
[CSS.203.1]: Computational Complexity (2026-I)

Summary scribes

git info: cba76d7 , (2026-02-12 08:20:27 +0530)

Lectures

1 Starting with circuits 3
1.1 Introduction . 3

1.1.1 An example to get comfortable with circuits 3
1.2 Counting functions, and circuits . 4
1.3 Dealing with varying lengths . 4

2 Size Hierarchy and Universal Circuits 6
2.1 Recap . 6
2.2 Size Hierarchy . 7
2.3 Circuits as Strings . 7
2.4 Universal Circuits . 7
2.5 Summary . 8

3 Turing Machines 9
3.1 Turing Machines . 9
3.2 Alphabet Reduction . 10
3.3 Tape Reduction . 10
3.4 Universal TM’s . 11
3.5 Time Complextiy classes . 11

1

A dummy’s guide

Theorem 1. This is a cool theorem

In fact we can refer to theorems using Theorem 1.
You could also define lemma, corollary etc. (take a look at thmmacros.tex for the environ-

ments).
Other useful macros are present in lazy_macros.tex and common_macros.tex. You can add

more to them if required.

One pet-peeve: There are many times when people have to define a function called ‘blah’.
There are multiple ways of doing this:

• (worst) $blah$ which renders as blah

• (bad) blah which renders as blah

• (better, but not ideal) blah which renders as blah

• (right) blah which renders as blah

Here is a place where you can see the difference between these:

sinθ sinθ sinθ sin θ

And the same within an emphasised text

sinθ sinθ sinθ sin θ

Here is a general guide for deciding which to use:

If you just want to use text within a math block, then use \text. For examples such
as defining a set called ’PRIMES’ (which are not used as functions or operators),
you may use \mathrm{PRIMES}. If you are defining functions or operators, then use
\operatorname{blah} as it adds the right spacing around it.

Using $blah$ should only be used when you are multiplying four variables called
b, l, a and h.

2

Lecture 1

Starting with circuits
Scribe: Ramprasad Saptharishi

Topics covered in this lecture

• General introduction to the course

• Different circuits for Th2

1.1 Introduction

Complexity is about the study of computational tasks that can be performed by computational
models under certain resource contraints. This takes multiple avatars and we will see several of
them throughout the course.

To begin with, we are going to deal with Boolean functions f : {0, 1}n → {0, 1}. The
computational model we will start with will just be Boolean circuits (made up of

∧
,
∨

gates (of
arbitrary fan-in) and ¬ gates (of fan-in 1, obviously)).

1.1.1 An example to get comfortable with circuits

Consider the following simple function: Th2 : {0, 1}n → {0, 1} that is 1 whenever the input has
at least two 1s in it. There are several ways we can try to compute this function via a circuit.

• The obvious method: Run through every pair of variables and check if both are one:

∨
i ̸=j∈[n]

∧
(xi, xj)

This circuit has O(n2) gates and wires, and depth 2.

• Linear cuts: Run through each i = 2, . . . , n−1 and check if there is a 1 among {1, . . . , i − 1}

3

and {i, . . . , n}.

n−1∨
i=2

i−1∨
j=1

xj

 ∧

 n∨
j=i

xj


This has O(n) gates, O(n2) wires and depth 3.

• Hiding approach: For each i, let x−i be the (n − 1)-bit string obtained by removing the
i-th coordinate. If the input has at least 2 ones if and only if

∨
(x−i) = 1 for all i.

n∧
i=1

∨
(x−i)

(and a few more such examples)

1.2 Counting functions, and circuits

It is easy to note that the number of functions f : {0, 1}n → {0, 1} is exactly 22n
. How do

we count the number of circuits of a given size (where size is say the number of gates)? For
simplicity, let us just assume that the circuit has fan-in bounded by 2 (if you need larger fan-in,
just split that into multiple gates of the same type of fan-in 2 each).

To count this, we will just try to describe each circuit as a string (its encoding), and we
will just count the number of such strings. To describe a circuit entirely, we merely need to
describe each gate — what is its type, and what are the children of that gate. If we index the
gates as 1, . . . , s (including the literals x1, . . . , xn as gates as well), each gates needs 2 bits to
describe its type (AND, OR or NOT), and 2 log s bits to describe the two children feeding into
it. Thus, every circuit of size s can be described using about 2s log s + 2s gates. Thus, we have
the following bound on the number of circuits of a certain size.

Observation 1.1. The number of fan-in 2 circuits of size s is at most 22s log s+2s.

As a corollary, we immediately get the following.

Corollary 1.2 (Existence of ‘hard’ functions). For all n large enough, there exists Boolean functions
f : {0, 1}n → {0, 1} that cannot be computed by circuits of size at most 2n/10n.

Proof. Set s = 2n/10n in Corollary 1.2 and we see that the number of circuits is way smaller
than 22n

.

To contrast this, note that every function can be computed using a circuit of about 2n gates
using the truth-table.

1.3 Dealing with varying lengths

One drawback of circuits is that the input length is fixed. Thus, if the idea was to compute
functions f : {0, 1}∗ → {0, 1}, we cannot hope to compute it using a single circuit. Thus, we

4

will often be dealing with families of circuits {Cn : n ∈ N} such that Cn handles inputs of
length in.

For such a family, we can now talk about its size as a function s : N → N where s(n) is
just the size of Cn. Now that we have such a function, we can talk about a circuit family being
O(n2) size etc. to mean that s(n) = O(n2).

Thus, if we define SIZE(s) as

SIZE(s) =
{

f : {0, 1}∗ → {0, 1} : f is computable by a size s circuit family
}

,

then the discussion above can be phrased as saying that SIZE(2n · n) contains all functions,
and there are functions that are not in SIZE(2n/10n). In fact, we will soon see that something
stronger is true — for every ‘reasonable’ s, we have that SIZE(s) ⊊ SIZE(10s). “With more
gates comes more computation”

5

Lecture 2

Size Hierarchy and Universal Circuits
Scribe: Aindrila Rakshit

Topics covered in this lecture

• Circuit size hierarchy

• Circuits as strings

• Universal circuits

2.1 Recap

Recall that a Boolean circuit Cn computes a function f : {0, 1}n → {0, 1}. To compute functions
on inputs of varying lengths, we consider families of circuits {Cn}n∈N, where Cn handles inputs
of length n.

The size of a circuit family is measured by a function s : N → N, where s(n) denotes the
number of gates in Cn.

From the previous lecture:

• The number of Boolean functions on n bits is 22n
.

• The number of circuits of size s is at most 2O(s log s).

• Hence, there exist functions requiring circuit size at least 2n/(10n).

• Every Boolean function is computable by a circuit of size O(2n · n).

We now show that allowing more gates strictly increases the computational power of cir-
cuits.

6

2.2 Size Hierarchy

Theorem 2.1 (Size Hierarchy Theorem). For any 0 ≤ s ≤ 2n/(10n),

SIZEn(s) ⊊ SIZEn(s + O(n)).

Proof. From the counting argument last lecture, we know that there exists a hard function
f ∗ : {0, 1}n → {0, 1} that requires circuit of size at least 2n/(10n).

Order all n-bit strings lexicographically.
Define a sequence of functions { f (ā)} : {0, 1}n → {0, 1} by

{ f ā}(x) =

 f ∗(x) if x ≤ a,

0 otherwise.

Observe that { f (0̄)}(x) is the constant zero function, while { f (1̄)}(x) = f ∗(x) forall x.
Moreover, f (i) and f (i+1) differ on exactly one input.

A circuit for f (i+1) can be obtained from a circuit for f (i) by adding a small equality test
for the differing input and combining the outputs using the circuit in Q1 of the quiz. This
increases the circuit size by O(n) gates. So, size((f (i+1))) ≤ size((f (i)))

Thus, the circuit size increases gradually from O(1) to O(2n/(10n)), implying that for any
s(n) in this range there exists a function computable with size s(n) + O(n) but not with size
s(n).

2.3 Circuits as Strings

A Boolean circuit of size s can be encoded as a binary string of length 2s+ 2 log s by describing,
each gate and type using 2 bits and its two children by log s bits each.

This allows us to treat circuits themselves as inputs to other circuits.

2.4 Universal Circuits

A universal circuit Us,n takes as input:

• a description ⟨C⟩ of a circuit C of size at most s with n inputs, and

• an input x ∈ {0, 1}n,

and outputs C(x).

Theorem 2.2 (Universal Circuit). For all n, s ∈ N, there exists a Boolean circuit Us,n of size
O(s log s) such that for every Boolean circuit C of size at most s with n inputs and every input
x ∈ {0, 1}n,

Us,n(⟨C⟩, x) = C(x),

where ⟨C⟩ denotes a binary description of C.

7

Proof-sketch. A Boolean circuit C of size s can be encoded using 2s + 2 log s bits for each gate,
its type and the 2 children of each gate.

The universal circuit Us,n simulates C gate by gate. Let g1, g2, . . . , gs be the gates of C, and
let Gi denote the value of gate gi on input x. The description ⟨C⟩ specifies, for each gate gi, its
gate type and its 2 children.

We can imagine that we have wires g1, . . . , gs, which are initialised to zeroes, and wire gi is
supposed to hold the value of the gate gi. If we wish to update the value of gate i (after having
computed all the previous gates), build a circuit of the form:

g(new)
i = Lookup2 (ci,1ci,2, AND(gi1 , gi2), OR(gi1 , gi2), NOT(gi1), xi1)

where ci,1ci,2 is the two bits that determine the type of the gate i, and i1 and i2 are the two
children feeding in. Of course, we also need to lookup gi1 , gi2 etc. (all the parts above in blue)
from the circuit description, but they are also appropriate lookup circuits.

One can check that the size of the universal circuit is O(s2 log s) (since there are s phases
that computes one gate each, and the lookups are of size O(s log s)).

2.5 Summary

• There is a strict hierarchy of circuit size classes.

• Circuits can efficiently simulate other circuits.

• Circuit complexity is inherently non-uniform.

8

Lecture 3

Turing Machines
Scribe: Ananya Ranade

Topics covered in this lecture

• What are Turing Machines?

• Alphabet and Tape Reductions

• Universal Turing Machines

• Time Complexity

In this lecture we understood what are Turing Machines, and how they correctly capture
the idea of computation.

3.1 Turing Machines

A Turing machine is a machine which is composed of an infinite input tape, several work tapes
and a finite state machine (automaton). The input to the machine is written on the one-sided
infinite input tape starting from it’s left most end. It is followed by the special symbol # which
is followed by all the way to infinity. The machine is allowed to make changes to the input
tape once it starts running.

The tape alphabet Γ is a finite set of symbols. Here we assume it is some set containing
{0, 1, #, } with #, special symbols only used to indicate end of input and space respectively.

The work tapes are initially blank one-sided infinite tape on which we can read, write and
erase one symbol at a time.

The finite state machine has heads (pointers) to the input tape and each of the work tapes,
and the heads can read, write or erase symbol in the current cell it is pointing at. It can also
move left or right by 1 place at a time. These instructions are given by the current state of the
finite state machine after reading the symbols the heads are currently reading. The finite state
machine has 3 special states : qstart, qaccept, qreject. The machine starts from initial state qstart with

9

all heads at leftmost ends of the respective tapes. It accepts the input and stops running once
it reaches qaccept state, and it rejects the input and stops running once it reaches qreject state.

Definition 3.1 (Basic aspects of Turing machines). 1. Language computed by TM M is denoted
L(M) which is {x : M on x accepts}.

2. M is a halting TM if it halts on all inputs.

3. M computes f : Σ∗ → {0, 1} if f (x) = 1 ⇐⇒ x ∈ L(M).

4. Time Complexity of M : Let TM,x be the number of steps M took to run on input x. Then the time
complexity of M denoted TM is a function from N → N where TM(n) = maxx∈Σn TM,x. Time
complexity of f : Σ∗ → {0, 1} is the lowest time complexity among all possible halting TM’s M
computing f .

♢

After defining so many things, it is a natural question to ask that does the time complexity
change a lot based on the number of tapes or alphabet size, since in the definition of TM we
allowed it to have any finite alphabet size and work tapes.

To address this issue we will prove the following theorems.

3.2 Alphabet Reduction

Theorem 3.2. If M is a TM with tape alphabet Γ, then there is an equivalent TM M′ with tape alphabet
{0, 1, #, }. Furthermore TM′ = O(TM) where the constant depends only on |Γ|..

Proof-idea. In order to compensate for a smaller alphabet size, we make the finite state machine
larger. Basically we will encode all symbols inΓ using roughly log|Γ| size binary encoding.
The states in the automaton will slowly read the log|Γ| size encoding one step at a time and
basically simulate one move of M in around log |Γ| steps. Thus, we can always reduce the tape
alphabet. However, in doing so, we incur log |Γ| factor extra time. This is a constant which
depends only on the alphabet size and not on other parameters like input and hence it is not a
bad blow up.

3.3 Tape Reduction

Theorem 3.3. If M is a TM with k tapes then there is an equivalent TM M′ with just 2 tapes. T′
M =

O(TM log(TM)).

Proof Idea : We will interleave the content on all work tapes in a single tape. We will need
a symbol α′ for each symbol α in the alphabet of M. This is basically to tell the ith tape head
pointer would have been at this position. Then, we just scan across all the k tape heads and
then move. Since on input of length n it is spending atmost TM(n) time, the maximum it has
to traverse to simulate 1 step of M is TM(n). So, to simulate M on length n input, it needs
atmost TM(n)2 time. We can also reduce the alphabet size as done in previous part. Thus,
TM′ = O(T2

M) where the constant depends on k, |Γ|.

10

We can do this in a better way. Assume that the alphabet size is |Γ|k, and we have a 2
sided infinite work tape. From the starting head position, we split the left and right side into
consecutive blocks L1, L2, ... and R1, R2, ... respectively, where |Li| = |Ri| = 2i. Further, at any
point for all i, Li and Ri are either full or empty and atmost one of them is full. Now, we try to
simulate all k head movements by thinking of it as moving tapes instead of moving heads, and
then doing the corresponding changes to the work tape. Since there are a lot of blank spaces,
the amortised time to do this TM times is log(TM). We can convert it to smaller alphabet size
and single sided infinite tape by incurring constant factor blow up. Thus, O(TM · log(TM))

time suffices.
Any TM M can be fully described by providing the description of states, transitions, tape

alphabet, and number of tapes. All these can be described as binary strings using some con-
vention. Thus, each TM has a finite encoding as a binary string. We denote it as ⟨M⟩. Further,
we will say that any string of the form ⟨M⟩ #α (where # is a special symbol and α is any finite
string) is also an encoding of M denoted ⟨M⟩α. Thus, any TM M has infintely many encodings.

3.4 Universal TM’s

We can build a TM U which takes as input (⟨M⟩ , x) and does what M does on x. Furthermore,
TU (⟨M⟩ , x) = O(TM,x log(TM,x)), where the constant depends only on Γ, k and not the padding
α. The idea is the same as in tape reduction proof.

3.5 Time Complextiy classes

Let f : N → N be a function. Then, we define the following “deterministic time complexity
classes”:

DTIME(f) := {L ⊆ {0, 1}∗ : There is a det. TM M with L(M) = L with TM = O(f)}

Once we have the above, we can define the class P (of polynomial time computable func-
tions) as

P :=
⋃
c≥1

DTIME(nc)

= {L : ∃ c with L ∈ DTIME(nc)}

11

Bibliography

12

	Starting with circuits
	Introduction
	An example to get comfortable with circuits

	Counting functions, and circuits
	Dealing with varying lengths

	Size Hierarchy and Universal Circuits
	Recap
	Size Hierarchy
	Circuits as Strings
	Universal Circuits
	Summary

	Turing Machines
	Turing Machines
	Alphabet Reduction
	Tape Reduction
	Universal TM's
	Time Complextiy classes

