon^d}$$

**Task:** Given a circuit *C* of size *s* computing a polynomial *P* of degree *d*. Compute  $P_d$ , the degree *d* homogeneous part of *P*.

**Standard solution:** "Homogenize" the circuit and extract the degree d part. Can be done using a circuit of size  $O(sd^2)$ .

$$\varepsilon^d \cdot C\left(\frac{x_1}{\varepsilon}, \dots, \frac{x_n}{\varepsilon}\right) = \varepsilon^d P_0 + \varepsilon^{d-1} P_1 + \dots + P_d$$

**Task:** Given a circuit *C* of size *s* computing a polynomial *P* of degree *d*. Compute  $P_d$ , the degree *d* homogeneous part of *P*.

**Standard solution:** "Homogenize" the circuit and extract the degree d part. Can be done using a circuit of size  $O(sd^2)$ .

$$\varepsilon^{d} \cdot C\left(\frac{x_{1}}{\varepsilon}, \dots, \frac{x_{n}}{\varepsilon}\right) = \varepsilon^{d} P_{0} + \varepsilon^{d-1} P_{1} + \dots + P_{d}$$
$$\xrightarrow{\varepsilon \to 0} P_{d}$$

**Task:** Given a circuit *C* of size *s* computing a polynomial *P* of degree *d*. Compute  $P_d$ , the degree *d* homogeneous part of *P*.

**Standard solution:** "Homogenize" the circuit and extract the degree d part. Can be done using a circuit of size  $O(sd^2)$ .

$$\varepsilon^{d} \cdot C\left(\frac{x_{1}}{\varepsilon}, \dots, \frac{x_{n}}{\varepsilon}\right) = \varepsilon^{d} P_{0} + \varepsilon^{d-1} P_{1} + \dots + P_{d}$$
$$\xrightarrow{\varepsilon \to 0}_{\varepsilon \to 0} P_{d}$$
$$\therefore \quad \overline{\text{size}}(P_{d}) \leq \quad \overline{\text{size}}(P)$$

**Task:** Given a circuit *C* of size *s* computing a polynomial *P* of degree *d*. Compute  $P_d$ , the degree *d* homogeneous part of *P*.

**Standard solution:** "Homogenize" the circuit and extract the degree d part. Can be done using a circuit of size  $O(sd^2)$ .

## **Border trick:**

$$\varepsilon^{d} \cdot C\left(\frac{x_{1}}{\varepsilon}, \dots, \frac{x_{n}}{\varepsilon}\right) = \varepsilon^{d} P_{0} + \varepsilon^{d-1} P_{1} + \dots + P_{d}$$
$$\xrightarrow{\varepsilon \to 0}_{\varepsilon \to 0} P_{d}$$
$$\therefore \quad \overline{\text{size}}(P_{d}) \leq \quad \overline{\text{size}}(P)$$

 $P_d$  can be computed in size s as well!

# \begin{proof}

Any sufficiently advanced

technology

is indistinguishable

from magic

Any sufficiently hard polynomial's evaluations

on disjoint inputs

is indistinguishable, for a small circuit,

from random inputs

Any sufficiently hard polynomial's evaluations

on disjoint inputs

is indistinguishable, for a small circuit,

from random inputs

 $\mathscr{G}: (\mathbf{y}_1, \ldots, \mathbf{y}_k) \mapsto (\mathbf{y}_1, \ldots, \mathbf{y}_k, P(\mathbf{y}_1), \ldots, P(\mathbf{y}_k))$ 

Any sufficiently hard polynomial's evaluations

on "almost disjoint" inputs

is indistinguishable, for a small circuit,

from random inputs

 $\mathscr{G}: (\mathbf{y}_1, \ldots, \mathbf{y}_k) \mapsto (\mathbf{y}_1, \ldots, \mathbf{y}_k, P(\mathbf{y}_1), \ldots, P(\mathbf{y}_k))$ 

Any sufficiently hard polynomial's evaluations

on "almost disjoint" inputs

is indistinguishable, for a small circuit,

from random inputs

 $[\mathsf{KI},\mathsf{NW}]: \quad \mathscr{G}:(y_1,\ldots,y_\ell)\mapsto \left(P(\mathbf{y}|_{S_1}),\ldots,P(\mathbf{y}|_{S_n})\right)$ 

Any sufficiently hard polynomial's components

'Taylored' appropriately

is indistinguishable, for a small circuit,

from random inputs

 $P(z_1,\ldots,z_k)$ 

$$P(\mathbf{y}+\mathbf{z}) = P(\mathbf{z}) + \sum_{i} y_{i} \cdot (\partial_{i} P)(\mathbf{z}) + \sum_{i,j} y_{i} y_{j} \cdot (\partial_{i,j} P)(\mathbf{z}) + \cdots$$

$$P(\mathbf{y} + \mathbf{z}) = P(\mathbf{z}) + \sum_{i} y_{i} \cdot (\partial_{i} P)(\mathbf{z}) + \sum_{i,j} y_{i} y_{j} \cdot (\partial_{i,j} P)(\mathbf{z}) + \cdots$$
$$= \sum_{\mathbf{e}} \frac{\mathbf{y}^{\mathbf{e}}}{\mathbf{e}!} \cdot (\partial_{\mathbf{e}} P)(\mathbf{z})$$

$$P(\mathbf{y} + \mathbf{z}) = P(\mathbf{z}) + \sum_{i} y_{i} \cdot (\partial_{i} P)(\mathbf{z}) + \sum_{i,j} y_{i} y_{j} \cdot (\partial_{i,j} P)(\mathbf{z}) + \cdots$$
$$= \sum_{\mathbf{e}} \frac{\mathbf{y}^{\mathbf{e}}}{\mathbf{e}!} \cdot (\partial_{\mathbf{e}} P)(\mathbf{z})$$

## **Definition (The generator)**

For a k-variate polynomial P, define

$$\Delta_i(P) = \sum_{\mathbf{e}: |\mathbf{e}| = i} \frac{\mathbf{y}^{\mathbf{e}}}{\mathbf{e}!} \cdot (\partial_{\mathbf{e}} P)(\mathbf{z}).$$

The generator  $\mathscr{G}_P$  is defined as

$$\mathscr{G}_P = (\Delta_0(P), \Delta_1(P), \Delta_2(P), \dots, \Delta_n(P)) \in (\mathbb{F}[\mathbf{y}_{[k]}, \mathbf{z}_{[k]}])^{n+1}.$$

$$P(\mathbf{y} + \mathbf{z}) = P(\mathbf{z}) + \sum_{i} y_{i} \cdot (\partial_{i} P)(\mathbf{z}) + \sum_{i,j} y_{i} y_{j} \cdot (\partial_{i,j} P)(\mathbf{z}) + \cdots$$
$$= \sum_{\mathbf{e}} \frac{\mathbf{y}^{\mathbf{e}}}{\mathbf{e}!} \cdot (\partial_{\mathbf{e}} P)(\mathbf{z})$$

## **Definition (The generator)**

For a k-variate polynomial P, define

$$\Delta_i(P) = \sum_{\mathbf{e}: |\mathbf{e}| = i} \frac{\mathbf{y}^{\mathbf{e}}}{\mathbf{e}!} \cdot (\partial_{\mathbf{e}} P)(\mathbf{z}).$$

The generator  $\mathscr{G}_P$  is defined as

$$\mathscr{G}_P = (\Delta_0(P), \Delta_1(P), \Delta_2(P), \dots, \Delta_n(P)) \in (\mathbb{F}[\mathbf{y}_{[k]}, \mathbf{z}_{[k]}])^{n+1}.$$

$$P(\mathbf{y} + \mathbf{z}) = P(\mathbf{z}) + \sum_{i} y_{i} \cdot (\partial_{i} P)(\mathbf{z}) + \sum_{i,j} y_{i} y_{j} \cdot (\partial_{i,j} P)(\mathbf{z}) + \cdots$$
$$= \sum_{\mathbf{e}} \frac{\mathbf{y}^{\mathbf{e}}}{\mathbf{e}!} \cdot (\partial_{\mathbf{e}} P)(\mathbf{z})$$

## **Definition (The generator)**

For a k-variate polynomial P, define

$$\Delta_i(P) = \sum_{\mathbf{e}:|\mathbf{e}|=i} \frac{\mathbf{y}^{\mathbf{e}}}{\mathbf{e}!} \cdot (\partial_{\mathbf{e}} P)(\mathbf{z}).$$

The generator  $\mathscr{G}_P$  is defined as

$$\mathscr{G}_P = (\Delta_0(P), \Delta_1(P), \Delta_2(P), \dots, \Delta_n(P)) \in (\mathbb{F}[\mathbf{y}_{[k]}, \mathbf{z}_{[k]}])^{n+1}.$$

$$P(\mathbf{y} + \mathbf{z}) = P(\mathbf{z}) + \sum_{i} y_{i} \cdot (\partial_{i} P)(\mathbf{z}) + \sum_{i,j} y_{i} y_{j} \cdot (\partial_{i,j} P)(\mathbf{z}) + \cdots$$
$$= \sum_{\mathbf{e}} \frac{\mathbf{y}^{\mathbf{e}}}{\mathbf{e}!} \cdot (\partial_{\mathbf{e}} P)(\mathbf{z})$$

## **Definition (The generator)**

For a k-variate polynomial P, define

$$\Delta_i(P) = \sum_{\mathbf{e}:|\mathbf{e}|=i} \frac{\mathbf{y}^{\mathbf{e}}}{\mathbf{e}!} \cdot (\partial_{\mathbf{e}} P)(\mathbf{z}).$$

The generator  $\mathscr{G}_P$  is defined as

 $\mathscr{G}_P = (\Delta_0(P), \Delta_1(P), \Delta_2(P), \dots, \Delta_n(P)) \in (\mathbb{F}[\mathbf{y}_{[k]}, \mathbf{z}_{[k]}])^{n+1}.$ 

• Assume  $C \neq 0$  is a small circuit such that  $C \circ \mathscr{G}_P = 0$ .

• Assume  $C \neq 0$  is a small circuit such that  $C \circ \mathscr{G}_P = 0$ .

Show that we can use *C*, and a little more, to get a circuit that computes *P*.

• Assume  $C \neq 0$  is a small circuit such that  $C \circ \mathscr{G}_P = 0$ .

▶ Show that we can use *C*, and a little more, to get a circuit that computes *P*.

**Idea:** Think of  $C(\Delta_0(P), ..., \Delta_n(P)) = 0$  as a differential equation and solve for *P*.

$$\left(\frac{1}{2}\right)m\cdot(v(t))^2 + m\cdot g\cdot h(t) = c$$

$$\left(\frac{1}{2}\right)m\cdot(\boldsymbol{v}(t))^2 + m\cdot g\cdot h(t) = c$$

$$\left(\frac{1}{2}\right)m \cdot \left(\frac{\partial h}{\partial t}\right)^2 + m \cdot g \cdot h(t) = c$$

$$Q(h(t), h^{(1)}(t)) = 0$$

$$Q(h(t), h^{(1)}(t)) = 0$$

Solve for h(t) as a power series in t.

$$Q(h(t), h^{(1)}(t)) = 0$$

Solve for h(t) as a power series in t.

Start with some non-degenerate initial conditions:

$$t = a_0$$
 ;  $h(a_0) = \beta_0$  ;  $h'(a_0) = \gamma_0$ 

$$Q(h(t), h^{(1)}(t)) = 0$$

Solve for h(t) as a power series in t.

Start with some non-degenerate initial conditions:

$$t = a_0$$
 ;  $h(a_0) = \beta_0$  ;  $h'(a_0) = \gamma_0$ 

which is a solution modulo  $(t - t_0)$ .

$$Q(h(t), h^{(1)}(t)) = 0$$

Solve for h(t) as a power series in t.

Start with some non-degenerate initial conditions:

$$t = a_0$$
 ;  $h(a_0) = \beta_0$  ;  $h'(a_0) = \gamma_0$ 

which is a solution modulo  $(t - t_0)$ .

• Lift to a solution modulo  $(t - t_0)^2$ ,  $(t - t_0)^3$  and so on...

$$Q(h(t), h^{(1)}(t)) = 0$$

Solve for h(t) as a power series in t.

Start with some non-degenerate initial conditions:

$$t = a_0$$
 ;  $h(a_0) = \beta_0$  ;  $h'(a_0) = \gamma_0$ 

which is a solution modulo  $(t - t_0)$ .

$$Q(h(t), h^{(1)}(t)) = 0$$

Solve for h(t) as a power series in t.

Start with some non-degenerate initial conditions:

$$t = a_0$$
 ;  $h(a_0) = \beta_0$  ;  $h'(a_0) = \gamma_0$ 

which is a solution modulo  $(t - t_0)$ .

 $C(\Delta_0(P),\ldots,\Delta_n(P))=0$ 

Solve for h(t) as a power series in t.

Start with some non-degenerate initial conditions:

$$t = a_0$$
 ;  $h(a_0) = \beta_0$  ;  $h'(a_0) = \gamma_0$ 

which is a solution modulo  $(t - t_0)$ .

$$C(\Delta_0(P),\ldots,\Delta_n(P))=0$$

Solve for *P* as a power series in *z*.

Start with some non-degenerate initial conditions:

$$t = a_0$$
 ;  $h(a_0) = \beta_0$  ;  $h'(a_0) = \gamma_0$ 

which is a solution modulo  $(t - t_0)$ .

$$C(\Delta_0(P),\ldots,\Delta_n(P))=0$$

Solve for *P* as a power series in **z**.

Start with some non-degenerate initial conditions:

 $C \circ \mathscr{G}_P = 0$  $(\partial_n C) \circ \mathscr{G}_P \neq 0.$ 

$$C(\Delta_0(P),\ldots,\Delta_n(P))=0$$

Solve for *P* as a power series in **z**.

Start with some non-degenerate initial conditions:

 $C \circ \mathscr{G}_P = 0$  $(\partial_n C) \circ \mathscr{G}_P \neq 0.$ 

 Compute the homogeneous parts of *P*, one by one, via Newton Iteration

(Assuming that  $\mathscr{G}_P$  is not a generator)

(Assuming that  $\mathscr{G}_P$  is not a generator)

$$C' \circ \mathscr{G}_P = 0$$
$$(\partial_n C') \circ \mathscr{G}_P \neq 0.$$

(Assuming that  $\mathscr{G}_P$  is not a generator)

**Goal:** Find a circuit C' of small size such that

$$C' \circ \mathscr{G}_P = 0$$
$$(\partial_n C') \circ \mathscr{G}_P \neq 0.$$

 $C(x_0,\ldots,x_{n-1},x_n)\neq 0$ 

(Assuming that  $\mathscr{G}_P$  is not a generator)

**Goal:** Find a circuit C' of small size such that

$$C' \circ \mathscr{G}_P = 0$$
$$(\partial_n C') \circ \mathscr{G}_P \neq 0.$$

 $C(g_0,\ldots,g_{n-1},g_n)=0$ 

(Assuming that  $\mathscr{G}_P$  is not a generator)

$$C' \circ \mathscr{G}_P = 0$$
  
 $(\partial_n C') \circ \mathscr{G}_P \neq 0.$ 

$$\tilde{C}(x_n) = C(g_0, \dots, g_{n-1}, x_n) \stackrel{?}{=} 0$$

(Assuming that  $\mathscr{G}_P$  is not a generator)

$$C' \circ \mathscr{G}_P = 0$$
$$(\partial_n C') \circ \mathscr{G}_P \neq 0.$$

If 
$$\tilde{C}(x_n) = C(g_0, ..., g_{n-1}, x_n) = 0$$

(Assuming that  $\mathscr{G}_P$  is not a generator)

**Goal:** Find a circuit C' of small size such that

$$C' \circ \mathscr{G}_P = 0$$
  
 $(\partial_n C') \circ \mathscr{G}_P \neq 0.$ 

If 
$$\tilde{C}(x_n) = C(g_0, ..., g_{n-1}, x_n) = 0$$

 $C(x_0,\ldots,x_{n-1},a)\neq 0$ 

(Assuming that  $\mathscr{G}_P$  is not a generator)

$$C' \circ \mathcal{G}_P = 0$$
  
$$(\partial_n C') \circ \mathcal{G}_P \neq 0.$$
  
If  $\tilde{C}(x_n) = C(g_0, \dots, g_{n-1}, x_n) = 0$ 

$$C(x_0, ..., x_{n-1}, a) \neq 0$$
  
 $C(g_0, ..., g_{n-1}, a) = 0$ 

(Assuming that  $\mathscr{G}_P$  is not a generator)

**Goal:** Find a circuit C' of small size such that

$$C' \circ \mathscr{G}_P = 0$$
  

$$(\partial_n C') \circ \mathscr{G}_P \neq 0.$$
  
If  $\tilde{C}(x_n) = C(g_0, \dots, g_{n-1}, x_n) = 0$ 

$$C(x_0, ..., x_{n-1}, a) \neq 0$$
  
 $C(g_0, ..., g_{n-1}, a) = 0$ 

Contradicts minimality!

(Assuming that  $\mathscr{G}_P$  is not a generator)

$$C' \circ \mathscr{G}_P = 0$$
$$(\partial_n C') \circ \mathscr{G}_P \neq 0.$$

If 
$$\tilde{C}(x_n) = C(g_0, \ldots, g_{n-1}, x_n) \neq 0$$

(Assuming that  $\mathscr{G}_P$  is not a generator)

**Goal:** Find a circuit C' of small size such that

$$C' \circ \mathscr{G}_P = 0$$
  
 $(\partial_n C') \circ \mathscr{G}_P \neq 0.$ 

If 
$$\tilde{C}(x_n) = C(g_0, \ldots, g_{n-1}, x_n) \neq 0$$

 $C(g_0,\ldots,g_{n-1},g_n)=0$ 

(Assuming that  $\mathscr{G}_P$  is not a generator)

$$C' \circ \mathcal{G}_{P} = 0$$
  

$$(\partial_{n} C') \circ \mathcal{G}_{P} \neq 0.$$
  
If  $\tilde{C}(x_{n}) = C(g_{0}, \dots, g_{n-1}, x_{n}) \neq 0$   

$$C(g_{0}, \dots, g_{n-1}, g_{n}) = 0 \qquad (x_{n} - g_{n}) \text{ divides } \tilde{C}$$

(Assuming that  $\mathscr{G}_P$  is not a generator)

**Goal:** Find a circuit C' of small size such that

 $C' \cdot (l) = 0$ 

$$C \circ \mathscr{G}_{p} = 0$$

$$(\partial_{n}C') \circ \mathscr{G}_{p} \neq 0.$$
If  $\tilde{C}(x_{n}) = C(g_{0}, \dots, g_{n-1}, x_{n}) \neq 0$ 

$$C(g_{0}, \dots, g_{n-1}, g_{n}) = 0 \qquad (x_{n} - g_{n})^{2} \text{ divides } \tilde{C}$$

$$(\partial_{n}C)(g_{0}, \dots, g_{n}) = 0$$

(Assuming that  $\mathscr{G}_P$  is not a generator)

$$C' \circ \mathscr{G}_{P} = 0$$

$$(\partial_{n} C') \circ \mathscr{G}_{P} \neq 0.$$
If  $\tilde{C}(x_{n}) = C(g_{0}, \dots, g_{n-1}, x_{n}) \neq 0$ 

$$C(g_{0}, \dots, g_{n-1}, g_{n}) = 0 \qquad (x_{n} - g_{n})^{3} \text{ divides } \tilde{C}$$

$$(\partial_{n} C)(g_{0}, \dots, g_{n}) = 0$$

$$\begin{array}{l} (g_0, \dots, g_{n-1}, g_n) = 0 \\ (\partial_n C)(g_0, \dots, g_n) = 0 \\ (\partial_n^2 C)(g_0, \dots, g_n) = 0 \end{array}$$

(Assuming that  $\mathscr{G}_P$  is not a generator)

$$C' \circ \mathscr{G}_P = 0$$
  
$$\partial_n C') \circ \mathscr{G}_P \neq 0.$$
  
If  $\tilde{C}(x_n) = C(g_0, \dots, g_{n-1}, x_n) \neq 0$ 

$$C(g_0, \dots, g_{n-1}, g_n) = 0 \qquad (x_n - g_n)^{r+1} \text{ divides } \tilde{C}$$
  

$$(\partial_n C)(g_0, \dots, g_n) = 0$$
  

$$(\partial_n^2 C)(g_0, \dots, g_n) = 0$$
  

$$\vdots$$
  

$$(\partial_n^r C)(g_0, \dots, g_n) = 0$$

(Assuming that  $\mathscr{G}_P$  is not a generator)

$$C' \circ \mathcal{G}_{p} = 0$$

$$(\partial_{n}C') \circ \mathcal{G}_{p} \neq 0.$$
If  $\tilde{C}(x_{n}) = C(g_{0}, \dots, g_{n-1}, x_{n}) \neq 0$ 

$$C(g_{0}, \dots, g_{n-1}, g_{n}) = 0 \qquad (x_{n} - g_{n})^{r+1} \text{ divides } \tilde{C}$$

$$(\partial_{n}C)(g_{0}, \dots, g_{n}) = 0$$

$$(\partial_{n}^{2}C)(g_{0}, \dots, g_{n}) = 0$$

$$\vdots \qquad (x_{n} - g_{n})^{t} \text{ cannot divide } \tilde{C}$$

$$(\partial_{n}^{r}C)(g_{0}, \dots, g_{n}) = 0 \qquad \text{if } t > \deg \tilde{C}$$

(Assuming that  $\mathscr{G}_P$  is not a generator)

$$C' \circ \mathscr{G}_P = 0$$
$$(\partial_n C') \circ \mathscr{G}_P \neq 0.$$

If 
$$\tilde{C}(x_n) = C(g_0, \ldots, g_{n-1}, x_n) \neq 0$$

$$(\partial_n^r C)(g_0, \dots, g_{n-1}, g_n) = 0$$
  
$$(\partial_n^{r+1} C)(g_0, \dots, g_{n-1}, g_n) \neq 0$$

(Assuming that  $\mathscr{G}_P$  is not a generator)

**Goal:** Find a circuit C' of small size such that

$$C' \circ \mathscr{G}_P = 0$$
$$(\partial_n C') \circ \mathscr{G}_P \neq 0.$$

If 
$$\tilde{C}(x_n) = C(g_0, \ldots, g_{n-1}, x_n) \neq 0$$

$$(\partial_n^r C)(g_0, \dots, g_{n-1}, g_n) = 0$$
  
$$(\partial_n^{r+1} C)(g_0, \dots, g_{n-1}, g_n) \neq 0$$

 $C' = (\partial_n^r C)$  is what we want.

(Assuming that  $\mathscr{G}_P$  is not a generator)

**Goal:** Find a circuit C' of small size such that

$$C' \circ \mathscr{G}_P = 0$$
$$(\partial_n C') \circ \mathscr{G}_P \neq 0.$$

If 
$$\tilde{C}(x_n) = C(g_0, \ldots, g_{n-1}, x_n) \neq 0$$

$$(\partial_n^r C)(g_0, \dots, g_{n-1}, g_n) = 0$$
  
$$(\partial_n^{r+1} C)(g_0, \dots, g_{n-1}, g_n) \neq 0$$

 $C' = (\partial_n^r C)$  is what we want.

And, size(C')  $\leq$  size(C)  $\cdot$  deg(C)

## Some basic properties

$$\Delta_i(P) = \sum_{\mathbf{e}: |\mathbf{e}| = i} \frac{\mathbf{y}^{\mathbf{e}}}{\mathbf{e}!} \cdot (\partial_{\mathbf{e}} P)(\mathbf{z}).$$

#### Some basic properties

$$\Delta_i(P) = \sum_{\mathbf{e}:|\mathbf{e}|=i} \frac{\mathbf{y}^{\mathbf{e}}}{\mathbf{e}!} \cdot (\partial_{\mathbf{e}} P)(\mathbf{z}).$$

Additivity:  $\Delta_i(P+Q) = \Delta_i(P) + \Delta_i(Q)$ 

#### Some basic properties

$$\Delta_i(P) = \sum_{\mathbf{e}:|\mathbf{e}|=i} \frac{\mathbf{y}^{\mathbf{e}}}{\mathbf{e}!} \cdot (\partial_{\mathbf{e}} P)(\mathbf{z}).$$

Additivity:  $\Delta_i(P+Q) = \Delta_i(P) + \Delta_i(Q)$ 

#### 'Homogeneity':

$$P(\mathbf{z}) = Q(\mathbf{z}) \mod \langle \mathbf{z} \rangle^{t}$$
$$\implies \Delta_{i}(P) = \Delta_{i}(Q) \mod \langle \mathbf{z} \rangle^{t-i}$$

# Some basic properties

$$\Delta_i(P) = \sum_{\mathbf{e}: |\mathbf{e}| = i} \frac{\mathbf{y}^{\mathbf{e}}}{\mathbf{e}!} \cdot (\partial_{\mathbf{e}} P)(\mathbf{z}).$$

Additivity:  $\Delta_i(P+Q) = \Delta_i(P) + \Delta_i(Q)$ 

'Homogeneity':

$$\begin{split} P(\mathbf{z}) &= Q(\mathbf{z}) \operatorname{mod} \langle \mathbf{z} \rangle^{t} \\ \Longrightarrow \Delta_{i}(P) &= \Delta_{i}(Q) \operatorname{mod} \langle \mathbf{z} \rangle^{t-i} \end{split}$$

 $P = P_0 + \dots + P_d$  $\Delta_i(P) = \Delta_i(P_{\leq t+i-1}) \mod \langle \mathbf{z} \rangle^t$ 

 $C' \circ \mathscr{G}_P(\mathbf{y}, \mathbf{z}) = 0$  $(\partial_n C') \circ \mathscr{G}_P(\mathbf{y}, \mathbf{z}) \neq 0$ 

 $C' \circ \mathscr{G}_P(\mathbf{y}, \mathbf{0}) = \mathbf{0}$  $(\partial_n C') \circ \mathscr{G}_P(\mathbf{y}, \mathbf{0}) \neq \mathbf{0}$ 

 $C' \circ \mathscr{G}_{P} (\mathbf{y}, \mathbf{0}) = \mathbf{0}$  $(\partial_{n} C') \circ \mathscr{G}_{P} (\mathbf{y}, \mathbf{0}) \neq \mathbf{0}$ 

Else, replace  $\langle z_1, ..., z_\ell \rangle$  with  $\langle z_1 - \alpha_1, ..., z_k - \alpha_k \rangle$  in what follows

 $C' \circ \mathscr{G}_P(\mathbf{y}, \mathbf{0}) = \mathbf{0}$  $(\partial_n C') \circ \mathscr{G}_P(\mathbf{y}, \mathbf{0}) \neq \mathbf{0}$ 

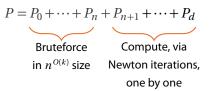
 $C' \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) = \mathbf{0}$  $(\partial_n C') \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) \neq \mathbf{0}$ 

 $P = P_0 + \dots + P_n + P_{n+1} + \dots + P_d$ 

 $C' \circ \mathcal{G}_P(\mathbf{y}, \mathbf{0}) = \mathbf{0}$  $(\partial_n C') \circ \mathcal{G}_P(\mathbf{y}, \mathbf{0}) \neq \mathbf{0}$ 

$$P = P_0 + \dots + P_n + P_{n+1} + \dots + P_d$$
  
Bruteforce  
in  $n^{O(k)}$  size

 $C' \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) = \mathbf{0}$  $(\partial_n C') \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) \neq \mathbf{0}$ 



 $C' \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) = \mathbf{0}$  $(\partial_n C') \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) \neq \mathbf{0}$ 

 $P = P_0 + \dots + P_n + P_{n+1} + \dots + P_d$ 

 $C' \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) = \mathbf{0}$  $(\partial_n C') \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) \neq \mathbf{0}$ 

 $P = P_0 + \dots + P_n + P_{n+1} + \dots + P_d$ 

 $C'(g_0,\ldots,g_{n-1},g_n)=0$ 

 $C' \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) = \mathbf{0}$  $(\partial_n C') \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) \neq \mathbf{0}$ 

 $P = P_0 + \dots + P_n + \underline{P_{n+1}} + \dots + \underline{P_d}$ 

 $C'(\Delta_0(P),\ldots,\Delta_{n-1}(P),\Delta_n(P))=0$ 

 $C' \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) = \mathbf{0}$  $(\partial_n C') \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) \neq \mathbf{0}$ 

 $P = P_0 + \dots + P_n + P_{n+1} + \dots + P_d$ 

 $C'(\Delta_0(P),\ldots,\Delta_{n-1}(P),\Delta_n(P)) = 0 \mod \langle \mathbf{z} \rangle^2$ 

 $C' \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) = \mathbf{0}$  $(\partial_n C') \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) \neq \mathbf{0}$ 

 $P = P_0 + \dots + P_n + \underline{P_{n+1}} + \dots + \underline{P_d}$ 

 $(\Delta_i(P) = \Delta_i(P_{\leq t+i-1}) \mod \langle \mathbf{z} \rangle^t)$ 

 $C'(\Delta_0(P),\ldots,\Delta_{n-1}(P),\Delta_n(P)) = 0 \mod \langle \mathbf{z} \rangle^2$ 

 $C' \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) = \mathbf{0}$  $(\partial_n C') \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) \neq \mathbf{0}$ 

 $P = P_0 + \dots + P_n + \underline{P_{n+1}} + \dots + \underline{P_d}$ 

 $(\Delta_i(P) = \Delta_i(P_{\leq t+i-1}) \mod \langle \mathbf{z} \rangle^t)$ 

 $C'(\Delta_0(P_{\leq n}),\ldots,\Delta_{n-1}(P_{\leq n}),\Delta_n(P_{\leq n+1})) = 0 \mod \langle \mathbf{z} \rangle^2$ 

 $C' \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) = \mathbf{0}$  $(\partial_n C') \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) \neq \mathbf{0}$ 

 $P = P_0 + \dots + P_n + \underline{P_{n+1}} + \dots + \underline{P_d}$ 

 $(\Delta_i(P) = \Delta_i(P_{\leq t+i-1}) \mod \langle \mathbf{z} \rangle^t)$ 

 $C'\left(\Delta_0(P_{\leq n}),\ldots,\Delta_{n-1}(P_{\leq n}),\Delta_n(P_{\leq n})+\Delta_n(P_{n+1})\right)=0 \bmod \langle \mathbf{z} \rangle^2$ 

 $C' \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) = \mathbf{0}$  $(\partial_n C') \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) \neq \mathbf{0}$ 

 $P = P_0 + \dots + P_n + P_{n+1} + \dots + P_d$ 

 $(\Delta_i(P) = \Delta_i(P_{\leq t+i-1}) \mod \langle \mathbf{z} \rangle^t)$ 

 $C'\left(\Delta_0(P_{\leq n}),\ldots,\Delta_{n-1}(P_{\leq n}),\Delta_n(P_{\leq n})+\Delta_n(P_{n+1})\right)=0 \bmod \langle \mathbf{z} \rangle^2$ 

 $C' \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) = \mathbf{0}$  $(\partial_n C') \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) \neq \mathbf{0}$ 

 $P = P_0 + \dots + P_n + P_{n+1} + \dots + P_d$   $(\Delta_i(P) = \Delta_i(P_{\leq t+i-1}) \mod \langle \mathbf{z} \rangle^t)$   $C' (\Delta_0(P_{\leq n}), \dots, \Delta_{n-1}(P_{\leq n}), \Delta_n(P_{\leq n}) + \Delta_n(P_{n+1})) = 0 \mod \langle \mathbf{z} \rangle^2$   $C'(R_0, \dots, R_{n-1}, R_n + A) = 0 \mod \langle \mathbf{z} \rangle^2$ 

 $C' \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) = \mathbf{0}$  $(\partial_n C') \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) \neq \mathbf{0}$ 

 $P = P_0 + \dots + P_n + \underline{P_{n+1}} + \dots + \underline{P_d}$ 

 $(\Delta_i(P) = \Delta_i(P_{\leq t+i-1}) \mod \langle \mathbf{z} \rangle^t)$ 

$$C'(\Delta_0(P_{\le n}), \dots, \Delta_{n-1}(P_{\le n}), \Delta_n(P_{\le n}) + \Delta_n(P_{n+1})) = 0 \mod \langle \mathbf{z} \rangle^2$$
$$C'(R_0, \dots, R_{n-1}, R_n + A) = 0 \mod \langle \mathbf{z} \rangle^2$$

 $= C'(R_0, \dots, R_{n-1}, R_n) + A \cdot ((\partial_n C')(R_0, \dots, R_n)) = 0 \mod \langle \mathbf{z} \rangle^2$ 

 $C' \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) = \mathbf{0}$  $(\partial_n C') \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) \neq \mathbf{0}$ 

 $P = P_0 + \dots + P_n + P_{n+1} + \dots + P_d$ 

 $(\Delta_i(P) = \Delta_i(P_{\leq t+i-1}) \mod \langle \mathbf{z} \rangle^t)$  $C'(\Delta_0(P_{\leq n}), \dots, \Delta_{n-1}(P_{\leq n}), \Delta_n(P_{\leq n}) + \Delta_n(P_{n+1})) = 0 \mod \langle \mathbf{z} \rangle^2$ 

 $C'(R_0,\ldots,R_{n-1},R_n+A) = 0 \mod \langle \mathbf{z} \rangle^2$ 

 $= C'(R_0,\ldots,R_{n-1},R_n) + A \cdot ((\partial_n C')(R_0,\ldots,R_n)(\mathbf{y},\mathbf{0})) = 0 \mod \langle \mathbf{z} \rangle^2$ 

 $C' \circ \mathscr{G}_P(\mathbf{y}, \mathbf{0}) = \mathbf{0}$  $(\partial_n C') \circ \mathscr{G}_P(\mathbf{y}, \mathbf{0}) \neq \mathbf{0}$ 

 $P = P_0 + \dots + P_n + \underline{P_{n+1}} + \dots + P_d$ 

 $(\Delta_i(P) = \Delta_i(P_{\leq t+i-1}) \mod \langle \mathbf{z} \rangle^t)$ 

 $C'(\Delta_0(P_{\leq n}), \dots, \Delta_{n-1}(P_{\leq n}), \Delta_n(P_{\leq n}) + \Delta_n(P_{n+1})) = 0 \mod \langle \mathbf{z} \rangle^2$  $C'(R_0, \dots, R_{n-1}, R_n + A) = 0 \mod \langle \mathbf{z} \rangle^2$  $= C'(R_0, \dots, R_{n-1}, R_n) + A \cdot ((\partial_n C') \circ \mathscr{G}_P(\mathbf{y}, \mathbf{0})) = 0 \mod \langle \mathbf{z} \rangle^2$ 

 $C' \circ \mathscr{G}_{D}(\mathbf{v}, \mathbf{0}) = \mathbf{0}$  $(\partial_n C') \circ \mathscr{G}_P(\mathbf{v}, \mathbf{0}) \neq \mathbf{0}$  $P = P_0 + \dots + P_n + P_{n+1} + \dots + P_d$  $(\Delta_i(P) = \Delta_i(P_{\leq t+i-1}) \mod \langle \mathbf{z} \rangle^t)$  $C'(\Delta_0(P_{\leq n}),\ldots,\Delta_{n-1}(P_{\leq n}),\Delta_n(P_{\leq n})+\Delta_n(P_{n+1}))=0 \mod \langle \mathbf{z} \rangle^2$  $C'(R_0,\ldots,R_{n-1},R_n+A) = 0 \mod \langle \mathbf{z} \rangle^2$  $= C'(R_0, \dots, R_{n-1}, R_n) + A \cdot ((\partial_n C') \circ \mathscr{G}_P(\mathbf{y}, \mathbf{0})) = 0 \mod \langle \mathbf{z} \rangle^2$  $\therefore A = \left(\frac{C'(R_0, \dots, R_n)}{(\partial C') \circ \mathscr{G}_p(\mathbf{x}, \mathbf{0})}\right) \mod (\mathbf{z})^2$ 

 $C' \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) = \mathbf{0}$  $(\partial_n C') \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) \neq \mathbf{0}$ 

 $P = P_0 + \dots + P_n + \underline{P_{n+1}} + \dots + \underline{P_d}$ 

$$\Delta_n(P_{n+1}) = \left(\frac{C'(\Delta_0(P_{\leq n}), \dots, \Delta_n(P_{\leq n}))}{(\partial_n C') \circ \mathscr{G}_P(\mathbf{y}, \mathbf{0})}\right) \mod \langle \mathbf{z} \rangle^2$$

 $C' \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) = \mathbf{0}$  $(\partial_n C') \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) \neq \mathbf{0}$ 

 $P = P_0 + \dots + P_n + \underline{P_{n+1}} + \dots + \underline{P_d}$ 

$$\Delta_n(P_{n+1})(\mathbf{a}, \mathbf{z}) = \left(\frac{C'(\Delta_0(P_{\leq n}), \dots, \Delta_n(P_{\leq n}))(\mathbf{a}, \mathbf{z})}{(\partial_n C') \circ \mathscr{G}_P(\mathbf{a}, \mathbf{0})}\right) \mod \langle \mathbf{z} \rangle^2$$

 $C' \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) = \mathbf{0}$  $(\partial_n C') \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) \neq \mathbf{0}$ 

 $P = P_0 + \dots + P_n + \underline{P_{n+1}} + \dots + \underline{P_d}$ 

$$\Delta_n(P_{n+1})(\mathbf{a}, \mathbf{z}) = \left(\frac{C'(\Delta_0(P_{\leq n}), \dots, \Delta_n(P_{\leq n}))(\mathbf{a}, \mathbf{z})}{(\partial_n C') \circ \mathscr{G}_P(\mathbf{a}, \mathbf{0})}\right) \mod \langle \mathbf{z} \rangle^2$$

By trying many **a**'s, we can obtain all of  $\partial^{=n}(P_{n+1})$ 

 $C' \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) = \mathbf{0}$  $(\partial_n C') \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) \neq \mathbf{0}$ 

 $P = P_0 + \dots + P_n + P_{n+1} + \dots + P_d$ 

$$\Delta_n(P_{n+1})(\mathbf{a}, \mathbf{z}) = \left(\frac{C'(\Delta_0(P_{\leq n}), \dots, \Delta_n(P_{\leq n}))(\mathbf{a}, \mathbf{z})}{(\partial_n C') \circ \mathscr{G}_P(\mathbf{a}, \mathbf{0})}\right) \mod \langle \mathbf{z} \rangle^2$$

By trying many **a**'s, we can obtain all of  $\partial^{=n}(P_{n+1})$ and hence  $P_{n+1}$  itself

 $C' \circ \mathscr{G}_P(\mathbf{y}, \mathbf{0}) = \mathbf{0}$  $(\partial_n C') \circ \mathscr{G}_P(\mathbf{y}, \mathbf{0}) \neq \mathbf{0}$ 

 $P = P_0 + \dots + P_n + P_{n+1} + \dots + P_d$ 

$$\Delta_n(P_{n+1})(\mathbf{a}, \mathbf{z}) = \left(\frac{C'(\Delta_0(P_{\leq n}), \dots, \Delta_n(P_{\leq n}))(\mathbf{a}, \mathbf{z})}{(\partial_n C') \circ \mathscr{G}_P(\mathbf{a}, \mathbf{0})}\right) \mod \langle \mathbf{z} \rangle^2$$

By trying many **a**'s, we can obtain all of  $\partial^{=n}(P_{n+1})$ and hence  $P_{n+1}$  itself

(Euler formula:  $d \cdot f = \sum x_i \partial_i f$ , if f homogeneous of degree d)

 $C' \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) = \mathbf{0}$  $(\partial_n C') \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) \neq \mathbf{0}$ 

 $P = P_0 + \dots + P_n + P_{n+1} + \dots + P_d$ 

$$\Delta_n(P_{n+1})(\mathbf{a}, \mathbf{z}) = \left(\frac{C'(\Delta_0(P_{\leq n}), \dots, \Delta_n(P_{\leq n}))(\mathbf{a}, \mathbf{z})}{(\partial_n C') \circ \mathscr{G}_P(\mathbf{a}, \mathbf{0})}\right) \mod \langle \mathbf{z} \rangle^2$$

By trying many **a**'s, we can obtain all of  $\partial^{=n}(P_{n+1})$ and hence  $P_{n+1}$  itself

 $C' \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) = \mathbf{0}$  $(\partial_n C') \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) \neq \mathbf{0}$ 

 $P = P_0 + \dots + P_n + P_{n+1} + \dots + P_d$ 

$$\Delta_n(P_{n+1})(\mathbf{a}, \mathbf{z}) = \left(\frac{C'(\Delta_0(P_{\leq n}), \dots, \Delta_n(P_{\leq n}))(\mathbf{a}, \mathbf{z})}{(\partial_n C') \circ \mathscr{G}_P(\mathbf{a}, \mathbf{0})}\right) \mod \langle \mathbf{z} \rangle^2$$

By trying many **a**'s, we can obtain all of  $\partial^{=n}(P_{n+1})$ and hence  $P_{n+1}$  itself modulo higher order junk

 $C' \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) = \mathbf{0}$  $(\partial_n C') \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) \neq \mathbf{0}$ 

 $P = P_0 + \dots + P_n + P_{n+1} + \dots + P_d$ 

$$\Delta_n(P_{n+1})(\mathbf{a}, \mathbf{z}) = \left(\frac{C'(\Delta_0(P_{\leq n}), \dots, \Delta_n(P_{\leq n}))(\mathbf{a}, \mathbf{z})}{(\partial_n C') \circ \mathscr{G}_P(\mathbf{a}, \mathbf{0})}\right) \mod \langle \mathbf{z} \rangle^2$$

By trying many **a**'s, we can obtain all of  $\partial^{=n}(P_{n+1})$ and hence  $P_{n+1}$  itself modulo higher order junk

#### **Border tricks!**

Or careful homogenisation

 $C' \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) = \mathbf{0}$  $(\partial_n C') \circ \mathscr{G}_P (\mathbf{y}, \mathbf{0}) \neq \mathbf{0}$ 

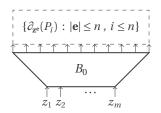
 $P = P_0 + \dots + P_n + P_{n+1} + \dots + P_d$ 

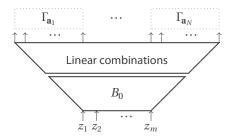
$$\Delta_n(P_{n+j+1})(\mathbf{a},\mathbf{z}) = \left(\frac{C'\left(\Delta_0(P_{\leq n+j}),\ldots,\Delta_n(P_{\leq n+j})\right)(\mathbf{a},\mathbf{z})}{(\partial_n C') \circ \mathscr{G}_P(\mathbf{a},\mathbf{0})}\right) \mod \langle \mathbf{z} \rangle^{j+2}$$

By trying many **a**'s, we can obtain all of  $\partial^{=n}(P_{n+j+1})$ and hence  $P_{n+j+1}$  itself modulo higher order junk

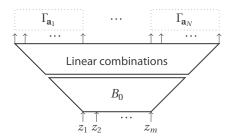
#### **Border tricks!**

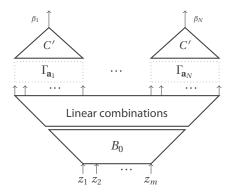
Or careful homogenisation

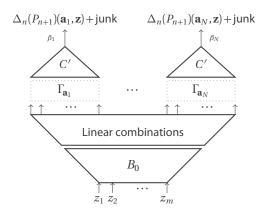


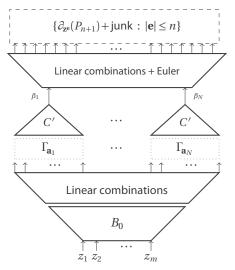


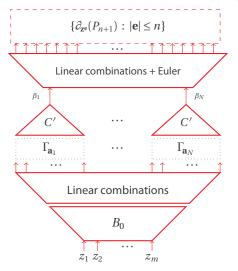
$$\Gamma_{\mathbf{a}} = \left( \Delta_0(P_{\leq n})(\mathbf{a}, \mathbf{z}), \dots, \Delta_n(P_{\leq n})(\mathbf{a}, \mathbf{z}) \right)$$

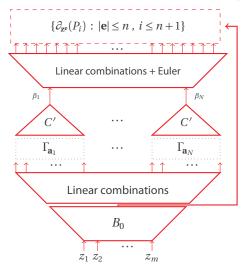


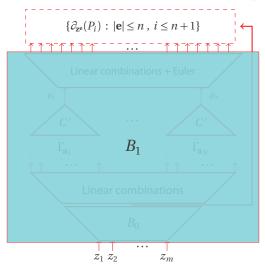


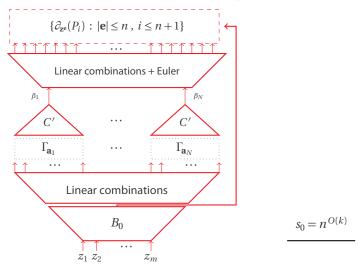


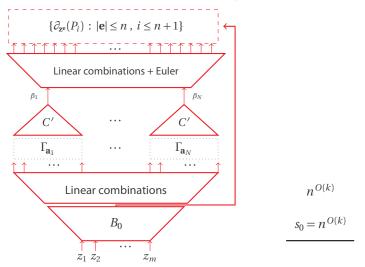


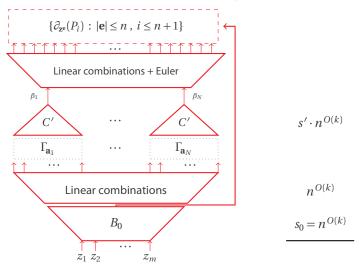


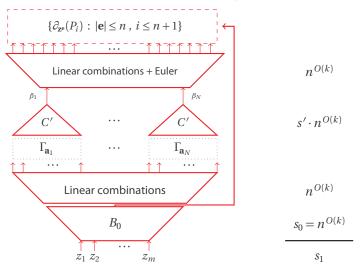


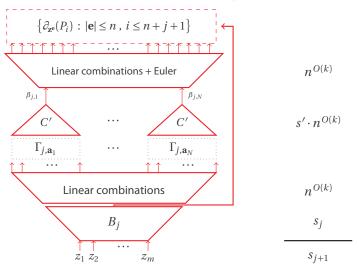


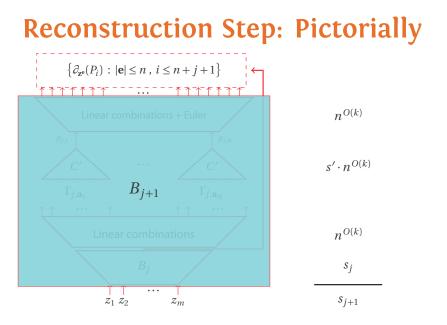


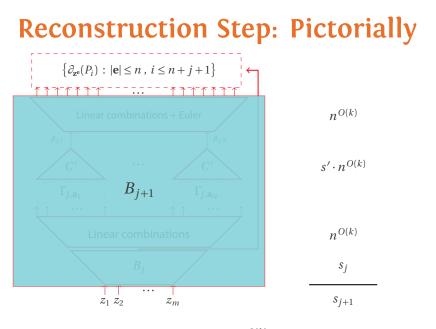




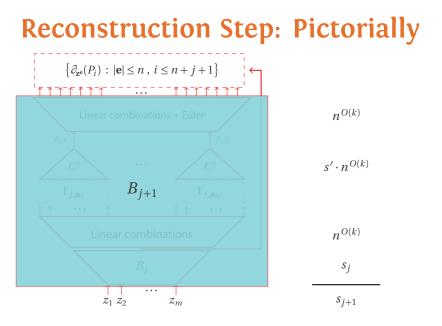








 $s_d \leq s' \cdot n^{O(k)} \cdot d$ 



 $s_d \leq s \cdot D \cdot n^{O(k)} \cdot d$ 

# \end{proof}

#### Summary:

▶ With suitable hardness, we can get poly-sized hitting sets.

#### Summary:

- ▶ With suitable hardness, we can get poly-sized hitting sets.
- With the border, we can bootstrap from barely non-trivial hitting sets.

#### Summary:

- ▶ With suitable hardness, we can get poly-sized hitting sets.
- With the border, we can bootstrap from barely non-trivial hitting sets.

#### **Open Problems:**

Current proof requires characteristic zero fields. Ought to work for all fields.

#### Summary:

- ▶ With suitable hardness, we can get poly-sized hitting sets.
- With the border, we can bootstrap from barely non-trivial hitting sets.

#### **Open Problems:**

- Current proof requires characteristic zero fields. Ought to work for all fields.
- The hardness depends on the degree of the circuit we are fooling. Ought to fool all small size circuits irrespective of degree (using the border).

#### Summary:

- ▶ With suitable hardness, we can get poly-sized hitting sets.
- With the border, we can bootstrap from barely non-trivial hitting sets.

#### **Open Problems:**

- Current proof requires characteristic zero fields. Ought to work for all fields.
- The hardness depends on the degree of the circuit we are fooling. Ought to fool all small size circuits irrespective of degree (using the border).

# \end{document}