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» Lower Bounds: Can we find an explicit family of polynomials
{P,} that require large circuits?

» Polynomial Identity Testing: Given a circuit C, can we check
if C is computing the zero polynomial (deterministically)?

Hitting sets: Find a set of points H such that any “small” circuit
C that is computing a nonzero polynomial must satisfy C(a) # 0
forsomeac H.

These two problems are intimately connected to each other.
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A “trivial” hitting set

Lemma ([Ore, Demillo-Lipton, Schwartz, Zippel])

If P(xy,...,x,)is a nonzero polynomial of degree d, and S C F of size
atleast d + 1, then P(a)# 0 forsomea < S".

We have an explicit hitting set of size (d + 1)" for € (n, d, *).

Q: Are there smaller hitting sets for ¢(n,d, s)?
A: Yes; almost any set of size O(s?) will work.

Q: Can you give just one explicit example?
A: Umm...
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Pseudorandom objects

“How difficult could it be to find hay in a haystack?”
— Howard Karloff

> You care a lot about hay.

» Almost everything in a haystack is hay.

» Find hay.

Question: Can we use one pseudorandom object to build another?
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How are hitting sets constructed?

Definition (Generator)

Amap Y =(g1,...,&n) €FIy,..., ¥ ]" is a hitting-set generator for a
class ¢ if

VCe® , C#0<=Co¥+#0.

The degree of the generator is max;(degg;). The stretch is { — n.

Lemma
Let9=(gi1,...,8n) €F[1,..., ¥]" be an explicit hitting-set generator
for €(n, D, s) of degree d. Then, we have

> An explicit hitting set H of size (d D + 1)
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For any k-variate polynomial P of degree d, there is an explicit map

Yp=(81,-- &) EF Vs, Vi 21s e 21 )"

such that
» deg(%p)=d and 9p is d °P-explicit,
» For any nonzero circuit C € 6(n, D, s),
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In other words, if P is hard enough, then 9p is a hitting-set generator
for €(n,D,s).
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Some consequences

Corollary

Let k be a large enough constant and € > 0. Suppose {Pk, d } gisan
explicit family of polynomials with deg P, ; = d such that
{Pk,d} 4 requires size d3+€ (orsize d'+).

Then, there is an explicit hitting set for 6 (s, s, s) of size poly(s).

Proof.
Set d > s\10%+2/¢ and P = P 4.
If0# C € <6(s,s,s)suchthat C o¥p =0, then
size(P) < s'%%. 2. 48
< d3*¢ which is impossible.

Hence C o %p is a nonzero 2k-variate polynomial of degree at most
ds. Hence, we have a hitting set of size (d s)2k = sO(k*/¢), O
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Hitting-set Generator: C£0 <= Co%#0

Dream: size(Co¥) =~  size(C)+size(¥Y)
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m— m—1
%t:(l,yl,ylz,...,ylz ,...,l,yt,...,yt2 ) (n=tm)

e e leremls le,enlz
xl ...xn'l — yl yt

If P is a n-variate multilinear polynomial, then
Po X is a t-variate polynomial of degree at most 2"/¢.

[Kabanets-Impagliazzol: If {P,}, multilinear, with size(P,) > 2"/1000,
then we have s90°85)_sized hitting sets.

New: If, for some constant ¢, suppose size(P, o ;) > 20+&n/t — gl+e
then we have poly(s)-sized hitting sets.
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Consequences for bootstrapping

Corollary
Let £ > 0 and k (large enough) be fixed constants.

If, for all s > k, we have explicit hitting sets for ¢ (k, s, s) of size
Sk—s,
then, we have explicit hitting sets for ¢ (s, s, s) of size

o(1)

Circuits and border are crucial for this.
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All polynomials

@ Does not have size s circuits, but arbitrarily close to those that do.
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Border computation: an example
¢ ={f: f=07+09 , deg(t,), deg(t,)=1}

Fact
If x4y =¢¢+--+(9, then s > d.
Hence, x4~y ¢ € forany d > 3.

However,

_(xtey)?—x?
B d-e

C :xd_1y+0(£) 3 xd_ly

Hence, x?~'y € 6 butnotin €.
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The one trick that we will need

Task: Given a circuit C of size s computing a polynomial P of
degree d. Compute P,, the degree d homogeneous part of P.

Standard solution: “Homogenize” the circuit and extract the
degree d part. Can be done using a circuit of size O(sd?).

Border trick:

x x _
£d~C(?1,...,?") = &P+ P+ + Py

£—0
— Py

size(P;) < size(P)

P; can be computed in size s as well!




\begin{proof}
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Designing generators

Any sufficiently hard polynomial’s evaluations
on “almost disjoint” inputs
is indistinguishable, for a small circuit,

from random inputs

[KLNWI: 4 (.. ) — (P(yls,),-.., P(yls,))




Designing generators

Any sufficiently hard polynomial’s components
‘Taylored’ appropriately
is indistinguishable, for a small circuit,

from random inputs
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Description of our generator

Py+2)=P@)+ D _yi-(@PY2)+ D yiy; (8 1 P)z)+-+-
i i,j

AN
o e

Definition (The generator)
For a k-variate polynomial P, define
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Proof overview

» Assume C # 0 is a small circuit such that C 0 9p =0.

» Show that we can use C, and a little more, to get a circuit that
computes P.

Idea: Think of C(Ay(P),...,A,(P))=0asa
differential equation and solve for P.
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C(Ag(P),..., A, (P)=0

Solve for P as a power series in z.

» Start with some non-degenerate initial conditions:
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Our situation

C(Ag(P),..., A, (P)=0

Solve for P as a power series in z.

» Start with some non-degenerate initial conditions:

CO%pZO
(8,C)o Yp £ 0.

» Compute the homogeneous parts of P, one by one, via
Newton Iteration




Setting-up the initial conditions

(Assuming that %p is not a generator)




Setting-up the initial conditions

(Assuming that %p is not a generator)
Goal: Find a circuit C’ of small size such that

C'O‘ﬂp:O
(8,C")o %p #0.




Setting-up the initial conditions

(Assuming that %p is not a generator)
Goal: Find a circuit C’ of small size such that

C'O‘ﬂp:O
(8,C")o %p #0.




Setting-up the initial conditions

(Assuming that %p is not a generator)

Goal: Find a circuit C’ of small size such that
Cl o (zgp =0
(8,C")o%p #0.

C(gO’---’gn—lrgn):O




Setting-up the initial conditions

(Assuming that %p is not a generator)

Goal: Find a circuit C’ of small size such that
Cl o (zgp =0
(8,C")o%p #0.

C(x,)= C(go,...,gn_l,xn);o




Setting-up the initial conditions

(Assuming that %p is not a generator)

Goal: Find a circuit C’ of small size such that
Cl o (zgp =0
(8,C")o%p #0.

If C(x,)=C(go>-.»&n1,%,)=0




Setting-up the initial conditions

(Assuming that %p is not a generator)
Goal: Find a circuit C’ of small size such that

C'O‘ﬂp:O
(8,C")o %p #0.

If C(x,)=C(go>-.»&n1,%,)=0

C(xgy.-vr Xp_1,a)#0




Setting-up the initial conditions

(Assuming that %p is not a generator)

Goal: Find a circuit C’ of small size such that
Cl o (zgp =0
(8,C")o%p #0.

If C(x,)=C(go>-.»&n1,%,)=0

C(xgy.-vr Xp_1,a)#0
C(go)--- 8&n1,a)=0




Setting-up the initial conditions

(Assuming that %p is not a generator)
Goal: Find a circuit C’ of small size such that

C/O(zgp =0
(8,C")o %p #0.

If C(xn) = C(gO» -+ 8n—1» xn) =0

C(xgy.-vr Xp_1,a)#0
C(go)--- 8&n1,a)=0

Contradicts minimality!




Setting-up the initial conditions

(Assuming that %p is not a generator)

Goal: Find a circuit C’ of small size such that
Cl o (zgp =0
(8,C")o%p #0.

If é(xn): C(go ----- 8n-1 xn)#o




Setting-up the initial conditions

(Assuming that %p is not a generator)
Goal: Find a circuit C’ of small size such that

C'O‘ﬂp:O
(8,C")o %p #0.

If é(xn) = C(gO» -+ 8n—1» xn) 7£ 0

C(gO’---Jgn—lrgn)zo




Setting-up the initial conditions

(Assuming that %p is not a generator)
Goal: Find a circuit C’ of small size such that

C'O‘ﬂp:O
(8,C")o %p #0.

If C(xn) = C(gO» -+ 8n—1» xn) 7£ 0

C(8or---»8n-1,8n)=0 (x, —g,) divides C




Setting-up the initial conditions

(Assuming that %p is not a generator)

Goal: Find a circuit C’ of small size such that
Cl o (zgp =0
(8,C")o%p #0.

If C(xn) = C(gO» -+ 8n—1» xn) 7£ 0

C(8or---»8n-1,8n)=0 (x,, —g,)? divides C
(3nc)(g0; cee ygn) =0




Setting-up the initial conditions

(Assuming that %p is not a generator)

Goal: Find a circuit C’ of small size such that
Cl o (zgp =0
(8,C")o%p #0.

If C(xn) = C(gO» -+ 8n—1» xn) 7£ 0

C(8or---»8n-1,8n)=0 (x, —g,)% divides C
(3nc)(g0; cee ygn) =0
(22C)(&o»---»8n)=0




Setting-up the initial conditions

(Assuming that %p is not a generator)

Goal: Find a circuit C’ of small size such that
C/ o (gp =0
(6,C")o %p #0.

If C(xn) = C(gO» -+ 8n—1» xn) 7£ 0

C(go---18n-1,8n)=0 (x, —gn) *! divides C
(anc)(gO! -, 8n)=0
(22C)(&o»---»8n)=0

(8, C)gor..-r8n) =0




Setting-up the initial conditions
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Setting-up the initial conditions

(Assuming that %p is not a generator)

Goal: Find a circuit C’ of small size such that
C/ o (gp =0
(6,C")o %p #0.

If C(xn) = C(gO» -+ 8n—1» xn) 7£ 0

(anr C)(gO)---)gn—l)gn):()
(8,71 C)(&os---18n—1,8n) #0

C’=(3) C)is what we want.

And, size(C’) < size(C)-deg(C)
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Additivity:
A(P+Q)=A;(P)+A(Q)

‘Homogeneity’:

P(z)=Q(z) mod (z)"
= A;(P)=A;(Q)mod (z)'*

\

>

P=Py+---+P,

Ai(P)=A;(P<;yi—1) mod <Z>t
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The Reconstruction Step
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P=P+-+P,+Py1+:-+P;
Bruteforce Compute, via

in n°k) size  Newton iterations,
one by one
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