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Algebraic Circuits
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Aren’t we all tired of this picture?



Two Important Questions

▶ Lower Bounds: Can we find an explicit family of polynomials
{Pn} that require large circuits?

▶ Polynomial Identity Testing: Given a circuit C , can we check
if C is computing the zero polynomial (deterministically)?

▶ Hitting sets: Find a set of points H such that any “small” circuit
C that is computing a nonzero polynomial must satisfy C (a) ̸= 0
for some a ∈H .

These two problems are intimately connected to each other.
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A “trivial” hitting set

Lemma ([Ore, Demillo-Lipton, Schwartz, Zippel])
If P (x1, . . . , xn ) is a nonzero polynomial of degree d , and S ⊆F of size
at least d +1, then P (a) ̸= 0 for some a ∈ S n .

We have an explicit hitting set of size (d +1)n forC (n , d ,∗).

Q: Are there smaller hitting sets forC (n , d , s )?
A: Yes; almost any set of size O (s 2)will work.

Q: Can you give just one explicit example?
A: Umm...
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Pseudorandom objects

“How difficult could it be to find hay in a haystack?”
—Howard Karloff

▶ You care a lot about hay.

▶ Almost everything in a haystack is hay.

▶ Find hay.
(Why do we still keep finding needles all the time?)

Question: Can we use one pseudorandom object to build another?
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How are hitting sets constructed?
Definition (Generator)
A map G = (g1, . . . , gn ) ∈F[y1, . . . , yℓ]n is a hitting-set generator for a
classC if

∀C ∈C , C ̸= 0⇐⇒C ◦G ̸= 0.

The degree of the generator is maxi (deg g i ). The stretch is ℓ→ n .

Lemma
LetG = (g1, . . . , gn ) ∈F[y1, . . . , yℓ]n be an explicit hitting-set generator
forC (n , D , s ) of degree d . Then, we have
▶ An explicit hitting set H of size (d D +1)ℓ



Generators assuming hardness

Hardness assumption Hitting set size
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Some consequences
Corollary
Let k be a large enough constant and ϵ > 0. Suppose

�
Pk ,d
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is an

explicit family of polynomials with deg Pk ,d = d such that�
Pk ,d

	
d
requires size d 3+ϵ (or size d 1+ϵ ).

Then, there is an explicit hitting set forC (s , s , s ) of size poly(s ).

Proof.
Set d ≥ s (10k+2)/ϵ and P = Pk ,d .

If 0 ̸=C ∈C (s , s , s ) such that C ◦GP = 0, then

size(P )≤ s 10k · s 2 ·d 3

≤ d 3+ϵ which is impossible.

Hence C ◦GP is a nonzero 2k -variate polynomial of degree at most
d s . Hence, we have a hitting set of size (d s )2k = s O (k 2/ϵ).
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Revisiting variable reductions

C

Variable Reduction

y1 · · · yℓ

Hitting-set Generator: C ̸= 0 ⇐⇒ C ◦G ̸= 0

Dream: size(C ◦G ) ≈ size(C )+ size(G )
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P ◦K is a t -variate polynomial of degree at most 2n/t .

[Kabanets-Impagliazzo]: If {Pn}, multilinear, with size(Pn )> 2n/1000,
then we have s O (log s )-sized hitting sets.

New: If, for some constant t , suppose size(Pn ◦Kt )≥ 2(1+ϵ)n/t= d 1+ϵ

then we have poly(s )-sized hitting sets.



Consequences for bootstrapping

Theorem. [Kumar-S-Tengse]
Let ϵ > 0 and k (large enough) be fixed constants.

If, for all s ≥ k , we have explicit hitting sets forC (k , s , s ) of size

s k−ϵ ,

then, we have explicit hitting sets forC (s , s , s ) of size

s exp(exp(log∗ s ))



Consequences for bootstrapping

Corollary
Let ϵ > 0 and k (large enough) be fixed constants.

If, for all s ≥ k , we have explicit hitting sets forC (k , s , s ) of size

s k−ϵ ,

then, we have explicit hitting sets forC (s , s , s ) of size

s O (1)

Circuits and border are crucial for this.
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The one trick that we will need

Task: Given a circuit C of size s computing a polynomial P of
degree d . Compute Pd , the degree d homogeneous part of P .

Standard solution: “Homogenize” the circuit and extract the
degree d part. Can be done using a circuit of size O (s d 2).

Border trick:

ϵd ·C
� x1

ϵ
, . . . ,

xn

ϵ

�
= ϵd P0+ ϵ

d−1P1+ · · ·+Pd

ϵ→0−→ Pd

∴ size(Pd ) ≤ size(P )

Pd can be computed in size s as well!



\begin{proof}
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Designing generators

Any sufficiently hard polynomial’s evaluations

on “almost disjoint” inputs

is indistinguishable, for a small circuit,

from random inputs

[KI, NW] : G : (y1, . . . , yℓ) 7→ �P (y |S1
), . . . , P (y |Sn

)
�



Designing generators

Any sufficiently hard polynomial’s components

‘Taylored’ appropriately

is indistinguishable, for a small circuit,

from random inputs
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differential equation and solve for P .
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Our situation

C (∆0(P ), . . . ,∆n (P )) = 0

Solve for P as a power series in z.

▶ Start with some non-degenerate initial conditions:

C ◦GP = 0

(∂n C ) ◦GP ̸= 0.

▶ Compute the homogeneous parts of P , one by one, via
Newton Iteration
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C ′ ◦GP = 0

(∂n C ′) ◦GP ̸= 0.

If C̃ (xn ) = C (g0, . . . , gn−1, xn ) ̸= 0

(∂ r
n C )(g0, . . . , gn−1, gn ) = 0

(∂ r+1
n C )(g0, . . . , gn−1, gn ) ̸= 0

C ′ = (∂ r
n C ) is what we want.

And, size(C ′)≤ size(C ) ·deg(C )



Some basic properties
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e:|e|=i

ye

e!
· (∂eP )(z).

Additivity:
∆i (P +Q ) =∆i (P )+∆i (Q )
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e!
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Additivity:
∆i (P +Q ) =∆i (P )+∆i (Q )

‘Homogeneity’:

P (z) =Q (z)mod 〈z〉t
=⇒ ∆i (P ) =∆i (Q )mod 〈z〉t−i



Some basic properties

∆i (P ) =
∑

e:|e|=i

ye

e!
· (∂eP )(z).

Additivity:
∆i (P +Q ) =∆i (P )+∆i (Q )

‘Homogeneity’:

P (z) =Q (z)mod 〈z〉t
=⇒ ∆i (P ) =∆i (Q )mod 〈z〉t−i

P = P0+ · · ·+Pd

∆i (P ) =∆i (P≤t+i−1)mod 〈z〉t



The Reconstruction Step
C ′ ◦GP (y, z) = 0

(∂n C ′) ◦GP (y, z) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows
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follows

P = P0+ · · ·+Pn +Pn+1+ · · ·+Pd

Bruteforce

in n O (k ) size



The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

P = P0+ · · ·+Pn +Pn+1+ · · ·+Pd

Bruteforce

in n O (k ) size

Compute, via

Newton iterations,

one by one
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By trying many a’s, we can obtain all of ∂ =n (Pn+1)
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C ′ ◦GP (y, 0) = 0
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By trying many a’s, we can obtain all of ∂ =n (Pn+1)
and hence Pn+1 itself



The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows
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(a, z)
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By trying many a’s, we can obtain all of ∂ =n (Pn+1)
and hence Pn+1 itself

(Euler formula: d · f =∑ xi ∂i f , if f homogeneous of degree d )
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modulo higher order junk
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The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

P = P0+ · · ·+Pn +Pn+1+ · · ·+Pd

∆n (Pn+ j+1)(a, z) =

�
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�
∆0(P≤n+ j ), . . . ,∆n (P≤n+ j )

�
(a, z)

(∂n C ′) ◦GP (a, 0)

�
mod 〈z〉 j+2

By trying many a’s, we can obtain all of ∂ =n (Pn+ j+1)
and hence Pn+ j+1 itself

modulo higher order junk

Border tricks!
Or careful homogenisation



Reconstruction Step: Pictorially

z1 z2 zm

· · ·
B0

{∂ze (Pi ) : |e| ≤ n , i ≤ n}

Linear combinations

· · ·
Γa1 · · ·

ΓaN· · ·

Γa =
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∆0(P≤n )(a, z) , . . . , ∆n (P≤n )(a, z)
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C ′
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C ′
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∆n (Pn+1)(a1, z)+ junk ∆n (Pn+1)(aN , z)+ junk

· · ·

Linear combinations + Euler

· · ·

{∂ze (Pi ) : |e| ≤ n , i ≤ n +1}

sd ≤ ·n O (k ) ·d
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\end{proof}



Conclusion

Summary:
▶ With suitable hardness, we can get poly-sized hitting sets.
▶ With the border, we can bootstrap from barely non-trivial

hitting sets.

Open Problems:
▶ Current proof requires characteristic zero fields. Ought to work

for all fields.
▶ The hardness depends on the degree of the circuit we are

fooling. Ought to fool all small size circuits irrespective of
degree (using the border).
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