Derandomization from
algebraic hardness

TREADING THE BORDERS

Zeyu Guo Mrinal Kumar
IIT Kanpur — U. Haifa U. Toronto — IITB
Ramprasad Saptharishi Noam Solomon
TIFR, Mumbai Harvard University
IIT Bombay

June 2019

Two Important Questions

Two Important Questions

» Lower Bounds: Can we find an explicit family of polynomials
{P,} that require large circuits?

Two Important Questions

» Lower Bounds: Can we find an explicit family of polynomials
{P,} that require large circuits?

» Polynomial Identity Testing: Given a circuit C, can we check
if C is computing the zero polynomial (deterministically)?

Two Important Questions

» Lower Bounds: Can we find an explicit family of polynomials
{P,} that require large circuits?

» Polynomial Identity Testing: Given a circuit C, can we check
if C is computing the zero polynomial (deterministically)?

Hitting sets: Find a set of points H such that any “small” circuit
C that is computing a nonzero polynomial must satisfy C(a) # 0
forsomeac H.

Two Important Questions

» Lower Bounds: Can we find an explicit family of polynomials
{P,} that require large circuits?

» Polynomial Identity Testing: Given a circuit C, can we check
if C is computing the zero polynomial (deterministically)?

Hitting sets: Find a set of points H such that any “small” circuit
C that is computing a nonzero polynomial must satisfy C(a) # 0
forsomeac H.

These two problems are intimately connected to each other.

A “trivial” hitting set

Lemma ([Ore, Demillo-Lipton, Schwartz, Zippel])

If P(xy,..., x,,) is a nonzero polynomial of degree d, and S C F of size
atleast d + 1, then P(a)# 0 for somea € S™.

A “trivial” hitting set

Lemma ([Ore, Demillo-Lipton, Schwartz, Zippel])

If P(xy,...,x,)is a nonzero polynomial of degree d, and S C F of size
atleast d + 1, then P(a)# 0 for somea € S™.

We have an explicit hitting set of size (d + 1)" for € (n, d, *).

A “trivial” hitting set

Lemma ([Ore, Demillo-Lipton, Schwartz, Zippel])

If P(xy,...,x,)is a nonzero polynomial of degree d, and S C F of size
atleast d + 1, then P(a)# 0 for somea € S™.

We have an explicit hitting set of size (d + 1)" for € (n, d, *).

Q: Are there smaller hitting sets for ¢(n,d, s)?

A “trivial” hitting set

Lemma ([Ore, Demillo-Lipton, Schwartz, Zippel])

If P(xy,...,x,)is a nonzero polynomial of degree d, and S C F of size
atleast d + 1, then P(a)# 0 for somea € S™.

We have an explicit hitting set of size (d + 1)" for € (n, d, *).

Q: Are there smaller hitting sets for ¢(n,d, s)?
A: Yes; almost any set of size O(s?) will work.

Wy oo 12 L
A “trivial” hitting set
Lemma ([Ore, Demillo-Lipton, Schwartz, Zippel])
If P(xy,...,x,)is a nonzero polynomial of degree d, and S C F of size

atleast d + 1, then P(a)# 0 forsomea < S".

We have an explicit hitting set of size (d + 1)" for € (n, d, *).

Q: Are there smaller hitting sets for ¢(n,d, s)?
A: Yes; almost any set of size O(s?) will work.

Q: Can you give just one explicit example?

A “trivial” hitting set

Lemma ([Ore, Demillo-Lipton, Schwartz, Zippel])

If P(xy,...,x,)is a nonzero polynomial of degree d, and S C F of size
atleast d + 1, then P(a)# 0 forsomea < S".

We have an explicit hitting set of size (d + 1)" for € (n, d, *).

Q: Are there smaller hitting sets for ¢(n,d, s)?
A: Yes; almost any set of size O(s?) will work.

Q: Can you give just one explicit example?
A: Umm...

Pseudorandom objects

“How difficult could it be to find hay in a haystack?”
— Howard Karloff

Pseudorandom objects

“How difficult could it be to find hay in a haystack?”
— Howard Karloff

> You care a lot about hay.

Pseudorandom objects

“How difficult could it be to find hay in a haystack?”
— Howard Karloff

> You care a lot about hay.

» Almost everything in a haystack is hay.

Pseudorandom objects

“How difficult could it be to find hay in a haystack?”
— Howard Karloff

> You care a lot about hay.
» Almost everything in a haystack is hay.

» Find hay.

Pseudorandom objects

“How difficult could it be to find hay in a haystack?”
— Howard Karloff

» You care a lot about hard polynomials.
» Almost every polynomial is a hard polynomial.

» Find a hard polynomial.

Pseudorandom objects

“How difficult could it be to find hay in a haystack?”
— Howard Karloff

» You care a lot about hitting sets.
» Almost every set of poly-size is a hitting set.

» Find a hitting set.

Pseudorandom objects

“How difficult could it be to find hay in a haystack?”
— Howard Karloff

> You care a lot about hay.

» Almost everything in a haystack is hay.

» Find hay.

Question: Can we use one pseudorandom object to build another?

Lower bounds and hitting sets

Hard polynomials

Explicit Hitting Sets

Lower bounds and hitting sets

Hard polynomials

[Kabanets-Impagliazzo]

Explicit Hitting Sets

Lower bounds and hitting sets

Hard polynomials

[Heintz-Schnorr, Agrawal] [Kabanets-Impagliazzo]

Explicit Hitting Sets

Lower bounds — hitting sets

Hard polynomials

Explicit Hitting Sets

How are hitting sets constructed?

Nonzero

C

rrrrriIrrty

X1 Xy X3

How are hitting sets constructed?

Nonzero

C

TTTTTTTTTTT

Variable Reduction

1T

nh W

How are hitting sets constructed?

Nonzero

C

IR

81 82 83

How are hitting sets constructed?

Nonzero

C

IR

81 82 83

Definition (Generator)

Amap ¥ =(gi,-.., g.)€F(n,..., ¥¢]" is a hitting-set generator for a
class ¢ if

VCe¥¢ , C#0<Co¥%#0.

How are hitting sets constructed?

Nonzero

C

IR

81 82 83

Definition (Generator)
Amap ¥ =(gi,-.., g.)€F(n,..., ¥¢]" is a hitting-set generator for a
class ¢ if

VCe¥¢ , C#0<Co¥%#0.

The degree of the generator is max;(degg;). The stretch is { — n.

How are hitting sets constructed?

Definition (Generator)

Amap Y =(g1,...,&n) €FIy,..., ¥]" is a hitting-set generator for a
class € if

VCe® , C#0<=Co¥+#0.

The degree of the generator is max;(degg;). The stretch is { — n.

How are hitting sets constructed?

Definition (Generator)

Amap Y =(g1,...,&n) €FIy,..., ¥]" is a hitting-set generator for a
class ¢ if

VCe® , C#0<=Co¥+#0.

The degree of the generator is max;(degg;). The stretch is { — n.

Lemma
Let9=(gi1,...,8n) €F[1,..., ¥]" be an explicit hitting-set generator
for €(n, D, s) of degree d. Then, we have

> An explicit hitting set H of size (d D + 1)

Generators assuming hardness

| Hardness assumption | Hitting set size

Generators assuming hardness

Hardness assumption

Hitting set size

[Kabanets-Impagliazzo]

{pn} requires n®W size
{pn} requires 2" size
{p,} requires 22 size

25, Ye>0
2p01y10gs
s O(logs)

Generators assuming hardness

Hardness assumption

Hitting set size

{pn} requires n®W size 25°,Ve>0
[Kabanets-Impagliazzo] | {p,} requires 2™ ¢iza gpolylogs

{p,} requires 22 size 5Ologs)
[Kumar-S-Tengse] {Pk,d}d requires dV size | sexplexpllog”s)

Generators assuming hardness

Hardness assumption

Hitting set size

{pn} requires n®W size 25, Ve>0
[Kabanets-Impagliazzo] | {p,} requires 2™ ¢iza gpolylogs

{p,} requires 22 size 5Ollogs)
[Kumar-S-Tengse] {Pk,d}d requires d1) size | sexplexplogs)

m

SO(I)

Generators assuming hardness

Hardness assumption

Hitting set size

{pn} requires n®W size 25, ¥e>0
[Kabanets-Impagliazzo] | {p,} requires 2™ ¢iza gpolylogs

{p,} requires 22 size sOllogs)
[Kumar-S-Tengse] {pr.a}, requires ¥V size | sexplexpllog’s)
This work {Pr.a}, requires a3+ size | O

Generators assuming hardness

Hardness assumption

Hitting set size

{pn} requires n®W size 25, Ve>0
[Kabanets-Impagliazzo] | {p,} requires 2™ ¢iza gpolylogs

{p,} requires 22 size 5Ollogs)
[Kumar-S-Tengse] {Pk,d}d requires d1) size | sexplexplogs)
This work {Pr.a}, requires a3+ size | O

{Pr.a}, requires a1+ size | O

Our results

Main Theorem

Theorem ([Guo-Kumar-S-Solomon])
For any k-variate polynomial P of degree d,

Main Theorem

Theorem ([Guo-Kumar-S-Solomon])
For any k-variate polynomial P of degree d, there is an explicit map

Yp=(81,-- &) EF Vs, Vi 21s e 21)"

such that

Main Theorem

Theorem ([Guo-Kumar-S-Solomon])
For any k-variate polynomial P of degree d, there is an explicit map

Yp=(81,-- &) EF Vs, Vi 21s e 21)"

such that
» deg(%p)=d and 9p is d °P-explicit,

Main Theorem

Theorem ([Guo-Kumar-S-Solomon])
For any k-variate polynomial P of degree d, there is an explicit map

Yp=(81,-- &) EF Vs, Vi 21s e 21)"

such that
» deg(%p)=d and 9p is d °P-explicit,
» For any nonzero circuit C € 6(n, D, s),

ifCo%p=0 , then size(P)< dF

Main Theorem

Theorem ([Guo-Kumar-S-Solomon])
For any k-variate polynomial P of degree d, there is an explicit map

Yp=(81,-- &) EF Vs, Vi 21s e 21)"

such that
» deg(%p)=d and 9p is d °P-explicit,
» For any nonzero circuit C € 6(n, D, s),

ifCo%p=0 , thensize(P)<n'"%.s-d%.D

Main Theorem

Theorem ([Guo-Kumar-S-Solomon])
For any k-variate polynomial P of degree d, there is an explicit map

Yp=(81,-- &) EF Vs, Vi 21s e 21)"

such that
» deg(%p)=d and 9p is d °P-explicit,
» For any nonzero circuit C € 6(n, D, s),

ifCo%p=0 , thensize(P)<n'"%.s.-d% D<dF

(Think of d = n'°%)

Main Theorem

Theorem ([Guo-Kumar-S-Solomon])
For any k-variate polynomial P of degree d, there is an explicit map

Yp=(81,-- &) EF Vs, Vi 21s e 21)"

such that
» deg(%p)=d and 9p is d °P-explicit,
» For any nonzero circuit C € 6(n, D, s),

ifCo%p=0 , thensize(P)<n'"%.s.-d% D<dF

(Think of d = n'°%)

In other words, if P is hard enough, then 9p is a hitting-set generator
for €(n,D,s).

Main Theorem

Theorem ([Guo-Kumar-S-Solomon])
For any k-variate polynomial P of degree d, there is an explicit map

Yp=(81,-- &) EF Vs, Vi 21s e 21)"

such that
» deg(%p)=d and 9p is d °P-explicit,
» For any nonzero circuit C € 6(n, D, s),

ifCo%p=0 , then size(P)<n'%.s.d-D<dF

(Think of d = n'°%)

In other words, if P is hard enough, then 9p is a hitting-set generator
for €(n,D,s).

Some consequences

Corollary

Let k be a large enough constant and € > 0. Suppose {Pk, d } gisan
explicit family of polynomials with deg P, ; = d such that
{Pk,d } 4 requires size d 3 (orsize d1+),

Then, there is an explicit hitting set for 6 (s, s, s) of size poly(s).

Some consequences

Corollary

Let k be a large enough constant and € > 0. Suppose {Pk, d } gisan
explicit family of polynomials with deg P, ; = d such that
{Pk,d } 4 requires size d 3 (orsize d1+),

Then, there is an explicit hitting set for 6 (s, s, s) of size poly(s).

Proof.
Set d > s\10%+2/¢ and P = P 4.

Some consequences

Corollary

Let k be a large enough constant and € > 0. Suppose {Pk, d } gisan
explicit family of polynomials with deg P, ; = d such that
{Pk,d } 4 requires size d 3 (orsize d1+),

Then, there is an explicit hitting set for 6 (s, s, s) of size poly(s).

Proof.
Set d > s\10%+2/¢ and P = P 4.
If0#£C e<6(s,s,s)suchthat Co¥%p =0,

Some consequences

Corollary

Let k be a large enough constant and € > 0. Suppose {Pk, d } gisan
explicit family of polynomials with deg P, ; = d such that
{Pk,d } 4 requires size d 3 (orsize d1+),

Then, there is an explicit hitting set for 6 (s, s, s) of size poly(s).

Proof.
Set d > s\10%+2/¢ and P = P 4.
If0# C € <6(s,s,s)suchthat C o¥p =0, then

size(P) < s'%%. 2. 48

Some consequences

Corollary

Let k be a large enough constant and € > 0. Suppose {Pk, d } gisan
explicit family of polynomials with deg P, ; = d such that
{Pk,d } 4 requires size d 3 (orsize d1+),

Then, there is an explicit hitting set for 6 (s, s, s) of size poly(s).

Proof.
Set d > s\10%+2/¢ and P = P 4.
If0# C € <6(s,s,s)suchthat C o¥p =0, then

size(P) < s'%%. 2. 48

< d3+€

Some consequences

Corollary

Let k be a large enough constant and € > 0. Suppose {Pk, d } gisan
explicit family of polynomials with deg P, ; = d such that
{Pk,d} 4 requires size d3+€ (orsize d'+).

Then, there is an explicit hitting set for 6 (s, s, s) of size poly(s).

Proof.

Set d > s\10%+2/¢ and P = P 4.

If0# C € <6(s,s,s)suchthat C o¥p =0, then
size(P) < s'%%. 2. 48

< d3*¢ which is impossible.

Some consequences

Corollary

Let k be a large enough constant and € > 0. Suppose {Pk, d } gisan
explicit family of polynomials with deg P, ; = d such that
{Pk,d} 4 requires size d3+€ (orsize d'+).

Then, there is an explicit hitting set for 6 (s, s, s) of size poly(s).

Proof.
Set d > s\10%+2/¢ and P = P 4.
If0# C € <6(s,s,s)suchthat C o¥p =0, then
size(P) < s'%%. 2. 48
< d3*¢ which is impossible.

Hence C o ¥%p is a nonzero 2k-variate polynomial of degree at most
ds. Ol

Some consequences

Corollary

Let k be a large enough constant and € > 0. Suppose {Pk, d } gisan
explicit family of polynomials with deg P, ; = d such that
{Pk,d} 4 requires size d3+€ (orsize d'+).

Then, there is an explicit hitting set for 6 (s, s, s) of size poly(s).

Proof.
Set d > s\10%+2/¢ and P = P 4.
If0# C € <6(s,s,s)suchthat C o¥p =0, then
size(P) < s'%%. 2. 48
< d3*¢ which is impossible.

Hence C o %p is a nonzero 2k-variate polynomial of degree at most
ds. Hence, we have a hitting set of size (d s)2k = sO(k*/¢), O

Revisiting variable reductions

I

C

TTTTTTTTTTT

Variable Reduction

1117

n M

Revisiting variable reductions

I

C

TTTTTTTTTTT

Variable Reduction

1117

n M

Hitting-set Generator: C£0 <= Co%#0

Revisiting variable reductions

I

C

TTTTTTTTTTT

Variable Reduction

1117

n M

Hitting-set Generator: C£0 <= Co%#0

Dream: size(Co¥) =~ size(C)+size(¥Y)

The Kronecker Map

The Kronecker Map

The Kronecker Map

...xen — y[eleZ'"en]Z

The Kronecker Map

H = (l,y,yz,y4,...,y2n_l)

e e lerere,]
xl ,,,xnn — y 1€2 nl2

If P is a n-variate multilinear polynomial, then
P ot is a univariate polynomial of degree at most 2”.

The Kronecker Map

H = (l,yl,ylz,...,yl2 1,...,1,y,,...,yt2m_1) (n=tm)

€1 e lerenlz [exenls
xl ...xnn — yl ...yt*

If P is a n-variate multilinear polynomial, then
Po X is a t-variate polynomial of degree at most 2"/¢.

The Kronecker Map

H = (l,yl,ylz,...,yl2 1,...,1,y,,...,yt2m_1) (n=tm)

le1em]2 . [exenls

..y[

€1 e
XXt =N

If P is a n-variate multilinear polynomial, then
Po X is a t-variate polynomial of degree at most 2"/¢.

[Kabanets-Impagliazzol: If {P,}, multilinear, with size(P,) > 27/1000,
then we have s90°85)_sized hitting sets.

The Kronecker Map

1

m— m—1
%t:(l,yl,ylz,...,ylz ,...,l,yt,...,yt2) (n=tm)

e e leremls le,enlz
xl ...xn'l — yl yt

If P is a n-variate multilinear polynomial, then
Po X is a t-variate polynomial of degree at most 2"/¢.

[Kabanets-Impagliazzol: If {P,}, multilinear, with size(P,) > 2"/1000,
then we have s90°85)_sized hitting sets.

New: If, for some constant t, suppose size(P, o .,) > 20+&)n/t

The Kronecker Map

1

m— m—1
%t:(l,yl,ylz,...,ylz ,...,l,yt,...,yt2) (n=tm)

e e leremls le,enlz
xl ...xn'l — yl yt

If P is a n-variate multilinear polynomial, then
Po X is a t-variate polynomial of degree at most 2"/¢.

[Kabanets-Impagliazzol: If {P,}, multilinear, with size(P,) > 2"/1000,
then we have s90°85)_sized hitting sets.

New: If, for some constant ¢, suppose size(P, o ;) > 2(+en/t— gl+e

The Kronecker Map

1

m— m—1
%t:(l,yl,ylz,...,ylz ,...,l,yt,...,yt2) (n=tm)

e e leremls le,enlz
xl ...xn'l — yl yt

If P is a n-variate multilinear polynomial, then
Po X is a t-variate polynomial of degree at most 2"/¢.

[Kabanets-Impagliazzol: If {P,}, multilinear, with size(P,) > 2"/1000,
then we have s90°85)_sized hitting sets.

New: If, for some constant ¢, suppose size(P, o ;) > 20+&n/t — gl+e
then we have poly(s)-sized hitting sets.

Consequences for bootstrapping

Theorem. [Kumar-S-Tengse]
Let £ > 0 and k (large enough) be fixed constants.

If, for all s > k, we have explicit hitting sets for €(k, s, s) of size

Sk—s,

then, we have explicit hitting sets for 6(s, s, s) of size

s exp(exp(log*s))

Consequences for bootstrapping

Corollary
Let £ > 0 and k (large enough) be fixed constants.

If, for all s > k, we have explicit hitting sets for ¢ (k, s, s) of size
Sk—s,
then, we have explicit hitting sets for ¢ (s, s, s) of size

o(1)

Circuits and border are crucial for this.

What'’s all this
border stuff?

The Border

All polynomials

The Border

All polynomials

The Border

All polynomials

The Border

All polynomials

The Border

All polynomials

@ Does not have size s circuits, but arbitrarily close to those that do.

Border computation: an example

¢ ={f: f=07+09 , deg(t,), deg(t,)=1}

Border computation: an example
¢ ={f: f=07+09 , deg(t,), deg(t,)=1}

Fact
If x4y =gflfl+...+£?,then s>d.

Border computation: an example
¢ ={f: f=07+09 , deg(t,), deg(t,)=1}

Fact
If x4y =¢¢+--+(9, then s > d.
Hence, x4~y ¢ € forany d > 3.

Border computation: an example
¢ ={f: f=07+09 , deg(t,), deg(t,)=1}

Fact
If x4y =¢¢+--+(9, then s > d.
Hence, x4~y ¢ € forany d > 3.

However,

3 (x +ey)?—x4

¢ d-e

Border computation: an example
¢ ={f: f=07+09 , deg(t,), deg(t,)=1}

Fact
If x4y =¢¢+--+(9, then s > d.
Hence, x4~y ¢ € forany d > 3.

However,

3 (x +ey)?—x4

¢ d-e

=x%1y+0(e)

Border computation: an example
¢ ={f: f=07+09 , deg(t,), deg(t,)=1}

Fact
If x4y =¢¢+--+(9, then s > d.
Hence, x4~y ¢ € forany d > 3.

However,

3 (x +ey)?—x4

¢ d-e

=xy +0(e) = x4y

Border computation: an example
¢ ={f: f=07+09 , deg(t,), deg(t,)=1}

Fact
If x4y =¢¢+--+(9, then s > d.
Hence, x4~y ¢ € forany d > 3.

However,

_(xtey)?—x?
B d-e

C :xd_1y+0(£) 3 xd_ly

Hence, x?~'y € 6 butnotin €.

The one trick that we will need

The one trick that we will need

Task: Given a circuit C of size s computing a polynomial P of
degree d. Compute P,, the degree d homogeneous part of P.

The one trick that we will need

Task: Given a circuit C of size s computing a polynomial P of
degree d. Compute P,, the degree d homogeneous part of P.

Standard solution: “Homogenize” the circuit and extract the
degree d part. Can be done using a circuit of size O(sd?).

The one trick that we will need
Task: Given a circuit C of size s computing a polynomial P of
degree d. Compute P,, the degree d homogeneous part of P.

Standard solution: “Homogenize” the circuit and extract the
degree d part. Can be done using a circuit of size O(sd?).

Border trick:

C(x1,...,X,) = Pp+P +---+Py

The one trick that we will need

Task: Given a circuit C of size s computing a polynomial P of
degree d. Compute P,, the degree d homogeneous part of P.

Standard solution: “Homogenize” the circuit and extract the
degree d part. Can be done using a circuit of size O(sd?).

Border trick:

X X P P
C(—l,...,—”) = P+ — 42
£ £ £ ed

The one trick that we will need

Task: Given a circuit C of size s computing a polynomial P of
degree d. Compute P,, the degree d homogeneous part of P.

Standard solution: “Homogenize” the circuit and extract the
degree d part. Can be done using a circuit of size O(sd?).

Border trick:

x x _
£d~C(?1,...,?") = &P+ P+ + Py

The one trick that we will need

Task: Given a circuit C of size s computing a polynomial P of
degree d. Compute P,, the degree d homogeneous part of P.

Standard solution: “Homogenize” the circuit and extract the
degree d part. Can be done using a circuit of size O(sd?).

Border trick:

x x _
£d~C(?1,...,?") = &P+ P+ + Py

£—0
— Py

The one trick that we will need

Task: Given a circuit C of size s computing a polynomial P of
degree d. Compute P,, the degree d homogeneous part of P.

Standard solution: “Homogenize” the circuit and extract the
degree d part. Can be done using a circuit of size O(sd?).

Border trick:

x x _
£d~C(?1,...,?") = &P+ P+ + Py

£—0
— Py

size(P;) < size(P)

The one trick that we will need

Task: Given a circuit C of size s computing a polynomial P of
degree d. Compute P,, the degree d homogeneous part of P.

Standard solution: “Homogenize” the circuit and extract the
degree d part. Can be done using a circuit of size O(sd?).

Border trick:

x x _
£d~C(?1,...,?") = &P+ P+ + Py

£—0
— Py

size(P;) < size(P)

P; can be computed in size s as well!

\begin{proof}

Designing generators

Any sufficiently advanced
technology
is indistinguishable

from magic

Designing generators

Any sufficiently hard polynomial’s evaluations
on disjoint inputs
is indistinguishable, for a small circuit,

from random inputs

Designing generators

Any sufficiently hard polynomial’s evaluations
on disjoint inputs
is indistinguishable, for a small circuit,

from random inputs

Gy V)= (Y- Yo PY1), -, P(yi))

Designing generators

Any sufficiently hard polynomial’s evaluations
on “almost disjoint” inputs
is indistinguishable, for a small circuit,

from random inputs

Gy V)= (Y- Yo PY1), -, P(yi))

Designing generators

Any sufficiently hard polynomial’s evaluations
on “almost disjoint” inputs
is indistinguishable, for a small circuit,

from random inputs

[KLNWI: 4 (..) — (P(yls,),-.., P(yls,))

Designing generators

Any sufficiently hard polynomial’s components
‘Taylored’ appropriately
is indistinguishable, for a small circuit,

from random inputs

Description of our generator

Description of our generator

Py+2)=P@)+ D _yi-(@PY2)+ D yiy; (8 jP)2)+-+-
i ij

Description of our generator

Py+2)=P@)+ D _yi-(@PY2)+ D yiy; (8 jP)2)+-+-
i ij

AN
o e!

Description of our generator

Py+2)=P@)+ D _yi-(@PY2)+ D yiy; (8 jP)2)+-+-
i i,j

AN
o e

Definition (The generator)
For a k-variate polynomial P, define

NI NCE)
elel=i

The generator ¥p is defined as

Gp =(Dg(P), A (P), Ayp(P), ..., Ay(P)) € (Flyprp 2)"

Description of our generator

Py+2)=P(2)+ D _yi-(@P)2)+ D yi1y; (8 P)@)+-+-
i i,j

AN
o e

Definition (The generator)
For a k-variate polynomial P, define

NI NCE)
elel=i

The generator ¥p is defined as

Gp =(Ag(P), Ay (P), Ayp(P),..., Ay(P)) € (Flyprp zi)"

Description of our generator

Ply+2)=P(z)+ D y-(0,P)z)+ Zyly] i P)2)+

AN
o e

Definition (The generator)
For a k-variate polynomial P, define

=3 ¥arm

e:le|=i el

The generator ¥p is defined as

Gp =(Dg(P), A (P), Ay(P),..., Ay(P)) € (Flyiap, 2)™

Description of our generator

Py+2)=P@)+ D _yi-(@PY2)+ D yiy; (8 1 P)z)+-+-
i i,j

AN
o e

Definition (The generator)
For a k-variate polynomial P, define

NI NCE)
elel=i

The generator ¥p is defined as

Gp =(Ag(P), A1(P), As(P), ..., Ap(P)) € (Flypap zig)"

Proof overview

Proof overview

» Assume C # 0 is a small circuit such that C 0 9p =0.

Proof overview

» Assume C # 0 is a small circuit such that C 0 9p =0.

» Show that we can use C, and a little more, to get a circuit that
computes P.

Proof overview

» Assume C # 0 is a small circuit such that C 0 9p =0.

» Show that we can use C, and a little more, to get a circuit that
computes P.

Idea: Think of C(Ay(P),...,A,(P))=0asa
differential equation and solve for P.

Cauchy-Kowalevski Equations

(%)m-(v(t))2+m-g-h(t)=c

Cauchy-Kowalevski Equations

(%)m-(v(t))2+m-g-h(t)=c

Cauchy-Kowalevski Equations

(%)m~(%)2+m~g-h(t):c

Cauchy-Kowalevski Equations

Q(h(2), AM(1))=0

Cauchy-Kowalevski Equations

Q(h(2), AM(1))=0

Solve for h(t) as a power series in t.

Cauchy-Kowalevski Equations

Q(h(2), AM(1))=0

Solve for h(t) as a power series in t.

» Start with some non-degenerate initial conditions:

t=ay ; h(ag)=po ; h/(ao) =7Yo

Cauchy-Kowalevski Equations

Q(h(2), AM(1))=0

Solve for h(t) as a power series in t.

» Start with some non-degenerate initial conditions:
t=ay ; ha)=p ; h'(a)=ro

which is a solution modulo (¢ — #).

Cauchy-Kowalevski Equations

Q(h(2), AM(1))=0

Solve for h(t) as a power series in t.

» Start with some non-degenerate initial conditions:
t=ay ; ha)=p ; h'(a)=ro

which is a solution modulo (¢ — #).

» Lift to a solution modulo (¢ —)%, (£ —)% and so on...

Cauchy-Kowalevski Equations

Q(h(2), AM(1))=0

Solve for h(t) as a power series in t.

» Start with some non-degenerate initial conditions:
t=ay ; ha)=p ; h'(a)=ro

which is a solution modulo (¢ — #).

» Lift to a solution modulo (¢ —)%, (£ —)% and so on...
Newton Iterations

Our situation

Q(h(2), AM(1))=0

Solve for h(t) as a power series in t.

» Start with some non-degenerate initial conditions:
t=ay ; ha)=p ; h'(a)=ro

which is a solution modulo (¢ — #).

» Lift to a solution modulo (¢ —)%, (£ —)% and so on...
Newton Iterations

Our situation

C(Ay(P),...,Ay(P))=0

Solve for h(t) as a power series in t.

» Start with some non-degenerate initial conditions:
t=ay ; ha)=p ; h'(a)=ro

which is a solution modulo (¢ — #).

» Lift to a solution modulo (¢ —)%, (£ —)% and so on...
Newton Iterations

Our situation

C(Ag(P),..., A, (P)=0

Solve for P as a power series in z.

» Start with some non-degenerate initial conditions:
t=ay ; ha)=p ; h'(a)=ro

which is a solution modulo (¢ — #).

» Lift to a solution modulo (¢ —)%, (£ —)% and so on...
Newton Iterations

Our situation

C(Ag(P),..., A, (P)=0

Solve for P as a power series in z.

» Start with some non-degenerate initial conditions:

CO%P:O
(anC)chp#O

» Lift to a solution modulo (t —)%, (£ — t,)® and so on...
Newton lterations

Our situation

C(Ag(P),..., A, (P)=0

Solve for P as a power series in z.

» Start with some non-degenerate initial conditions:

CO%pZO
(8,C)o Yp £ 0.

» Compute the homogeneous parts of P, one by one, via
Newton Iteration

Setting-up the initial conditions

(Assuming that %p is not a generator)

Setting-up the initial conditions

(Assuming that %p is not a generator)
Goal: Find a circuit C’ of small size such that

C'O‘ﬂp:O
(8,C")o %p #0.

Setting-up the initial conditions

(Assuming that %p is not a generator)
Goal: Find a circuit C’ of small size such that

C'O‘ﬂp:O
(8,C")o %p #0.

Setting-up the initial conditions

(Assuming that %p is not a generator)

Goal: Find a circuit C’ of small size such that
Cl o (zgp =0
(8,C")o%p #0.

C(gO’---’gn—lrgn):O

Setting-up the initial conditions

(Assuming that %p is not a generator)

Goal: Find a circuit C’ of small size such that
Cl o (zgp =0
(8,C")o%p #0.

C(x,)= C(go,...,gn_l,xn);o

Setting-up the initial conditions

(Assuming that %p is not a generator)

Goal: Find a circuit C’ of small size such that
Cl o (zgp =0
(8,C")o%p #0.

If C(x,)=C(go>-.»&n1,%,)=0

Setting-up the initial conditions

(Assuming that %p is not a generator)
Goal: Find a circuit C’ of small size such that

C'O‘ﬂp:O
(8,C")o %p #0.

If C(x,)=C(go>-.»&n1,%,)=0

C(xgy.-vr Xp_1,a)#0

Setting-up the initial conditions

(Assuming that %p is not a generator)

Goal: Find a circuit C’ of small size such that
Cl o (zgp =0
(8,C")o%p #0.

If C(x,)=C(go>-.»&n1,%,)=0

C(xgy.-vr Xp_1,a)#0
C(go)--- 8&n1,a)=0

Setting-up the initial conditions

(Assuming that %p is not a generator)
Goal: Find a circuit C’ of small size such that

C/O(zgp =0
(8,C")o %p #0.

If C(xn) = C(gO» -+ 8n—1» xn) =0

C(xgy.-vr Xp_1,a)#0
C(go)--- 8&n1,a)=0

Contradicts minimality!

Setting-up the initial conditions

(Assuming that %p is not a generator)

Goal: Find a circuit C’ of small size such that
Cl o (zgp =0
(8,C")o%p #0.

If é(xn): C(go ----- 8n-1 xn)#o

Setting-up the initial conditions

(Assuming that %p is not a generator)
Goal: Find a circuit C’ of small size such that

C'O‘ﬂp:O
(8,C")o %p #0.

If é(xn) = C(gO» -+ 8n—1» xn) 7£ 0

C(gO’---Jgn—lrgn)zo

Setting-up the initial conditions

(Assuming that %p is not a generator)
Goal: Find a circuit C’ of small size such that

C'O‘ﬂp:O
(8,C")o %p #0.

If C(xn) = C(gO» -+ 8n—1» xn) 7£ 0

C(8or---»8n-1,8n)=0 (x, —g,) divides C

Setting-up the initial conditions

(Assuming that %p is not a generator)

Goal: Find a circuit C’ of small size such that
Cl o (zgp =0
(8,C")o%p #0.

If C(xn) = C(gO» -+ 8n—1» xn) 7£ 0

C(8or---»8n-1,8n)=0 (x,, —g,)? divides C
(3nc)(g0; cee ygn) =0

Setting-up the initial conditions

(Assuming that %p is not a generator)

Goal: Find a circuit C’ of small size such that
Cl o (zgp =0
(8,C")o%p #0.

If C(xn) = C(gO» -+ 8n—1» xn) 7£ 0

C(8or---»8n-1,8n)=0 (x, —g,)% divides C
(3nc)(g0; cee ygn) =0
(22C)(&o»---»8n)=0

Setting-up the initial conditions

(Assuming that %p is not a generator)

Goal: Find a circuit C’ of small size such that
C/ o (gp =0
(6,C")o %p #0.

If C(xn) = C(gO» -+ 8n—1» xn) 7£ 0

C(go---18n-1,8n)=0 (x, —gn) *! divides C
(anc)(gO! -, 8n)=0
(22C)(&o»---»8n)=0

(8, C)gor..-r8n) =0

Setting-up the initial conditions

(Assuming that %p is not a generator)
Goal: Find a circuit C’ of small size such that

C/O(gp =0
(8,C")o 9p 0.

If C(xn) = C(gO» -+ 8n—1» xn) 7£ 0

C(go---18n-1,8n)=0 (x,—g,) ! divides C
(6nC)(g0,...,gn)=0
(3,?C)(g0,...,gn):0

: (x, —gn)" cannot divide C
(2, C)8&o»---»8n)=0 if £ >degC

Setting-up the initial conditions

(Assuming that %p is not a generator)

Goal: Find a circuit C’ of small size such that
Cl o (zgp =0
(8,C")o%p #0.

If C(xn) = C(gO» -+ 8n—1» xn) 7£ 0

(anr C)(gO)---)gn—l)gn):()
(8,71 C)(&os---18n—1,8n) #0

Setting-up the initial conditions

(Assuming that %p is not a generator)
Goal: Find a circuit C’ of small size such that

C/O(zgp =0
(8,C")o %p #0.

If C(xn) = C(gO» -+ 8n—1» xn) 7£ 0

(anr C)(gO)---)gn—l)gn):()
(8,71 C)(&os---18n—1,8n) #0

C’=(3) C)is what we want.

Setting-up the initial conditions

(Assuming that %p is not a generator)

Goal: Find a circuit C’ of small size such that
C/ o (gp =0
(6,C")o %p #0.

If C(xn) = C(gO» -+ 8n—1» xn) 7£ 0

(anr C)(gO)---)gn—l)gn):()
(8,71 C)(&os---18n—1,8n) #0

C’=(3) C)is what we want.

And, size(C’) < size(C)-deg(C)

Some basic properties

NGED IO

elel=i

Some basic properties

NGED IO

elel=i

Additivity:
A(P+Q)=A;(P)+A(Q)

Some basic properties

NGED IO

elel=i

Additivity:
A(P+Q)=A;(P)+A(Q)

‘Homogeneity’:

P(z)=Q(z) mod (z)"
= A;(P)=A;(Q)mod (z)""

Some basic properties

NGED IO

elel=i

Additivity:
A(P+Q)=A;(P)+A(Q)

‘Homogeneity’:

P(z)=Q(z) mod (z)"
= A;(P)=A;(Q)mod (z)'*

\

>

P=Py+---+P,

Ai(P)=A;(P<;yi—1) mod <Z>t

The Reconstruction Step

C'o%p(y,z)=0
(0.C)o9p (y,2)#0

The Reconstruction Step

Clo(gp (y,0)=0
(6,C")o9p (y,0)#0

The Reconstruction Step

Else, replace (z,..., zy) with
(z;—ay,..., Zp— o) in what
follows

Clo(gp (y,0)=0
(6,C")o9p (y,0)#0

The Reconstruction Step

Clo(gp (y,0)=0
(6,C")o9p (y,0)#0

The Reconstruction Step

Clo(gp (y,0)=0
(6,C")o9p (y,0)#0

P=Py+ 4P+ P+ +Py

The Reconstruction Step

Clo(gp (y,0)=0
(6,C")o9p (y,0)#0

P=Py+ 4P+ P+ +Py

Bruteforce
in n%W size

The Reconstruction Step

Clo(gp (y,0)=0
(6,C")o9p (y,0)#0

P=P+-+P,+Py1+:-+P;
Bruteforce Compute, via

in n°k) size Newton iterations,
one by one

The Reconstruction Step

Clo(gp (y,0)=0
(6,C")o9p (y,0)#0

P:P0++Pn+Pn+1++Pd

The Reconstruction Step

Clo(gp (y,0)=0
(6,C")o9p (y,0)#0

P:P0++Pn+Pn+1++Pd

C/(go»---rgn—l»gn):()

The Reconstruction Step

Clo(gp (y,0)=0
(6,C")o9p (y,0)#0

P:P0++Pn+Pn+1++Pd

C'(Ag(P),..., Ap1(P), Ap(P))=0

The Reconstruction Step

Clo(gp (y,0)=0
(6,C")o9p (y,0)#0

P:P0++Pn+Pn+1++Pd

C'(Ay(P),...,A,_1(P),A,(P))=0mod (z)>

The Reconstruction Step

Clo(gp (y,0)=0
(6,C")o9p (y,0)#0

P:P0++Pn+Pn+1++Pd
(A;(P)= Ay(Peyy-1) mod (z)")

C'(Ay(P),...,A,_1(P),A,(P))=0mod (z)>

The Reconstruction Step

Clo(gp (y,0)=0
(6,C")o9p (y,0)#0

P:P0++Pn+Pn+1++Pd
(A;(P)= Ay(Peyy-1) mod (z)")

C/(AO(PSn) ----- An—l(PSn)»An(PSnH))zomOd <Z>2

The Reconstruction Step

Clo(gp (y,0)=0
(6,C")o9p (y,0)#0

P:P0++Pn +Pn+1++Pd
(A;(P)= Ay(Peyy-1) mod (z)")

c’ (AO(PSn) ----- Ap1(Pep), Ap(Pep) + An(Pn-H)) =0mod (z)z

The Reconstruction Step

Clo(gp (y,0)=0
(6,C")o9p (y,0)#0

P:P0++Pn +Pn+1++Pd
(A;(P)= Ay(Peyy-1) mod (z)")

c’ (AO(PSn) ----- A 1(Pep), Ap(Pep) + An(PnJrl)) =0mod (z)z

The Reconstruction Step
C’'o%p(y,0)=0
(6,C")o%p (y,0)£0
P=Py+-+P,+ P, ++P
(Ai(P)=Ai(P<; ;1) mod (z)")
C'(Ag(P<p), -y A1 (Pep), Ap(Pey) + A (Py11)) = 0 mod (z)?
C’(Ro,...,Rp_1, R, + A)=0mod (z)?

The Reconstruction Step

C'o%p(y,0)=0
(6,C)oYp (y,0)£0
P=Py+-+P,+Py. +-+Py
(Ai(P)=A(P<14;-1) mod (z)°)
c’ (AO(PSn) ----- Ap1(Pep), Ap(Pep) + An(Pn-H)) =0mod (z)*
C’(Ry,...,Ry_1, Ry + A)=0mod (z)*

=C'(Ry,...,Ry_1,Ry)+A-((8,C")Ry, ..., R,)) =0 mod (z)?

The Reconstruction Step

Clo(gp (y,0)=0
(6,C")o9p (y,0)#0

P=Py+-+P,+P, . ++Py
(Ay(P)=Ay(P<1i1) mod (z))
C/(AO(PSn) ----- Ay 1(Pen), Ap(Pey) + An(Pn-H)) =0mod (z)°
C’(Ro,...,Rp_1, R, + A)=0mod (z)?
=C’(Ry,...,Ry_1,R;)+A-((8,C")(Ry, ..., R,)(y,0)) = 0mod (z)*

The Reconstruction Step

C'o%p(y,0)=0
(6nC")o9p (y,0)#£0
P=Py+-+P,+P, +--+Py
(Ay(P)=Ay(P<1i1) mod (z))
c’ (AO(PSn) ----- Ap1(Pep), Ap(Pep) + An(Pn-H)) =0mod (z)*
C’(Ry,...,Ry_1, Ry + A)=0mod (z)*
=C'(Ry,.--,Ry_1,R,)+A-((8,C") 0 9p (y,0)) = 0 mod (z)?

The Reconstruction Step

C'o%p(y,0)=0
(6,C)oYp (y,0)£0
P=Py+-+P,+Py. +-+Py
(Ai(P)=A(P<14;-1) mod (z)°)
c’ (AO(PSn)r oo Bp1(Pep), Ap(Pep) + An(Pn-H)) =0mod (z)*
C’(Ry,...,Ry_1, Ry + A)=0mod (z)*

C'(Ry,---,Ry_1,Ry)+A-((6,C") o %p (y,0)) = 0 mod (z)*

. _ C/(R R,) 2
A= () mod 2)

The Reconstruction Step

Clo(gp (y,0)=0
(6,C")o9p (y,0)#0

P:P0++Pn+Pn+1++Pd

C/ (AO(PSH) ----- An(PSI‘L))) mod (z>2

Ay(Pp)= ((8,C")o%p (y,0)

The Reconstruction Step

Clo(gp (y,0)=0
(6,C")o9p (y,0)#0

P:P0++Pn+Pn+1++Pd

C/(AO(PSn) ----- An(PSn))(a;Z)
(6,C")o%p (a,0)

An(Pn-t-l)(a» Z) = () mod <Z>2

The Reconstruction Step

Clo(gp (y,0)=0
(6,C")o9p (y,0)#0

P:P0++Pn+Pn+1++Pd

An(Pn_H)(a’z):(C(AO(PSn) ,,,,, An(PSn))(a;Z)) d ()

(GnC’)oYp (a,0)

By trying many a’s, we can obtain all of d="(P,,)

The Reconstruction Step

Clo(gp (y,0)=0
(6,C")o9p (y,0)#0

P:P0++Pn+Pn+1++Pd

An(PnH)(a,Z):(C(AO(PS'I) ,,,,, An(Pgn))(a,Z)) d ()

(GnC’)oYp (a,0)

By trying many a’s, we can obtain all of d="(P,,)
and hence P, itself

The Reconstruction Step

Clo(gp (y,0)=0
(6,C")o9p (y,0)#0

P:P0++Pn+Pn+1++Pd

An(Pn+1)(a,z):(C (AO(PSn)J---!An(PSn))(aiz)) d<Z>2

(GnC’)oYp (a,0)

By trying many a’s, we can obtain all of d="(P,,)
and hence P, itself

(Euler formula: d - f = x; 0, f, if f homogeneous of degree d)

The Reconstruction Step

Clo(gp (y,0)=0
(6,C")o9p (y,0)#0

P:P0++Pn+Pn+1++Pd

An(PnH)(a,Z):(C(AO(PS'I) ,,,,, An(Pgn))(a,Z)) d ()

(GnC’)oYp (a,0)

By trying many a’s, we can obtain all of d="(P,,)
and hence P, itself

The Reconstruction Step

Clo(gp (y,0)=0
(6,C")o9p (y,0)#0

P:P0++Pn+Pn+1++Pd

An(Pn_H)(a’z):(C(AO(PSn) ,,,,, An(PSn))(a;Z)) d ()

(GnC’)oYp (a,0)

By trying many a’s, we can obtain all of d="(P,,)
and hence P, itself
modulo higher order junk

The Reconstruction Step

Clo(gp (y,0)=0
(6,C)oYp (y,0)£0

P:P0++Pn+Pn+1++Pd

An(PnH)(a,Z):(C(AO(PS'I) ,,,,, An(Pgn))(a,Z)) d ()

(GnC’)oYp (a,0)

By trying many a’s, we can obtain all of d="(P, 1)
and hence P,,; itself

Freculehicnererderivals

Border tricks!
Or careful homogenisation

The Reconstruction Step

Clo(gp (y,0)=0
(6,C)oYp (y,0)£0

P=Py+ 4P+ P+ +Py

c’ (AO(P§n+j)» cee ’An(P§n+j))(a;Z)
(6,C")o %9p (a,0)

Au(Pyy 1)@ z) =()mod (z)/+?

By trying many a’s, we can obtain all of 8="(P,,, ;1)
and hence P, ., itself

Freculehicnererderivals

Border tricks!
Or careful homogenisation

Reconstruction Step

| {8x(P) el <, i<n) !
e e M A
By

: Pictorially

Reconstruction Step

By

: Pictorially

Reconstruction Step

I‘a = (AO(PSn)(a»Z)) veey An(PSn)(a»z))

By

: Pictorially

Reconstruction Step

By

: Pictorially

Reconstruction Step: Pictorially

Ap(Pyir)(@g,z) +junk Ap(Pyir)(an,z)+junk

P

Iy

N

S| rr - 73

Linear combinations

By

Reconstruction Step: Pictorially

Linear combinations + Euler

P Pn
. Loy

S| rr - 73

Linear combinations

By

Reconstruction Step: Pictorially

,,,,,,,,,,,,,,,,,,,,,,,,,,,

By

Reconstruction Step:

,,,,,,,,,,,,,,,,,,,,,,,,,,,

Linear combinations + Euler

4

Iy

N

I A | rr - 73

Linear combinations

By

Pictorially

Reconstruction Step Pictorially

21 2 Zm

Reconstruction Step: Pictorially

,,,,,,,,,,,,,,,,,,,,,,,,,,,

—
A
G
o
A
LS
IA
S
+
—_
=

Linear combinations + Euler

P Pn
. L,

N

I A | rr - 73

Linear combinations

B, 5p.= nOW)

T

21 % Zm

Reconstruction Step:

,,,,,,,,,,,,,,,,,,,,,,,,,,

—
A
G
o
A
LS
IA
S
+
—_
=

Linear combinations + Euler

Iy

N

1 11

4

7

Linear combinations

By
T 1

21 % Zm

Pictorially

nO(k)

S=n O(k)

Reconstruction Step:

,,,,,,,,,,,,,,,,,,,,,,,,,,

—
A
G
o
A
LS
IA
S
+
—_
=

Linear combinations + Euler

Iy

N

1 11

4

7

Linear combinations

By
T 1

21 % Zm

Pictorially

nO(k)

S=n O(k)

Reconstruction Step:

,,,,,,,,,,,,,,,,,,,,,,,,,,

—
A
G
o
A
LS
IA
S
+
—_
=

Linear combinations + Euler

Iy

N

1 11

4

7

Linear combinations

By
T 1

21 % Zm

Pictorially

n0k)
S=n O(k)

S

Reconstruction Step: Pictorially

,,,,,,,,,,,,,,,,,,,,,,,,,,,

 {auB)leln, i<ntj+1} e
A PP o i TTJ
Linear combinations + Euler nOk)
Bia Bin
s’ noWm
Tja, Tjay
I A | rr - 73
Linear combinations nOk)
B; Sj
T T

Z1 Z» Zm Sj+1

Reconstruction Step Pictorially

nOk)

Z1 22 Zm Sj+1

Reconstruction Step Pictorially

nOk)

Z1 22 Zm Sj+1

Reconstruction Step Pictorially

nOk)

Z1 22 Zm Sj+1

sa < s-D-n%%.4

\end{proof}

Conclusion

Conclusion
Summary:

» With suitable hardness, we can get poly-sized hitting sets.

Conclusion
Summary:

» With suitable hardness, we can get poly-sized hitting sets.

» With the border, we can bootstrap from barely non-trivial
hitting sets.

Conclusion
Summary:

» With suitable hardness, we can get poly-sized hitting sets.

» With the border, we can bootstrap from barely non-trivial
hitting sets.

Open Problems:

» Current proof requires characteristic zero fields. Ought to work
for all fields.

Conclusion
Summary:

» With suitable hardness, we can get poly-sized hitting sets.

» With the border, we can bootstrap from barely non-trivial
hitting sets.

Open Problems:
» Current proof requires characteristic zero fields. Ought to work
for all fields.

» The hardness depends on the degree of the circuit we are
fooling. Ought to fool all small size circuits irrespective of
degree (using the border).

Conclusion
Summary:

» With suitable hardness, we can get poly-sized hitting sets.

» With the border, we can bootstrap from barely non-trivial
hitting sets.

Open Problems:

» Current proof requires characteristic zero fields. Ought to work
for all fields.

» The hardness depends on the degree of the circuit we are
fooling. Ought to fool all small size circuits irrespective of
degree (using the border).

\end{document}

	Introduction
	Our results
	Border shit
	Conclusions

