
Derandomization from
algebraic hardness

Treading the borders

Zeyu Guo Mrinal Kumar
IIT Kanpur→ U. Haifa U. Toronto→ IITB

Ramprasad Saptharishi Noam Solomon
TIFR, Mumbai Harvard University

IIT Bombay
June 2019

Algebraic Circuits

x1 x2 x3

+ + + + + +

× × ×

+

f (x1, x2, x3)

Aren’t we all tired of this picture?

Two Important Questions

▶ Lower Bounds: Can we find an explicit family of polynomials
{Pn} that require large circuits?

▶ Polynomial Identity Testing: Given a circuit C , can we check
if C is computing the zero polynomial (deterministically)?

▶ Hitting sets: Find a set of points H such that any “small” circuit
C that is computing a nonzero polynomial must satisfy C (a) ̸= 0
for some a ∈H .

These two problems are intimately connected to each other.

Two Important Questions

▶ Lower Bounds: Can we find an explicit family of polynomials
{Pn} that require large circuits?

▶ Polynomial Identity Testing: Given a circuit C , can we check
if C is computing the zero polynomial (deterministically)?

▶ Hitting sets: Find a set of points H such that any “small” circuit
C that is computing a nonzero polynomial must satisfy C (a) ̸= 0
for some a ∈H .

These two problems are intimately connected to each other.

Two Important Questions

▶ Lower Bounds: Can we find an explicit family of polynomials
{Pn} that require large circuits?

▶ Polynomial Identity Testing: Given a circuit C , can we check
if C is computing the zero polynomial (deterministically)?

▶ Hitting sets: Find a set of points H such that any “small” circuit
C that is computing a nonzero polynomial must satisfy C (a) ̸= 0
for some a ∈H .

These two problems are intimately connected to each other.

Two Important Questions

▶ Lower Bounds: Can we find an explicit family of polynomials
{Pn} that require large circuits?

▶ Polynomial Identity Testing: Given a circuit C , can we check
if C is computing the zero polynomial (deterministically)?

▶ Hitting sets: Find a set of points H such that any “small” circuit
C that is computing a nonzero polynomial must satisfy C (a) ̸= 0
for some a ∈H .

These two problems are intimately connected to each other.

Two Important Questions

▶ Lower Bounds: Can we find an explicit family of polynomials
{Pn} that require large circuits?

▶ Polynomial Identity Testing: Given a circuit C , can we check
if C is computing the zero polynomial (deterministically)?

▶ Hitting sets: Find a set of points H such that any “small” circuit
C that is computing a nonzero polynomial must satisfy C (a) ̸= 0
for some a ∈H .

These two problems are intimately connected to each other.

A “trivial” hitting set

Lemma ([Ore, Demillo-Lipton, Schwartz, Zippel])
If P (x1, . . . , xn) is a nonzero polynomial of degree d , and S ⊆F of size
at least d +1, then P (a) ̸= 0 for some a ∈ S n .

We have an explicit hitting set of size (d +1)n forC (n , d ,∗).

Q: Are there smaller hitting sets forC (n , d , s)?
A: Yes; almost any set of size O (s 2)will work.

Q: Can you give just one explicit example?
A: Umm...

A “trivial” hitting set

Lemma ([Ore, Demillo-Lipton, Schwartz, Zippel])
If P (x1, . . . , xn) is a nonzero polynomial of degree d , and S ⊆F of size
at least d +1, then P (a) ̸= 0 for some a ∈ S n .

We have an explicit hitting set of size (d +1)n forC (n , d ,∗).

Q: Are there smaller hitting sets forC (n , d , s)?
A: Yes; almost any set of size O (s 2)will work.

Q: Can you give just one explicit example?
A: Umm...

A “trivial” hitting set

Lemma ([Ore, Demillo-Lipton, Schwartz, Zippel])
If P (x1, . . . , xn) is a nonzero polynomial of degree d , and S ⊆F of size
at least d +1, then P (a) ̸= 0 for some a ∈ S n .

We have an explicit hitting set of size (d +1)n forC (n , d ,∗).

Q: Are there smaller hitting sets forC (n , d , s)?

A: Yes; almost any set of size O (s 2)will work.

Q: Can you give just one explicit example?
A: Umm...

A “trivial” hitting set

Lemma ([Ore, Demillo-Lipton, Schwartz, Zippel])
If P (x1, . . . , xn) is a nonzero polynomial of degree d , and S ⊆F of size
at least d +1, then P (a) ̸= 0 for some a ∈ S n .

We have an explicit hitting set of size (d +1)n forC (n , d ,∗).

Q: Are there smaller hitting sets forC (n , d , s)?
A: Yes; almost any set of size O (s 2)will work.

Q: Can you give just one explicit example?
A: Umm...

A “trivial” hitting set

Lemma ([Ore, Demillo-Lipton, Schwartz, Zippel])
If P (x1, . . . , xn) is a nonzero polynomial of degree d , and S ⊆F of size
at least d +1, then P (a) ̸= 0 for some a ∈ S n .

We have an explicit hitting set of size (d +1)n forC (n , d ,∗).

Q: Are there smaller hitting sets forC (n , d , s)?
A: Yes; almost any set of size O (s 2)will work.

Q: Can you give just one explicit example?

A: Umm...

A “trivial” hitting set

Lemma ([Ore, Demillo-Lipton, Schwartz, Zippel])
If P (x1, . . . , xn) is a nonzero polynomial of degree d , and S ⊆F of size
at least d +1, then P (a) ̸= 0 for some a ∈ S n .

We have an explicit hitting set of size (d +1)n forC (n , d ,∗).

Q: Are there smaller hitting sets forC (n , d , s)?
A: Yes; almost any set of size O (s 2)will work.

Q: Can you give just one explicit example?
A: Umm...

Pseudorandom objects

“How difficult could it be to find hay in a haystack?”
—Howard Karloff

Pseudorandom objects

“How difficult could it be to find hay in a haystack?”
—Howard Karloff

▶ You care a lot about hay.

Pseudorandom objects

“How difficult could it be to find hay in a haystack?”
—Howard Karloff

▶ You care a lot about hay.

▶ Almost everything in a haystack is hay.

Pseudorandom objects

“How difficult could it be to find hay in a haystack?”
—Howard Karloff

▶ You care a lot about hay.

▶ Almost everything in a haystack is hay.

▶ Find hay.
(Why do we still keep finding needles all the time?)

Pseudorandom objects

“How difficult could it be to find hay in a haystack?”
—Howard Karloff

▶ You care a lot about hard polynomials.

▶ Almost every polynomial is a hard polynomial.

▶ Find a hard polynomial.
(Why do we still keep finding needles all the time?)

Pseudorandom objects

“How difficult could it be to find hay in a haystack?”
—Howard Karloff

▶ You care a lot about hitting sets.

▶ Almost every set of poly-size is a hitting set.

▶ Find a hitting set.
(Why do we still keep finding needles all the time?)

Pseudorandom objects

“How difficult could it be to find hay in a haystack?”
—Howard Karloff

▶ You care a lot about hay.

▶ Almost everything in a haystack is hay.

▶ Find hay.
(Why do we still keep finding needles all the time?)

Question: Can we use one pseudorandom object to build another?

Lower bounds and hitting sets

Hard polynomials

Explicit Hitting Sets

[Kabanets-Impagliazzo][Heintz-Schnorr, Agrawal]

Lower bounds and hitting sets

Hard polynomials

Explicit Hitting Sets

[Kabanets-Impagliazzo]

[Heintz-Schnorr, Agrawal]

Lower bounds and hitting sets

Hard polynomials

Explicit Hitting Sets

[Kabanets-Impagliazzo][Heintz-Schnorr, Agrawal]

Lower bounds → hitting sets

Hard polynomials

Explicit Hitting Sets

[Kabanets-Impagliazzo][Heintz-Schnorr, Agrawal]

How are hitting sets constructed?

C

Nonzero

x1 x2 x3 · · · xn

How are hitting sets constructed?

C

Nonzero

Variable Reduction

y1 · · · yℓ

How are hitting sets constructed?

C

Nonzero

g1 g2 g3 · · · gn

How are hitting sets constructed?

C

Nonzero

g1 g2 g3 · · · gn

Definition (Generator)
A map G = (g1, . . . , gn) ∈F[y1, . . . , yℓ]n is a hitting-set generator for a
classC if

∀C ∈C , C ̸= 0⇐⇒C ◦G ̸= 0.

How are hitting sets constructed?

C

Nonzero

g1 g2 g3 · · · gn

Definition (Generator)
A map G = (g1, . . . , gn) ∈F[y1, . . . , yℓ]n is a hitting-set generator for a
classC if

∀C ∈C , C ̸= 0⇐⇒C ◦G ̸= 0.

The degree of the generator is maxi (deg g i). The stretch is ℓ→ n .

How are hitting sets constructed?
Definition (Generator)
A map G = (g1, . . . , gn) ∈F[y1, . . . , yℓ]n is a hitting-set generator for a
classC if

∀C ∈C , C ̸= 0⇐⇒C ◦G ̸= 0.

The degree of the generator is maxi (deg g i). The stretch is ℓ→ n .

How are hitting sets constructed?
Definition (Generator)
A map G = (g1, . . . , gn) ∈F[y1, . . . , yℓ]n is a hitting-set generator for a
classC if

∀C ∈C , C ̸= 0⇐⇒C ◦G ̸= 0.

The degree of the generator is maxi (deg g i). The stretch is ℓ→ n .

Lemma
LetG = (g1, . . . , gn) ∈F[y1, . . . , yℓ]n be an explicit hitting-set generator
forC (n , D , s) of degree d . Then, we have
▶ An explicit hitting set H of size (d D +1)ℓ

Generators assuming hardness

Hardness assumption Hitting set size

[Kabanets-Impagliazzo]

�
pn

	
requires nω(1) size 2s ϵ , ∀ ϵ > 0�

pn

	
requires 2nΩ(1) size 2polylog s�

pn

	
requires 2Ω(n) size s O (log s)

[Kumar-S-Tengse]
�

pk ,d

	
d
requires dΩ(1) size s exp(exp(log∗ s))

s O (1)

Generators assuming hardness

Hardness assumption Hitting set size

[Kabanets-Impagliazzo]

�
pn

	
requires nω(1) size 2s ϵ , ∀ ϵ > 0�

pn

	
requires 2nΩ(1) size 2polylog s�

pn

	
requires 2Ω(n) size s O (log s)

[Kumar-S-Tengse]
�

pk ,d

	
d
requires dΩ(1) size s exp(exp(log∗ s))

s O (1)

Generators assuming hardness

Hardness assumption Hitting set size

[Kabanets-Impagliazzo]

�
pn

	
requires nω(1) size 2s ϵ , ∀ ϵ > 0�

pn

	
requires 2nΩ(1) size 2polylog s�

pn

	
requires 2Ω(n) size s O (log s)

[Kumar-S-Tengse]
�

pk ,d

	
d
requires dΩ(1) size s exp(exp(log∗ s))

s O (1)

Generators assuming hardness

Hardness assumption Hitting set size

[Kabanets-Impagliazzo]

�
pn

	
requires nω(1) size 2s ϵ , ∀ ϵ > 0�

pn

	
requires 2nΩ(1) size 2polylog s�

pn

	
requires 2Ω(n) size s O (log s)

[Kumar-S-Tengse]
�

pk ,d

	
d
requires dΩ(1) size s exp(exp(log∗ s))

??? s O (1)

Generators assuming hardness

Hardness assumption Hitting set size

[Kabanets-Impagliazzo]

�
pn

	
requires nω(1) size 2s ϵ , ∀ ϵ > 0�

pn

	
requires 2nΩ(1) size 2polylog s�

pn

	
requires 2Ω(n) size s O (log s)

[Kumar-S-Tengse]
�

pk ,d

	
d
requires dΩ(1) size s exp(exp(log∗ s))

This work
�

pk ,d

	
d
requires d 3+ϵ size s O (1)

Generators assuming hardness

Hardness assumption Hitting set size

[Kabanets-Impagliazzo]

�
pn

	
requires nω(1) size 2s ϵ , ∀ ϵ > 0�

pn

	
requires 2nΩ(1) size 2polylog s�

pn

	
requires 2Ω(n) size s O (log s)

[Kumar-S-Tengse]
�

pk ,d

	
d
requires dΩ(1) size s exp(exp(log∗ s))

This work
�

pk ,d

	
d
requires d 3+ϵ size s O (1)

�
pk ,d

	
d
requires d 1+ϵ size s O (1)

Our results

Main Theorem
Theorem ([Guo-Kumar-S-Solomon])
For any k -variate polynomial P of degree d ,

Main Theorem
Theorem ([Guo-Kumar-S-Solomon])
For any k -variate polynomial P of degree d , there is an explicit map

GP = (g1, . . . , gn) ∈F[y1, . . . , yk , z1, . . . , zk]
n

such that

Main Theorem
Theorem ([Guo-Kumar-S-Solomon])
For any k -variate polynomial P of degree d , there is an explicit map

GP = (g1, . . . , gn) ∈F[y1, . . . , yk , z1, . . . , zk]
n

such that
▶ deg(GP) = d andGP is d O (k)-explicit,

Main Theorem
Theorem ([Guo-Kumar-S-Solomon])
For any k -variate polynomial P of degree d , there is an explicit map

GP = (g1, . . . , gn) ∈F[y1, . . . , yk , z1, . . . , zk]
n

such that
▶ deg(GP) = d andGP is d O (k)-explicit,
▶ For any nonzero circuit C ∈C (n , D , s),

if C ◦GP = 0 , then size (P)≪ d k

Main Theorem
Theorem ([Guo-Kumar-S-Solomon])
For any k -variate polynomial P of degree d , there is an explicit map

GP = (g1, . . . , gn) ∈F[y1, . . . , yk , z1, . . . , zk]
n

such that
▶ deg(GP) = d andGP is d O (k)-explicit,
▶ For any nonzero circuit C ∈C (n , D , s),

if C ◦GP = 0 , then size (P)≤ n 10k · s ·d 3 ·D

Main Theorem
Theorem ([Guo-Kumar-S-Solomon])
For any k -variate polynomial P of degree d , there is an explicit map

GP = (g1, . . . , gn) ∈F[y1, . . . , yk , z1, . . . , zk]
n

such that
▶ deg(GP) = d andGP is d O (k)-explicit,
▶ For any nonzero circuit C ∈C (n , D , s),

if C ◦GP = 0 , then size (P)≤ n 10k · s ·d 3 ·D ≪ d k

(Think of d = n 1000)

Main Theorem
Theorem ([Guo-Kumar-S-Solomon])
For any k -variate polynomial P of degree d , there is an explicit map

GP = (g1, . . . , gn) ∈F[y1, . . . , yk , z1, . . . , zk]
n

such that
▶ deg(GP) = d andGP is d O (k)-explicit,
▶ For any nonzero circuit C ∈C (n , D , s),

if C ◦GP = 0 , then size (P)≤ n 10k · s ·d 3 ·D ≪ d k

(Think of d = n 1000)

In other words, if P is hard enough, thenGP is a hitting-set generator
forC (n , D , s).

Main Theorem
Theorem ([Guo-Kumar-S-Solomon])
For any k -variate polynomial P of degree d , there is an explicit map

GP = (g1, . . . , gn) ∈F[y1, . . . , yk , z1, . . . , zk]
n

such that
▶ deg(GP) = d andGP is d O (k)-explicit,
▶ For any nonzero circuit C ∈C (n , D , s),

if C ◦GP = 0 , then size (P)≤ n 10k · s ·d ·D ≪ d k

(Think of d = n 1000)

In other words, if P is hard enough, thenGP is a hitting-set generator
forC (n , D , s).

Some consequences
Corollary
Let k be a large enough constant and ϵ > 0. Suppose

�
Pk ,d

	
d
is an

explicit family of polynomials with deg Pk ,d = d such that�
Pk ,d

	
d
requires size d 3+ϵ (or size d 1+ϵ).

Then, there is an explicit hitting set forC (s , s , s) of size poly(s).

Proof.
Set d ≥ s (10k+2)/ϵ and P = Pk ,d .

If 0 ̸=C ∈C (s , s , s) such that C ◦GP = 0, then

size(P)≤ s 10k · s 2 ·d 3

≤ d 3+ϵ which is impossible.

Hence C ◦GP is a nonzero 2k -variate polynomial of degree at most
d s . Hence, we have a hitting set of size (d s)2k = s O (k 2/ϵ).

Some consequences
Corollary
Let k be a large enough constant and ϵ > 0. Suppose

�
Pk ,d

	
d
is an

explicit family of polynomials with deg Pk ,d = d such that�
Pk ,d

	
d
requires size d 3+ϵ (or size d 1+ϵ).

Then, there is an explicit hitting set forC (s , s , s) of size poly(s).

Proof.
Set d ≥ s (10k+2)/ϵ and P = Pk ,d .

If 0 ̸=C ∈C (s , s , s) such that C ◦GP = 0, then

size(P)≤ s 10k · s 2 ·d 3

≤ d 3+ϵ which is impossible.

Hence C ◦GP is a nonzero 2k -variate polynomial of degree at most
d s . Hence, we have a hitting set of size (d s)2k = s O (k 2/ϵ).

Some consequences
Corollary
Let k be a large enough constant and ϵ > 0. Suppose

�
Pk ,d

	
d
is an

explicit family of polynomials with deg Pk ,d = d such that�
Pk ,d

	
d
requires size d 3+ϵ (or size d 1+ϵ).

Then, there is an explicit hitting set forC (s , s , s) of size poly(s).

Proof.
Set d ≥ s (10k+2)/ϵ and P = Pk ,d .
If 0 ̸=C ∈C (s , s , s) such that C ◦GP = 0,

then

size(P)≤ s 10k · s 2 ·d 3

≤ d 3+ϵ which is impossible.

Hence C ◦GP is a nonzero 2k -variate polynomial of degree at most
d s . Hence, we have a hitting set of size (d s)2k = s O (k 2/ϵ).

Some consequences
Corollary
Let k be a large enough constant and ϵ > 0. Suppose

�
Pk ,d

	
d
is an

explicit family of polynomials with deg Pk ,d = d such that�
Pk ,d

	
d
requires size d 3+ϵ (or size d 1+ϵ).

Then, there is an explicit hitting set forC (s , s , s) of size poly(s).

Proof.
Set d ≥ s (10k+2)/ϵ and P = Pk ,d .
If 0 ̸=C ∈C (s , s , s) such that C ◦GP = 0, then

size(P)≤ s 10k · s 2 ·d 3

≤ d 3+ϵ which is impossible.

Hence C ◦GP is a nonzero 2k -variate polynomial of degree at most
d s . Hence, we have a hitting set of size (d s)2k = s O (k 2/ϵ).

Some consequences
Corollary
Let k be a large enough constant and ϵ > 0. Suppose

�
Pk ,d

	
d
is an

explicit family of polynomials with deg Pk ,d = d such that�
Pk ,d

	
d
requires size d 3+ϵ (or size d 1+ϵ).

Then, there is an explicit hitting set forC (s , s , s) of size poly(s).

Proof.
Set d ≥ s (10k+2)/ϵ and P = Pk ,d .
If 0 ̸=C ∈C (s , s , s) such that C ◦GP = 0, then

size(P)≤ s 10k · s 2 ·d 3

≤ d 3+ϵ

which is impossible.

Hence C ◦GP is a nonzero 2k -variate polynomial of degree at most
d s . Hence, we have a hitting set of size (d s)2k = s O (k 2/ϵ).

Some consequences
Corollary
Let k be a large enough constant and ϵ > 0. Suppose

�
Pk ,d

	
d
is an

explicit family of polynomials with deg Pk ,d = d such that�
Pk ,d

	
d
requires size d 3+ϵ (or size d 1+ϵ).

Then, there is an explicit hitting set forC (s , s , s) of size poly(s).

Proof.
Set d ≥ s (10k+2)/ϵ and P = Pk ,d .
If 0 ̸=C ∈C (s , s , s) such that C ◦GP = 0, then

size(P)≤ s 10k · s 2 ·d 3

≤ d 3+ϵ which is impossible.

Hence C ◦GP is a nonzero 2k -variate polynomial of degree at most
d s . Hence, we have a hitting set of size (d s)2k = s O (k 2/ϵ).

Some consequences
Corollary
Let k be a large enough constant and ϵ > 0. Suppose

�
Pk ,d

	
d
is an

explicit family of polynomials with deg Pk ,d = d such that�
Pk ,d

	
d
requires size d 3+ϵ (or size d 1+ϵ).

Then, there is an explicit hitting set forC (s , s , s) of size poly(s).

Proof.
Set d ≥ s (10k+2)/ϵ and P = Pk ,d .
If 0 ̸=C ∈C (s , s , s) such that C ◦GP = 0, then

size(P)≤ s 10k · s 2 ·d 3

≤ d 3+ϵ which is impossible.

Hence C ◦GP is a nonzero 2k -variate polynomial of degree at most
d s .

Hence, we have a hitting set of size (d s)2k = s O (k 2/ϵ).

Some consequences
Corollary
Let k be a large enough constant and ϵ > 0. Suppose

�
Pk ,d

	
d
is an

explicit family of polynomials with deg Pk ,d = d such that�
Pk ,d

	
d
requires size d 3+ϵ (or size d 1+ϵ).

Then, there is an explicit hitting set forC (s , s , s) of size poly(s).

Proof.
Set d ≥ s (10k+2)/ϵ and P = Pk ,d .
If 0 ̸=C ∈C (s , s , s) such that C ◦GP = 0, then

size(P)≤ s 10k · s 2 ·d 3

≤ d 3+ϵ which is impossible.

Hence C ◦GP is a nonzero 2k -variate polynomial of degree at most
d s . Hence, we have a hitting set of size (d s)2k = s O (k 2/ϵ).

Revisiting variable reductions

C

Variable Reduction

y1 · · · yℓ

Revisiting variable reductions

C

Variable Reduction

y1 · · · yℓ

Hitting-set Generator: C ̸= 0 ⇐⇒ C ◦G ̸= 0

Revisiting variable reductions

C

Variable Reduction

y1 · · · yℓ

Hitting-set Generator: C ̸= 0 ⇐⇒ C ◦G ̸= 0

Dream: size(C ◦G) ≈ size(C)+ size(G)

The Kronecker Map

The Kronecker Map

K = �1, y , y 2, y 4, . . . , y 2n−1
�

The Kronecker Map

K = �1, y , y 2, y 4, . . . , y 2n−1
�

x e1
1 · · · x en

n 7→ y [e1e2···en]2

The Kronecker Map

K = �1, y , y 2, y 4, . . . , y 2n−1
�

x e1
1 · · · x en

n 7→ y [e1e2···en]2

If P is a n -variate multilinear polynomial, then
P ◦K is a univariate polynomial of degree at most 2n .

The Kronecker Map

K t =
�
1, y1, y 2

1 , . . . , y 2m−1

1 , . . . , 1, yt , . . . , y 2m−1

t

�
(n = t m)

x e1
1 · · · x en

n 7→ y [e1···em]2
1 · · · y [e∗···en]2

t

If P is a n -variate multilinear polynomial, then
P ◦K is a t -variate polynomial of degree at most 2n/t .

The Kronecker Map

K t =
�
1, y1, y 2

1 , . . . , y 2m−1

1 , . . . , 1, yt , . . . , y 2m−1

t

�
(n = t m)

x e1
1 · · · x en

n 7→ y [e1···em]2
1 · · · y [e∗···en]2

t

If P is a n -variate multilinear polynomial, then
P ◦K is a t -variate polynomial of degree at most 2n/t .

[Kabanets-Impagliazzo]: If {Pn}, multilinear, with size(Pn)> 2n/1000,
then we have s O (log s)-sized hitting sets.

The Kronecker Map

K t =
�
1, y1, y 2

1 , . . . , y 2m−1

1 , . . . , 1, yt , . . . , y 2m−1

t

�
(n = t m)

x e1
1 · · · x en

n 7→ y [e1···em]2
1 · · · y [e∗···en]2

t

If P is a n -variate multilinear polynomial, then
P ◦K is a t -variate polynomial of degree at most 2n/t .

[Kabanets-Impagliazzo]: If {Pn}, multilinear, with size(Pn)> 2n/1000,
then we have s O (log s)-sized hitting sets.

New: If, for some constant t , suppose size(Pn ◦Kt)≥ 2(1+ϵ)n/t

The Kronecker Map

K t =
�
1, y1, y 2

1 , . . . , y 2m−1

1 , . . . , 1, yt , . . . , y 2m−1

t

�
(n = t m)

x e1
1 · · · x en

n 7→ y [e1···em]2
1 · · · y [e∗···en]2

t

If P is a n -variate multilinear polynomial, then
P ◦K is a t -variate polynomial of degree at most 2n/t .

[Kabanets-Impagliazzo]: If {Pn}, multilinear, with size(Pn)> 2n/1000,
then we have s O (log s)-sized hitting sets.

New: If, for some constant t , suppose size(Pn ◦Kt)≥ 2(1+ϵ)n/t= d 1+ϵ

The Kronecker Map

K t =
�
1, y1, y 2

1 , . . . , y 2m−1

1 , . . . , 1, yt , . . . , y 2m−1

t

�
(n = t m)

x e1
1 · · · x en

n 7→ y [e1···em]2
1 · · · y [e∗···en]2

t

If P is a n -variate multilinear polynomial, then
P ◦K is a t -variate polynomial of degree at most 2n/t .

[Kabanets-Impagliazzo]: If {Pn}, multilinear, with size(Pn)> 2n/1000,
then we have s O (log s)-sized hitting sets.

New: If, for some constant t , suppose size(Pn ◦Kt)≥ 2(1+ϵ)n/t= d 1+ϵ

then we have poly(s)-sized hitting sets.

Consequences for bootstrapping

Theorem. [Kumar-S-Tengse]
Let ϵ > 0 and k (large enough) be fixed constants.

If, for all s ≥ k , we have explicit hitting sets forC (k , s , s) of size

s k−ϵ ,

then, we have explicit hitting sets forC (s , s , s) of size

s exp(exp(log∗ s))

Consequences for bootstrapping

Corollary
Let ϵ > 0 and k (large enough) be fixed constants.

If, for all s ≥ k , we have explicit hitting sets forC (k , s , s) of size

s k−ϵ ,

then, we have explicit hitting sets forC (s , s , s) of size

s O (1)

Circuits and border are crucial for this.

What’s all this
border stuff?

The Border
All polynomials

Does not have size s circuits, but arbitrarily close to those that do.

The Border
All polynomials

Polynomials with size s circuits

Does not have size s circuits, but arbitrarily close to those that do.

The Border
All polynomials

Polynomials with size s circuits

Does not have size s circuits, but arbitrarily close to those that do.

The Border
All polynomials

Polynomials with size s circuits

Does not have size s circuits, but arbitrarily close to those that do.

The Border
All polynomials

Polynomials with size s circuits

Does not have size s circuits, but arbitrarily close to those that do.

Border computation: an example

C = � f : f = ℓd
1 + ℓ

d
2 , deg(ℓ1),deg(ℓ2) = 1

	

C =
(x + ϵy)d − x d

d · ϵ = x d−1 y +O (ϵ)
ϵ→0−→ x d−1 y

Hence, x d−1 y ∈C but not inC .

Border computation: an example

C = � f : f = ℓd
1 + ℓ

d
2 , deg(ℓ1),deg(ℓ2) = 1

	
Fact
If x d−1 y = ℓd

1 + · · ·+ ℓd
s , then s ≥ d .

C =
(x + ϵy)d − x d

d · ϵ = x d−1 y +O (ϵ)
ϵ→0−→ x d−1 y

Hence, x d−1 y ∈C but not inC .

Border computation: an example

C = � f : f = ℓd
1 + ℓ

d
2 , deg(ℓ1),deg(ℓ2) = 1

	
Fact
If x d−1 y = ℓd

1 + · · ·+ ℓd
s , then s ≥ d .

Hence, x d−1 y /∈C for any d ≥ 3.

C =
(x + ϵy)d − x d

d · ϵ = x d−1 y +O (ϵ)
ϵ→0−→ x d−1 y

Hence, x d−1 y ∈C but not inC .

Border computation: an example

C = � f : f = ℓd
1 + ℓ

d
2 , deg(ℓ1),deg(ℓ2) = 1

	
Fact
If x d−1 y = ℓd

1 + · · ·+ ℓd
s , then s ≥ d .

Hence, x d−1 y /∈C for any d ≥ 3.

However,

C =
(x + ϵy)d − x d

d · ϵ

= x d−1 y +O (ϵ)
ϵ→0−→ x d−1 y

Hence, x d−1 y ∈C but not inC .

Border computation: an example

C = � f : f = ℓd
1 + ℓ

d
2 , deg(ℓ1),deg(ℓ2) = 1

	
Fact
If x d−1 y = ℓd

1 + · · ·+ ℓd
s , then s ≥ d .

Hence, x d−1 y /∈C for any d ≥ 3.

However,

C =
(x + ϵy)d − x d

d · ϵ = x d−1 y +O (ϵ)

ϵ→0−→ x d−1 y

Hence, x d−1 y ∈C but not inC .

Border computation: an example

C = � f : f = ℓd
1 + ℓ

d
2 , deg(ℓ1),deg(ℓ2) = 1

	
Fact
If x d−1 y = ℓd

1 + · · ·+ ℓd
s , then s ≥ d .

Hence, x d−1 y /∈C for any d ≥ 3.

However,

C =
(x + ϵy)d − x d

d · ϵ = x d−1 y +O (ϵ)
ϵ→0−→ x d−1 y

Hence, x d−1 y ∈C but not inC .

Border computation: an example

C = � f : f = ℓd
1 + ℓ

d
2 , deg(ℓ1),deg(ℓ2) = 1

	
Fact
If x d−1 y = ℓd

1 + · · ·+ ℓd
s , then s ≥ d .

Hence, x d−1 y /∈C for any d ≥ 3.

However,

C =
(x + ϵy)d − x d

d · ϵ = x d−1 y +O (ϵ)
ϵ→0−→ x d−1 y

Hence, x d−1 y ∈C but not inC .

The one trick that we will need

The one trick that we will need

Task: Given a circuit C of size s computing a polynomial P of
degree d . Compute Pd , the degree d homogeneous part of P .

The one trick that we will need

Task: Given a circuit C of size s computing a polynomial P of
degree d . Compute Pd , the degree d homogeneous part of P .

Standard solution: “Homogenize” the circuit and extract the
degree d part. Can be done using a circuit of size O (s d 2).

The one trick that we will need

Task: Given a circuit C of size s computing a polynomial P of
degree d . Compute Pd , the degree d homogeneous part of P .

Standard solution: “Homogenize” the circuit and extract the
degree d part. Can be done using a circuit of size O (s d 2).

Border trick:

C (x1, . . . , xn) = P0+P1+ · · ·+Pd

The one trick that we will need

Task: Given a circuit C of size s computing a polynomial P of
degree d . Compute Pd , the degree d homogeneous part of P .

Standard solution: “Homogenize” the circuit and extract the
degree d part. Can be done using a circuit of size O (s d 2).

Border trick:

C
� x1

ϵ
, . . . ,

xn

ϵ

�
= P0+

P1

ϵ
+ · · ·+ Pd

ϵd

The one trick that we will need

Task: Given a circuit C of size s computing a polynomial P of
degree d . Compute Pd , the degree d homogeneous part of P .

Standard solution: “Homogenize” the circuit and extract the
degree d part. Can be done using a circuit of size O (s d 2).

Border trick:

ϵd ·C
� x1

ϵ
, . . . ,

xn

ϵ

�
= ϵd P0+ ϵ

d−1P1+ · · ·+Pd

The one trick that we will need

Task: Given a circuit C of size s computing a polynomial P of
degree d . Compute Pd , the degree d homogeneous part of P .

Standard solution: “Homogenize” the circuit and extract the
degree d part. Can be done using a circuit of size O (s d 2).

Border trick:

ϵd ·C
� x1

ϵ
, . . . ,

xn

ϵ

�
= ϵd P0+ ϵ

d−1P1+ · · ·+Pd

ϵ→0−→ Pd

The one trick that we will need

Task: Given a circuit C of size s computing a polynomial P of
degree d . Compute Pd , the degree d homogeneous part of P .

Standard solution: “Homogenize” the circuit and extract the
degree d part. Can be done using a circuit of size O (s d 2).

Border trick:

ϵd ·C
� x1

ϵ
, . . . ,

xn

ϵ

�
= ϵd P0+ ϵ

d−1P1+ · · ·+Pd

ϵ→0−→ Pd

∴ size(Pd) ≤ size(P)

The one trick that we will need

Task: Given a circuit C of size s computing a polynomial P of
degree d . Compute Pd , the degree d homogeneous part of P .

Standard solution: “Homogenize” the circuit and extract the
degree d part. Can be done using a circuit of size O (s d 2).

Border trick:

ϵd ·C
� x1

ϵ
, . . . ,

xn

ϵ

�
= ϵd P0+ ϵ

d−1P1+ · · ·+Pd

ϵ→0−→ Pd

∴ size(Pd) ≤ size(P)

Pd can be computed in size s as well!

\begin{proof}

Designing generators

Any sufficiently advanced

technology

is indistinguishable

from magic

Designing generators

Any sufficiently hard polynomial’s evaluations

on disjoint inputs

is indistinguishable, for a small circuit,

from random inputs

Designing generators

Any sufficiently hard polynomial’s evaluations

on disjoint inputs

is indistinguishable, for a small circuit,

from random inputs

G : (y1, . . . , yk) 7→ (y1, . . . , yk , P (y1), . . . , P (yk))

Designing generators

Any sufficiently hard polynomial’s evaluations

on “almost disjoint” inputs

is indistinguishable, for a small circuit,

from random inputs

G : (y1, . . . , yk) 7→ (y1, . . . , yk , P (y1), . . . , P (yk))

Designing generators

Any sufficiently hard polynomial’s evaluations

on “almost disjoint” inputs

is indistinguishable, for a small circuit,

from random inputs

[KI, NW] : G : (y1, . . . , yℓ) 7→ �P (y |S1
), . . . , P (y |Sn

)
�

Designing generators

Any sufficiently hard polynomial’s components

‘Taylored’ appropriately

is indistinguishable, for a small circuit,

from random inputs

Description of our generator

P (z1, . . . , zk)

Description of our generator

P (y+ z) = P (z)+
∑

i

yi · (∂i P)(z)+
∑
i , j

yi yj · (∂i , j P)(z)+ · · ·

Description of our generator

P (y+ z) = P (z)+
∑

i

yi · (∂i P)(z)+
∑
i , j

yi yj · (∂i , j P)(z)+ · · ·

=
∑

e

ye

e!
· (∂eP)(z)

Description of our generator

P (y+ z) = P (z)+
∑

i

yi · (∂i P)(z)+
∑
i , j

yi yj · (∂i , j P)(z)+ · · ·

=
∑

e

ye

e!
· (∂eP)(z)

Definition (The generator)
For a k -variate polynomial P , define

∆i (P) =
∑

e:|e|=i

ye

e!
· (∂eP)(z).

The generator GP is defined as

GP = (∆0(P),∆1(P),∆2(P), . . . ,∆n (P)) ∈ (F[y[k], z[k]])
n+1.

Description of our generator

P (y+ z) = P (z)+
∑

i

yi · (∂i P)(z)+
∑
i , j

yi yj · (∂i , j P)(z)+ · · ·

=
∑

e

ye

e!
· (∂eP)(z)

Definition (The generator)
For a k -variate polynomial P , define

∆i (P) =
∑

e:|e|=i

ye

e!
· (∂eP)(z).

The generator GP is defined as

GP = (∆0(P),∆1(P),∆2(P), . . . ,∆n (P)) ∈ (F[y[k], z[k]])
n+1.

Description of our generator

P (y+ z) = P (z)+
∑

i

yi · (∂i P)(z)+
∑
i , j

yi yj · (∂i , j P)(z)+ · · ·

=
∑

e

ye

e!
· (∂eP)(z)

Definition (The generator)
For a k -variate polynomial P , define

∆i (P) =
∑

e:|e|=i

ye

e!
· (∂eP)(z).

The generator GP is defined as

GP = (∆0(P),∆1(P),∆2(P), . . . ,∆n (P)) ∈ (F[y[k], z[k]])
n+1.

Description of our generator

P (y+ z) = P (z)+
∑

i

yi · (∂i P)(z)+
∑
i , j

yi yj · (∂i , j P)(z)+ · · ·

=
∑

e

ye

e!
· (∂eP)(z)

Definition (The generator)
For a k -variate polynomial P , define

∆i (P) =
∑

e:|e|=i

ye

e!
· (∂eP)(z).

The generator GP is defined as

GP = (∆0(P),∆1(P),∆2(P), . . . ,∆n (P)) ∈ (F[y[k], z[k]])
n+1.

Proof overview

▶ Assume C ̸= 0 is a small circuit such that C ◦GP = 0.

▶ Show that we can use C , and a little more, to get a circuit that
computes P .

Idea: Think of C (∆0(P), . . . ,∆n (P)) = 0 as a
differential equation and solve for P .

Proof overview
▶ Assume C ̸= 0 is a small circuit such that C ◦GP = 0.

▶ Show that we can use C , and a little more, to get a circuit that
computes P .

Idea: Think of C (∆0(P), . . . ,∆n (P)) = 0 as a
differential equation and solve for P .

Proof overview
▶ Assume C ̸= 0 is a small circuit such that C ◦GP = 0.

▶ Show that we can use C , and a little more, to get a circuit that
computes P .

Idea: Think of C (∆0(P), . . . ,∆n (P)) = 0 as a
differential equation and solve for P .

Proof overview
▶ Assume C ̸= 0 is a small circuit such that C ◦GP = 0.

▶ Show that we can use C , and a little more, to get a circuit that
computes P .

Idea: Think of C (∆0(P), . . . ,∆n (P)) = 0 as a
differential equation and solve for P .

Cauchy-Kowalevski Equations

�
1

2

�
m · (v (t))2+m · g ·h (t) = c

Solve for as a power series in .

Cauchy-Kowalevski Equations

�
1

2

�
m · (v (t))2+m · g ·h (t) = c

Solve for as a power series in .

Cauchy-Kowalevski Equations

�
1

2

�
m ·
�
∂ h

∂ t

�2
+m · g ·h (t) = c

Solve for as a power series in .

Cauchy-Kowalevski Equations

Q (h (t), h (1)(t)) = 0

Solve for as a power series in .

Cauchy-Kowalevski Equations

Q (h (t), h (1)(t)) = 0

Solve for h (t) as a power series in t .

Cauchy-Kowalevski Equations

Q (h (t), h (1)(t)) = 0

Solve for h (t) as a power series in t .

▶ Start with some non-degenerate initial conditions:

t = a0 ; h (a0) =β0 ; h ′(a0) = γ0

Cauchy-Kowalevski Equations

Q (h (t), h (1)(t)) = 0

Solve for h (t) as a power series in t .

▶ Start with some non-degenerate initial conditions:

t = a0 ; h (a0) =β0 ; h ′(a0) = γ0

which is a solution modulo (t − t0).

Cauchy-Kowalevski Equations

Q (h (t), h (1)(t)) = 0

Solve for h (t) as a power series in t .

▶ Start with some non-degenerate initial conditions:

t = a0 ; h (a0) =β0 ; h ′(a0) = γ0

which is a solution modulo (t − t0).

▶ Lift to a solution modulo (t − t0)2, (t − t0)3 and so on...

Cauchy-Kowalevski Equations

Q (h (t), h (1)(t)) = 0

Solve for h (t) as a power series in t .

▶ Start with some non-degenerate initial conditions:

t = a0 ; h (a0) =β0 ; h ′(a0) = γ0

which is a solution modulo (t − t0).

▶ Lift to a solution modulo (t − t0)2, (t − t0)3 and so on...
Newton Iterations

Our situation

Q (h (t), h (1)(t)) = 0

Solve for h (t) as a power series in t .

▶ Start with some non-degenerate initial conditions:

t = a0 ; h (a0) =β0 ; h ′(a0) = γ0

which is a solution modulo (t − t0).

▶ Lift to a solution modulo (t − t0)2, (t − t0)3 and so on...
Newton Iterations

Our situation

C (∆0(P), . . . ,∆n (P)) = 0

Solve for h (t) as a power series in t .

▶ Start with some non-degenerate initial conditions:

t = a0 ; h (a0) =β0 ; h ′(a0) = γ0

which is a solution modulo (t − t0).

▶ Lift to a solution modulo (t − t0)2, (t − t0)3 and so on...
Newton Iterations

Our situation

C (∆0(P), . . . ,∆n (P)) = 0

Solve for P as a power series in z.

▶ Start with some non-degenerate initial conditions:

t = a0 ; h (a0) =β0 ; h ′(a0) = γ0

which is a solution modulo (t − t0).

▶ Lift to a solution modulo (t − t0)2, (t − t0)3 and so on...
Newton Iterations

Our situation

C (∆0(P), . . . ,∆n (P)) = 0

Solve for P as a power series in z.

▶ Start with some non-degenerate initial conditions:

C ◦GP = 0

(∂n C) ◦GP ̸= 0.

▶ Lift to a solution modulo (t − t0)2, (t − t0)3 and so on...
Newton Iterations

Our situation

C (∆0(P), . . . ,∆n (P)) = 0

Solve for P as a power series in z.

▶ Start with some non-degenerate initial conditions:

C ◦GP = 0

(∂n C) ◦GP ̸= 0.

▶ Compute the homogeneous parts of P , one by one, via
Newton Iteration

Setting-up the initial conditions
(Assuming that GP is not a generator)

Goal: Find a circuit C ′ of small size such that

C ′ ◦GP = 0

(∂n C ′) ◦GP ̸= 0.

C (, . . . , ,)0

Setting-up the initial conditions
(Assuming that GP is not a generator)

Goal: Find a circuit C ′ of small size such that

C ′ ◦GP = 0

(∂n C ′) ◦GP ̸= 0.

C (, . . . , ,)0

Setting-up the initial conditions
(Assuming that GP is not a generator)

Goal: Find a circuit C ′ of small size such that

C ′ ◦GP = 0

(∂n C ′) ◦GP ̸= 0.

C (x0, . . . , xn−1, xn) ̸= 0

Setting-up the initial conditions
(Assuming that GP is not a generator)

Goal: Find a circuit C ′ of small size such that

C ′ ◦GP = 0

(∂n C ′) ◦GP ̸= 0.

C (g0, . . . , gn−1, gn) = 0

Setting-up the initial conditions
(Assuming that GP is not a generator)

Goal: Find a circuit C ′ of small size such that

C ′ ◦GP = 0

(∂n C ′) ◦GP ̸= 0.

C̃ (xn) = C (g0, . . . , gn−1, xn)
?= 0

Setting-up the initial conditions
(Assuming that GP is not a generator)

Goal: Find a circuit C ′ of small size such that

C ′ ◦GP = 0

(∂n C ′) ◦GP ̸= 0.

If C̃ (xn) = C (g0, . . . , gn−1, xn) = 0

Setting-up the initial conditions
(Assuming that GP is not a generator)

Goal: Find a circuit C ′ of small size such that

C ′ ◦GP = 0

(∂n C ′) ◦GP ̸= 0.

If C̃ (xn) = C (g0, . . . , gn−1, xn) = 0

C (x0, . . . , xn−1, a) ̸= 0

Setting-up the initial conditions
(Assuming that GP is not a generator)

Goal: Find a circuit C ′ of small size such that

C ′ ◦GP = 0

(∂n C ′) ◦GP ̸= 0.

If C̃ (xn) = C (g0, . . . , gn−1, xn) = 0

C (x0, . . . , xn−1, a) ̸= 0
C (g0, . . . , gn−1, a) = 0

Setting-up the initial conditions
(Assuming that GP is not a generator)

Goal: Find a circuit C ′ of small size such that

C ′ ◦GP = 0

(∂n C ′) ◦GP ̸= 0.

If C̃ (xn) = C (g0, . . . , gn−1, xn) = 0

C (x0, . . . , xn−1, a) ̸= 0
C (g0, . . . , gn−1, a) = 0

Contradicts minimality!

Setting-up the initial conditions
(Assuming that GP is not a generator)

Goal: Find a circuit C ′ of small size such that

C ′ ◦GP = 0

(∂n C ′) ◦GP ̸= 0.

If C̃ (xn) = C (g0, . . . , gn−1, xn) ̸= 0

Setting-up the initial conditions
(Assuming that GP is not a generator)

Goal: Find a circuit C ′ of small size such that

C ′ ◦GP = 0

(∂n C ′) ◦GP ̸= 0.

If C̃ (xn) = C (g0, . . . , gn−1, xn) ̸= 0

C (g0, . . . , gn−1, gn) = 0

Setting-up the initial conditions
(Assuming that GP is not a generator)

Goal: Find a circuit C ′ of small size such that

C ′ ◦GP = 0

(∂n C ′) ◦GP ̸= 0.

If C̃ (xn) = C (g0, . . . , gn−1, xn) ̸= 0

C (g0, . . . , gn−1, gn) = 0 (xn − gn) divides C̃

Setting-up the initial conditions
(Assuming that GP is not a generator)

Goal: Find a circuit C ′ of small size such that

C ′ ◦GP = 0

(∂n C ′) ◦GP ̸= 0.

If C̃ (xn) = C (g0, . . . , gn−1, xn) ̸= 0

C (g0, . . . , gn−1, gn) = 0
(∂n C)(g0, . . . , gn) = 0

(xn − gn)2 divides C̃

Setting-up the initial conditions
(Assuming that GP is not a generator)

Goal: Find a circuit C ′ of small size such that

C ′ ◦GP = 0

(∂n C ′) ◦GP ̸= 0.

If C̃ (xn) = C (g0, . . . , gn−1, xn) ̸= 0

C (g0, . . . , gn−1, gn) = 0
(∂n C)(g0, . . . , gn) = 0
(∂ 2

n C)(g0, . . . , gn) = 0

(xn − gn)3 divides C̃

Setting-up the initial conditions
(Assuming that GP is not a generator)

Goal: Find a circuit C ′ of small size such that

C ′ ◦GP = 0

(∂n C ′) ◦GP ̸= 0.

If C̃ (xn) = C (g0, . . . , gn−1, xn) ̸= 0

C (g0, . . . , gn−1, gn) = 0
(∂n C)(g0, . . . , gn) = 0
(∂ 2

n C)(g0, . . . , gn) = 0
...

(∂ r
n C)(g0, . . . , gn) = 0

(xn − gn)r+1 divides C̃

Setting-up the initial conditions
(Assuming that GP is not a generator)

Goal: Find a circuit C ′ of small size such that

C ′ ◦GP = 0

(∂n C ′) ◦GP ̸= 0.

If C̃ (xn) = C (g0, . . . , gn−1, xn) ̸= 0

C (g0, . . . , gn−1, gn) = 0
(∂n C)(g0, . . . , gn) = 0
(∂ 2

n C)(g0, . . . , gn) = 0
...

(∂ r
n C)(g0, . . . , gn) = 0

(xn − gn)r+1 divides C̃

(xn − gn)t cannot divide C̃
if t > deg C̃

Setting-up the initial conditions
(Assuming that GP is not a generator)

Goal: Find a circuit C ′ of small size such that

C ′ ◦GP = 0

(∂n C ′) ◦GP ̸= 0.

If C̃ (xn) = C (g0, . . . , gn−1, xn) ̸= 0

(∂ r
n C)(g0, . . . , gn−1, gn) = 0

(∂ r+1
n C)(g0, . . . , gn−1, gn) ̸= 0

Setting-up the initial conditions
(Assuming that GP is not a generator)

Goal: Find a circuit C ′ of small size such that

C ′ ◦GP = 0

(∂n C ′) ◦GP ̸= 0.

If C̃ (xn) = C (g0, . . . , gn−1, xn) ̸= 0

(∂ r
n C)(g0, . . . , gn−1, gn) = 0

(∂ r+1
n C)(g0, . . . , gn−1, gn) ̸= 0

C ′ = (∂ r
n C) is what we want.

Setting-up the initial conditions
(Assuming that GP is not a generator)

Goal: Find a circuit C ′ of small size such that

C ′ ◦GP = 0

(∂n C ′) ◦GP ̸= 0.

If C̃ (xn) = C (g0, . . . , gn−1, xn) ̸= 0

(∂ r
n C)(g0, . . . , gn−1, gn) = 0

(∂ r+1
n C)(g0, . . . , gn−1, gn) ̸= 0

C ′ = (∂ r
n C) is what we want.

And, size(C ′)≤ size(C) ·deg(C)

Some basic properties

∆i (P) =
∑

e:|e|=i

ye

e!
· (∂eP)(z).

Additivity:
∆i (P +Q) =∆i (P)+∆i (Q)

Some basic properties

∆i (P) =
∑

e:|e|=i

ye

e!
· (∂eP)(z).

Additivity:
∆i (P +Q) =∆i (P)+∆i (Q)

Some basic properties

∆i (P) =
∑

e:|e|=i

ye

e!
· (∂eP)(z).

Additivity:
∆i (P +Q) =∆i (P)+∆i (Q)

‘Homogeneity’:

P (z) =Q (z)mod 〈z〉t
=⇒ ∆i (P) =∆i (Q)mod 〈z〉t−i

Some basic properties

∆i (P) =
∑

e:|e|=i

ye

e!
· (∂eP)(z).

Additivity:
∆i (P +Q) =∆i (P)+∆i (Q)

‘Homogeneity’:

P (z) =Q (z)mod 〈z〉t
=⇒ ∆i (P) =∆i (Q)mod 〈z〉t−i

P = P0+ · · ·+Pd

∆i (P) =∆i (P≤t+i−1)mod 〈z〉t

The Reconstruction Step
C ′ ◦GP (y, z) = 0

(∂n C ′) ◦GP (y, z) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

P = P0+ · · ·+Pn +Pn+1+ · · ·+Pd

The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

P = P0+ · · ·+Pn +Pn+1+ · · ·+Pd

Bruteforce

in n O (k) size

The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

P = P0+ · · ·+Pn +Pn+1+ · · ·+Pd

Bruteforce

in n O (k) size

Compute, via

Newton iterations,

one by one

The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

P = P0+ · · ·+Pn +Pn+1+ · · ·+Pd

The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

P = P0+ · · ·+Pn +Pn+1+ · · ·+Pd

C ′
�
g0, . . . , gn−1, gn

�
= 0

The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

P = P0+ · · ·+Pn +Pn+1+ · · ·+Pd

C ′ (∆0(P), . . . ,∆n−1(P),∆n (P)) = 0

The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

P = P0+ · · ·+Pn +Pn+1+ · · ·+Pd

C ′ (∆0(P), . . . ,∆n−1(P),∆n (P)) = 0 mod 〈z〉2

The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

P = P0+ · · ·+Pn +Pn+1+ · · ·+Pd

(∆i (P) =∆i (P≤t+i−1)mod 〈z〉t)
C ′ (∆0(P), . . . ,∆n−1(P),∆n (P)) = 0 mod 〈z〉2

The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

P = P0+ · · ·+Pn +Pn+1+ · · ·+Pd

(∆i (P) =∆i (P≤t+i−1)mod 〈z〉t)
C ′
�
∆0(P≤n), . . . ,∆n−1(P≤n),∆n (P≤n+1)

�
= 0 mod 〈z〉2

The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

P = P0+ · · ·+Pn +Pn+1+ · · ·+Pd

(∆i (P) =∆i (P≤t+i−1)mod 〈z〉t)
C ′
�
∆0(P≤n), . . . ,∆n−1(P≤n),∆n (P≤n)+∆n (Pn+1)

�
= 0 mod 〈z〉2

The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

P = P0+ · · ·+Pn +Pn+1+ · · ·+Pd

(∆i (P) =∆i (P≤t+i−1)mod 〈z〉t)
C ′
�
∆0(P≤n), . . . ,∆n−1(P≤n),∆n (P≤n)+∆n (Pn+1)

�
= 0 mod 〈z〉2

The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

P = P0+ · · ·+Pn +Pn+1+ · · ·+Pd

(∆i (P) =∆i (P≤t+i−1)mod 〈z〉t)
C ′
�
∆0(P≤n), . . . ,∆n−1(P≤n),∆n (P≤n)+∆n (Pn+1)

�
= 0 mod 〈z〉2

C ′(R0, . . . , Rn−1, Rn +A) = 0 mod 〈z〉2

The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

P = P0+ · · ·+Pn +Pn+1+ · · ·+Pd

(∆i (P) =∆i (P≤t+i−1)mod 〈z〉t)
C ′
�
∆0(P≤n), . . . ,∆n−1(P≤n),∆n (P≤n)+∆n (Pn+1)

�
= 0 mod 〈z〉2

C ′(R0, . . . , Rn−1, Rn +A) = 0 mod 〈z〉2
=C ′(R0, . . . , Rn−1, Rn)+A · ((∂n C ′)(R0, . . . , Rn)) = 0 mod 〈z〉2

The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

P = P0+ · · ·+Pn +Pn+1+ · · ·+Pd

(∆i (P) =∆i (P≤t+i−1)mod 〈z〉t)
C ′
�
∆0(P≤n), . . . ,∆n−1(P≤n),∆n (P≤n)+∆n (Pn+1)

�
= 0 mod 〈z〉2

C ′(R0, . . . , Rn−1, Rn +A) = 0 mod 〈z〉2
=C ′(R0, . . . , Rn−1, Rn)+A · �(∂n C ′)(R0, . . . , Rn)(y, 0)

�
= 0 mod 〈z〉2

The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

P = P0+ · · ·+Pn +Pn+1+ · · ·+Pd

(∆i (P) =∆i (P≤t+i−1)mod 〈z〉t)
C ′
�
∆0(P≤n), . . . ,∆n−1(P≤n),∆n (P≤n)+∆n (Pn+1)

�
= 0 mod 〈z〉2

C ′(R0, . . . , Rn−1, Rn +A) = 0 mod 〈z〉2
=C ′(R0, . . . , Rn−1, Rn)+A · �(∂n C ′) ◦GP (y, 0)

�
= 0 mod 〈z〉2

The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

P = P0+ · · ·+Pn +Pn+1+ · · ·+Pd

(∆i (P) =∆i (P≤t+i−1)mod 〈z〉t)
C ′
�
∆0(P≤n), . . . ,∆n−1(P≤n),∆n (P≤n)+∆n (Pn+1)

�
= 0 mod 〈z〉2

C ′(R0, . . . , Rn−1, Rn +A) = 0 mod 〈z〉2
=C ′(R0, . . . , Rn−1, Rn)+A · �(∂n C ′) ◦GP (y, 0)

�
= 0 mod 〈z〉2

∴ A =
�

C ′(R0,...,Rn)
(∂n C ′)◦GP (y,0)

�
mod (z)2

The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

P = P0+ · · ·+Pn +Pn+1+ · · ·+Pd

∆n (Pn+1) =

�
C ′
�
∆0(P≤n), . . . ,∆n (P≤n)

�
(∂n C ′) ◦GP (y, 0)

�
mod 〈z〉2

The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

P = P0+ · · ·+Pn +Pn+1+ · · ·+Pd

∆n (Pn+1)(a, z) =

�
C ′
�
∆0(P≤n), . . . ,∆n (P≤n)

�
(a, z)

(∂n C ′) ◦GP (a, 0)

�
mod 〈z〉2

The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

P = P0+ · · ·+Pn +Pn+1+ · · ·+Pd

∆n (Pn+1)(a, z) =

�
C ′
�
∆0(P≤n), . . . ,∆n (P≤n)

�
(a, z)

(∂n C ′) ◦GP (a, 0)

�
mod 〈z〉2

By trying many a’s, we can obtain all of ∂ =n (Pn+1)

The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

P = P0+ · · ·+Pn +Pn+1+ · · ·+Pd

∆n (Pn+1)(a, z) =

�
C ′
�
∆0(P≤n), . . . ,∆n (P≤n)

�
(a, z)

(∂n C ′) ◦GP (a, 0)

�
mod 〈z〉2

By trying many a’s, we can obtain all of ∂ =n (Pn+1)
and hence Pn+1 itself

The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

P = P0+ · · ·+Pn +Pn+1+ · · ·+Pd

∆n (Pn+1)(a, z) =

�
C ′
�
∆0(P≤n), . . . ,∆n (P≤n)

�
(a, z)

(∂n C ′) ◦GP (a, 0)

�
mod 〈z〉2

By trying many a’s, we can obtain all of ∂ =n (Pn+1)
and hence Pn+1 itself

(Euler formula: d · f =∑ xi ∂i f , if f homogeneous of degree d)

The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

P = P0+ · · ·+Pn +Pn+1+ · · ·+Pd

∆n (Pn+1)(a, z) =

�
C ′
�
∆0(P≤n), . . . ,∆n (P≤n)

�
(a, z)

(∂n C ′) ◦GP (a, 0)

�
mod 〈z〉2

By trying many a’s, we can obtain all of ∂ =n (Pn+1)
and hence Pn+1 itself

The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

P = P0+ · · ·+Pn +Pn+1+ · · ·+Pd

∆n (Pn+1)(a, z) =

�
C ′
�
∆0(P≤n), . . . ,∆n (P≤n)

�
(a, z)

(∂n C ′) ◦GP (a, 0)

�
mod 〈z〉2

By trying many a’s, we can obtain all of ∂ =n (Pn+1)
and hence Pn+1 itself

modulo higher order junk

The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

P = P0+ · · ·+Pn +Pn+1+ · · ·+Pd

∆n (Pn+1)(a, z) =

�
C ′
�
∆0(P≤n), . . . ,∆n (P≤n)

�
(a, z)

(∂n C ′) ◦GP (a, 0)

�
mod 〈z〉2

By trying many a’s, we can obtain all of ∂ =n (Pn+1)
and hence Pn+1 itself

modulo higher order junk

Border tricks!
Or careful homogenisation

The Reconstruction Step
C ′ ◦GP (y, 0) = 0

(∂n C ′) ◦GP (y, 0) ̸= 0

Else, replace 〈z1, . . . , zℓ〉 with
〈z1−α1, . . . , zk −αk 〉 in what
follows

P = P0+ · · ·+Pn +Pn+1+ · · ·+Pd

∆n (Pn+ j+1)(a, z) =

�
C ′
�
∆0(P≤n+ j), . . . ,∆n (P≤n+ j)

�
(a, z)

(∂n C ′) ◦GP (a, 0)

�
mod 〈z〉 j+2

By trying many a’s, we can obtain all of ∂ =n (Pn+ j+1)
and hence Pn+ j+1 itself

modulo higher order junk

Border tricks!
Or careful homogenisation

Reconstruction Step: Pictorially

z1 z2 zm

· · ·
B0

{∂ze (Pi) : |e| ≤ n , i ≤ n}

Linear combinations

· · ·
Γa1 · · ·

ΓaN· · ·

Γa =
�
∆0(P≤n)(a, z) , . . . , ∆n (P≤n)(a, z)

�

C ′

β1

C ′

βN

∆n (Pn+1)(a1, z)+ junk ∆n (Pn+1)(aN , z)+ junk

· · ·

Linear combinations + Euler

· · ·

{∂ze (Pi) : |e| ≤ n , i ≤ n +1}

sd ≤ ·n O (k) ·d

Reconstruction Step: Pictorially

z1 z2 zm

· · ·
B0

{∂ze (Pi) : |e| ≤ n , i ≤ n}

Linear combinations

· · ·
Γa1 · · ·

ΓaN· · ·

Γa =
�
∆0(P≤n)(a, z) , . . . , ∆n (P≤n)(a, z)

�
C ′

β1

C ′

βN

∆n (Pn+1)(a1, z)+ junk ∆n (Pn+1)(aN , z)+ junk

· · ·

Linear combinations + Euler

· · ·

{∂ze (Pi) : |e| ≤ n , i ≤ n +1}

sd ≤ ·n O (k) ·d

Reconstruction Step: Pictorially

z1 z2 zm

· · ·
B0

{∂ze (Pi) : |e| ≤ n , i ≤ n}

Linear combinations

· · ·
Γa1 · · ·

ΓaN· · ·

Γa =
�
∆0(P≤n)(a, z) , . . . , ∆n (P≤n)(a, z)

�

C ′

β1

C ′

βN

∆n (Pn+1)(a1, z)+ junk ∆n (Pn+1)(aN , z)+ junk

· · ·

Linear combinations + Euler

· · ·

{∂ze (Pi) : |e| ≤ n , i ≤ n +1}

sd ≤ ·n O (k) ·d

Reconstruction Step: Pictorially

z1 z2 zm

· · ·
B0

{∂ze (Pi) : |e| ≤ n , i ≤ n}

Linear combinations

· · ·
Γa1 · · ·

ΓaN· · ·

Γa =
�
∆0(P≤n)(a, z) , . . . , ∆n (P≤n)(a, z)

�

C ′

β1

C ′

βN

∆n (Pn+1)(a1, z)+ junk ∆n (Pn+1)(aN , z)+ junk

· · ·

Linear combinations + Euler

· · ·

{∂ze (Pi) : |e| ≤ n , i ≤ n +1}

sd ≤ ·n O (k) ·d

Reconstruction Step: Pictorially

z1 z2 zm

· · ·
B0

{∂ze (Pi) : |e| ≤ n , i ≤ n}

Linear combinations

· · ·
Γa1 · · ·

ΓaN· · ·

Γa =
�
∆0(P≤n)(a, z) , . . . , ∆n (P≤n)(a, z)

�

C ′

β1

C ′

βN

∆n (Pn+1)(a1, z)+ junk ∆n (Pn+1)(aN , z)+ junk

· · ·

Linear combinations + Euler

· · ·

{∂ze (Pi) : |e| ≤ n , i ≤ n +1}

sd ≤ ·n O (k) ·d

Reconstruction Step: Pictorially

z1 z2 zm

· · ·
B0

{∂ze (Pi) : |e| ≤ n , i ≤ n}

Linear combinations

· · ·
Γa1 · · ·

ΓaN· · ·

Γa =
�
∆0(P≤n)(a, z) , . . . , ∆n (P≤n)(a, z)

�

C ′

β1

C ′

βN

∆n (Pn+1)(a1, z)+ junk ∆n (Pn+1)(aN , z)+ junk

· · ·

Linear combinations + Euler

· · ·
{∂ze (Pn+1)+ junk : |e| ≤ n}

{∂ze (Pi) : |e| ≤ n , i ≤ n +1}

sd ≤ ·n O (k) ·d

Reconstruction Step: Pictorially

z1 z2 zm

· · ·
B0

{∂ze (Pi) : |e| ≤ n , i ≤ n}

Linear combinations

· · ·
Γa1 · · ·

ΓaN· · ·

Γa =
�
∆0(P≤n)(a, z) , . . . , ∆n (P≤n)(a, z)

�

C ′

β1

C ′

βN

∆n (Pn+1)(a1, z)+ junk ∆n (Pn+1)(aN , z)+ junk

· · ·

Linear combinations + Euler

· · ·
{∂ze (Pn+1) : |e| ≤ n}

{∂ze (Pi) : |e| ≤ n , i ≤ n +1}

sd ≤ ·n O (k) ·d

Reconstruction Step: Pictorially

z1 z2 zm

· · ·
B0

{∂ze (Pi) : |e| ≤ n , i ≤ n}

Linear combinations

· · ·
Γa1 · · ·

ΓaN· · ·

Γa =
�
∆0(P≤n)(a, z) , . . . , ∆n (P≤n)(a, z)

�

C ′

β1

C ′

βN

∆n (Pn+1)(a1, z)+ junk ∆n (Pn+1)(aN , z)+ junk

· · ·

Linear combinations + Euler

· · ·
{∂ze (Pi) : |e| ≤ n , i ≤ n +1}

sd ≤ ·n O (k) ·d

Reconstruction Step: Pictorially

z1 z2 zm

· · ·
B0

{∂ze (Pi) : |e| ≤ n , i ≤ n}

Linear combinations

· · ·
Γa1 · · ·

ΓaN· · ·

Γa =
�
∆0(P≤n)(a, z) , . . . , ∆n (P≤n)(a, z)

�

C ′

β1

C ′

βN

∆n (Pn+1)(a1, z)+ junk ∆n (Pn+1)(aN , z)+ junk

· · ·

Linear combinations + Euler

· · ·
{∂ze (Pi) : |e| ≤ n , i ≤ n +1}

B1

sd ≤ ·n O (k) ·d

Reconstruction Step: Pictorially

z1 z2 zm

· · ·
B0

{∂ze (Pi) : |e| ≤ n , i ≤ n}

Linear combinations

· · ·
Γa1 · · ·

ΓaN· · ·

Γa =
�
∆0(P≤n)(a, z) , . . . , ∆n (P≤n)(a, z)

�

C ′

β1

C ′

βN

∆n (Pn+1)(a1, z)+ junk ∆n (Pn+1)(aN , z)+ junk

· · ·

Linear combinations + Euler

· · ·
{∂ze (Pi) : |e| ≤ n , i ≤ n +1}

s0 = n O (k)

sd ≤ ·n O (k) ·d

Reconstruction Step: Pictorially

z1 z2 zm

· · ·
B0

{∂ze (Pi) : |e| ≤ n , i ≤ n}

Linear combinations

· · ·
Γa1 · · ·

ΓaN· · ·

Γa =
�
∆0(P≤n)(a, z) , . . . , ∆n (P≤n)(a, z)

�

C ′

β1

C ′

βN

∆n (Pn+1)(a1, z)+ junk ∆n (Pn+1)(aN , z)+ junk

· · ·

Linear combinations + Euler

· · ·
{∂ze (Pi) : |e| ≤ n , i ≤ n +1}

s0 = n O (k)

n O (k)

sd ≤ ·n O (k) ·d

Reconstruction Step: Pictorially

z1 z2 zm

· · ·
B0

{∂ze (Pi) : |e| ≤ n , i ≤ n}

Linear combinations

· · ·
Γa1 · · ·

ΓaN· · ·

Γa =
�
∆0(P≤n)(a, z) , . . . , ∆n (P≤n)(a, z)

�

C ′

β1

C ′

βN

∆n (Pn+1)(a1, z)+ junk ∆n (Pn+1)(aN , z)+ junk

· · ·

Linear combinations + Euler

· · ·
{∂ze (Pi) : |e| ≤ n , i ≤ n +1}

s0 = n O (k)

n O (k)

s ′ ·n O (k)

sd ≤ ·n O (k) ·d

Reconstruction Step: Pictorially

z1 z2 zm

· · ·
B0

{∂ze (Pi) : |e| ≤ n , i ≤ n}

Linear combinations

· · ·
Γa1 · · ·

ΓaN· · ·

Γa =
�
∆0(P≤n)(a, z) , . . . , ∆n (P≤n)(a, z)

�

C ′

β1

C ′

βN

∆n (Pn+1)(a1, z)+ junk ∆n (Pn+1)(aN , z)+ junk

· · ·

Linear combinations + Euler

· · ·
{∂ze (Pi) : |e| ≤ n , i ≤ n +1}

s1

s0 = n O (k)

n O (k)

s ′ ·n O (k)

n O (k)

sd ≤ ·n O (k) ·d

Reconstruction Step: Pictorially

z1 z2 zm

· · ·
B j

{∂ze (Pi) : |e| ≤ n , i ≤ n}

Linear combinations

· · ·
Γ j ,a1 · · ·

Γ j ,aN· · ·

Γa =
�
∆0(P≤n)(a, z) , . . . , ∆n (P≤n)(a, z)

�

C ′

β j ,1

C ′

β j ,N

∆n (Pn+1)(a1, z)+ junk ∆n (Pn+1)(aN , z)+ junk

· · ·

Linear combinations + Euler

· · ·
�
∂ze (Pi) : |e| ≤ n , i ≤ n + j +1

	

s j+1

s j

n O (k)

s ′ ·n O (k)

n O (k)

sd ≤ ·n O (k) ·d

Reconstruction Step: Pictorially

z1 z2 zm

· · ·
B j

{∂ze (Pi) : |e| ≤ n , i ≤ n}

Linear combinations

· · ·
Γ j ,a1 · · ·

Γ j ,aN· · ·

Γa =
�
∆0(P≤n)(a, z) , . . . , ∆n (P≤n)(a, z)

�

C ′

β j ,1

C ′

β j ,N

∆n (Pn+1)(a1, z)+ junk ∆n (Pn+1)(aN , z)+ junk

· · ·

Linear combinations + Euler

· · ·
�
∂ze (Pi) : |e| ≤ n , i ≤ n + j +1

	

B j+1

s j+1

s j

n O (k)

s ′ ·n O (k)

n O (k)

sd ≤ ·n O (k) ·d

Reconstruction Step: Pictorially

z1 z2 zm

· · ·
B j

{∂ze (Pi) : |e| ≤ n , i ≤ n}

Linear combinations

· · ·
Γ j ,a1 · · ·

Γ j ,aN· · ·

Γa =
�
∆0(P≤n)(a, z) , . . . , ∆n (P≤n)(a, z)

�

C ′

β j ,1

C ′

β j ,N

∆n (Pn+1)(a1, z)+ junk ∆n (Pn+1)(aN , z)+ junk

· · ·

Linear combinations + Euler

· · ·
�
∂ze (Pi) : |e| ≤ n , i ≤ n + j +1

	

B j+1

s j+1

s j

n O (k)

s ′ ·n O (k)

n O (k)

sd ≤ s ′ ·n O (k) ·d

Reconstruction Step: Pictorially

z1 z2 zm

· · ·
B j

{∂ze (Pi) : |e| ≤ n , i ≤ n}

Linear combinations

· · ·
Γ j ,a1 · · ·

Γ j ,aN· · ·

Γa =
�
∆0(P≤n)(a, z) , . . . , ∆n (P≤n)(a, z)

�

C ′

β j ,1

C ′

β j ,N

∆n (Pn+1)(a1, z)+ junk ∆n (Pn+1)(aN , z)+ junk

· · ·

Linear combinations + Euler

· · ·
�
∂ze (Pi) : |e| ≤ n , i ≤ n + j +1

	

B j+1

s j+1

s j

n O (k)

s ′ ·n O (k)

n O (k)

sd ≤ s ·D ·n O (k) ·d

\end{proof}

Conclusion

Summary:
▶ With suitable hardness, we can get poly-sized hitting sets.
▶ With the border, we can bootstrap from barely non-trivial

hitting sets.

Open Problems:
▶ Current proof requires characteristic zero fields. Ought to work

for all fields.
▶ The hardness depends on the degree of the circuit we are

fooling. Ought to fool all small size circuits irrespective of
degree (using the border).

\end{document}

Conclusion
Summary:
▶ With suitable hardness, we can get poly-sized hitting sets.

▶ With the border, we can bootstrap from barely non-trivial
hitting sets.

Open Problems:
▶ Current proof requires characteristic zero fields. Ought to work

for all fields.
▶ The hardness depends on the degree of the circuit we are

fooling. Ought to fool all small size circuits irrespective of
degree (using the border).

\end{document}

Conclusion
Summary:
▶ With suitable hardness, we can get poly-sized hitting sets.
▶ With the border, we can bootstrap from barely non-trivial

hitting sets.

Open Problems:
▶ Current proof requires characteristic zero fields. Ought to work

for all fields.
▶ The hardness depends on the degree of the circuit we are

fooling. Ought to fool all small size circuits irrespective of
degree (using the border).

\end{document}

Conclusion
Summary:
▶ With suitable hardness, we can get poly-sized hitting sets.
▶ With the border, we can bootstrap from barely non-trivial

hitting sets.

Open Problems:
▶ Current proof requires characteristic zero fields. Ought to work

for all fields.

▶ The hardness depends on the degree of the circuit we are
fooling. Ought to fool all small size circuits irrespective of
degree (using the border).

\end{document}

Conclusion
Summary:
▶ With suitable hardness, we can get poly-sized hitting sets.
▶ With the border, we can bootstrap from barely non-trivial

hitting sets.

Open Problems:
▶ Current proof requires characteristic zero fields. Ought to work

for all fields.
▶ The hardness depends on the degree of the circuit we are

fooling. Ought to fool all small size circuits irrespective of
degree (using the border).

\end{document}

Conclusion
Summary:
▶ With suitable hardness, we can get poly-sized hitting sets.
▶ With the border, we can bootstrap from barely non-trivial

hitting sets.

Open Problems:
▶ Current proof requires characteristic zero fields. Ought to work

for all fields.
▶ The hardness depends on the degree of the circuit we are

fooling. Ought to fool all small size circuits irrespective of
degree (using the border).

\end{document}

	Introduction
	Our results
	Border shit
	Conclusions

