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Abstract. We study the quality of equilibrium in atomic splittable rout-
ing games. We show that in single-source single-sink games on series-
parallel graphs, the price of collusion — the ratio of the total delay
of atomic Nash equilibrium to the Wardrop equilibrium — is at most 1.
This proves that the existing bounds on the price of anarchy for Wardrop
equilibria carry over to atomic splittable routing games in this setting.

1 Introduction

In a routing game, players have a fixed amount of flow which they route in a
network [16, 18, 24]. The flow on any edge in the network faces a delay, and
the delay on an edge is a function of the total flow on that edge. We look at
routing games in which each player routes flow to minimize his own delay, where
a player’s delay is the sum over edges of the product of his flow on the edge and
the delay of the edge. This objective measures the average delay of his flow and
is commonly used in traffic planning [11] and network routing [16].

Routing games are used to model traffic congestion on roads, overlay routing
on the Internet, transportation of freight, and scheduling tasks on machines.
Players in these games can be of two types, depending on the amount of flow they
control. Nonatomic players control only a negligible amount of flow, while atomic
players control a larger, non-negligible amount of flow. Further, atomic players
may or may not be able to split their flow along different paths. Depending on
the players, three types of routing games are: games with (i) nonatomic players,
(ii) atomic players who pick a single path to route their flow, and (iii) atomic
players who can split their flow along several paths. These are nonatomic [21,
22, 24], atomic unsplittable [3, 10] and atomic splittable [8, 16, 19] routing games
respectively. We study atomic splittable routing games in this work. These games
are less well-understood than either nonatomic or atomic unsplittable routing
games. One significant challenge here is that, unlike most other routing games,
each player has an infinite strategy space. Further, unlike nonatomic routing
games, the players are asymmetric since each player has different flow value.
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An equilibrium flow in a routing game is a flow where no single player can
change his flow pattern and reduce his delay. Equilibria are of interest since
they are a stable outcome of games. In both atomic splittable and nonatomic
routing games, equilibria exist under mild assumptions on the delay functions [4,
17]. We refer to equilibria in atomic splittable games as Nash equilibria and in
nonatomic games as Wardrop equilibria [24]. While the Wardrop equilibrium is
known to be essentially unique [24], atomic splittable games can have multiple
equilibria [5].

One measure of the quality of a flow is the total delay of the flow: the sum
over all edges of the product of the flow on the edge and the induced delay on
the edge. For routing games, one conern is the degradation in the quality of
equilibrium flow caused by lack of central coordination. This is measured by the
price of anarchy of a routing game, defined as the ratio of the total delay of worst-
case equilibrium in a routing game to the total delay of the flow that minimizes
the total delay. Tight bounds on the price of anarchy are known for nonatomic
routing games [20], and are extensively studied in various settings [8, 9, 20, 21, 19,
22, 23]. In [13], Hayrapetyan et al. consider the total delay of nonatomic routing
games when nonatomic players form cost-sharing coalitions. These coalitions
behave as atomic splittable players. Hayrapetyan et al. introduce the notion of
price of collusion as a measure of the price of forming coalitions. For an atomic
splittable routing game the price of collusion is defined as the ratio of the total
delay of the worst Nash equilibrium to the Wardrop equilibrium. Together, a
bound α on the price of anarchy for nonatomic routing games and a bound β
on the price of collusion for an atomic splittable routing game, imply the price
of anarchy for the atomic splittable routing game is bounded by αβ.

For atomic splittable routing games, bounds on the price of anarchy are
obtained in [8, 12]. These bounds do not match the best known lower bounds.
Bounds on the price of collusion in general also remains an open problem. Previ-
ously, the price of collusion has been shown to be 1 only in the following special
cases: in the graph consisting of parallel links [13]; when the players are symmet-
ric, i.e. each player has the same flow value and the same source and sink [8]; and
when all delay functions are monomials of a fixed degree [2]. Conversely, if there
are multiple sources and sinks, the total delay of Nash equilibrium can be worse
than the Wardrop equilibrium of equal flow value, i.e., the price of collusion can
exceed 1, even with linear delays [7, 8].

Our Contribution. Let C denote the class of differentiable nondecreasing con-
vex functions. We prove the following theorem for atomic splittable routing
games.

Theorem 1. In single source-destination routing games on series-parallel graphs
with delay functions drawn from the class C, the price of collusion is 1.

We first consider the case when all delays are affine. We show that in the case
of affine delays in the setting described above, the total delay at equilibrium is
largest when the players are symmetric, i.e. all players have the same flow value



(Section 3). To do this, we first show that the equilibrium flow for a player i
remains unchanged if we modify the game by changing slightly the value of flow
of any player with larger flow value than player i. Then starting from a game
with symmetric players, we show that if one moves flow from a player i evenly to
all players with higher flow value the cost of the corresponding equilibrium flow
never increases. Since it is known that the price of collusion is 1 if the players
are symmetric [8], this shows that the bound extends to arbitrary players with
affine delays.

In Section 4, we extend the result for general convex delays, by showing that
the worst case price of collusion is obtained when the delays are affine.

In contrast to Theorem 1 which presents a bound on the price of collusion,
we also present a new bound on the price of anarchy of atomic splittable routing
games in series-parallel graphs.

Theorem 2. In single source-destination routing games on series-parallel graphs,
the price of anarchy is bounded by k, the number of players.

This bound was proven earlier for parallel links in [12]. For nonatomic routing
games bounds on the price of anarchy depend on the delay functions in the
graph and, in the case of polynomial delays, the price of anarchy is bounded by
O(d/ log d). These bounds are known to be tight even on simple graphs consisting
of 2 parallel links [20]. Theorem 2 improves on the bounds obtained by Theorem 1
when k ≤ d/ log d. All missing proofs are contained in the full version [6].

2 Preliminaries

Let G = (V, E) be a directed graph, with two special vertices s and t called the
source and sink. The vector f , indexed by edges e ∈ E, is defined as a flow of
value v if the following conditions are satisfied.

∑

w

fuw −
∑

w

fwu = 0, ∀u ∈ V − {s, t} (1)

∑

w

fsw −
∑

w

fws = v (2)

fe ≥ 0, ∀e ∈ E .

Here fuw represents the flow on arc (u, w). If there are several flows f1,
f2, · · · , fk, we define f := (f1,f2, · · · , fk) and f−i is the vector of the flows

except f i. In this case the flow on an edge fe =
∑k

i=1 f i
e.

Let C be the class of differentiable nondecreasing convex functions. Each edge
e is associated with a delay function le : R+ → R drawn from C. Note that we
allow delay functions to be negative. For a given flow f , the induced delay on
edge e is le(fe). We define the total delay on an edge e as the product of the
flow on the edge and the induced delay Ce(fe) := fele(fe). The marginal delay



on an edge e is the rate of change of the total delay: Le(fe) := fel
′
e(fe) + le(fe).

The total delay of a flow f is C(f) =
∑

e∈E fele(fe).

An atomic splittable routing game is a tuple (G,v,l,s,t) where l is a vector
of delay functions for edges in G and v = (v1,v2,· · · ,vk) is a tuple indicating
the flow value of the players from 1 to k. We always assume that the players
are indexed by the order of decreasing flow value, hence v1 ≥ v2 · · · ≥ vk. All
players have source s and destination t. Player i has a strategy space consisting
of all possible s-t flows of volume vi. Let (f1, f2, · · · ,fk) be a strategy vector.
Player i incurs a delay Ci

e(f
i
e, fe) := f i

ele(fe) on each edge e, and his objective is
to minimize his delay Ci(f) :=

∑

e∈E Ci
e(f

i
e, fe). A set of players are symmetric

if each player has the same flow value.

A flow is a Nash equilibrium if no player can unilaterally alter his flow and
reduce his delay. Formally,

Definition 3 (Nash Equilibrium). In an atomic splittable routing game, flow
f is a Nash equilibrium if and only if for every player i and every s-t flow g of
volume vi, Ci(f i, f−i) ≤ Ci(g, f−i).

For player i, the marginal delay on edge e is defined as the rate of change
of his delay on the edge Li

e(f
i
e, fe) := le(fe) + f i

el
′
e(fe). For any s-t path p, the

marginal delay on path p is defined as the rate of change of total delay of player
i when he adds flow along the edges of the path: Li

p(f) :=
∑

e∈p Li
e(f

i
e, fe).

The following lemma follows from Karush-Kuhn-Tucker optimality conditions
for convex programs [15] applied to player i’s minimization problem.

Lemma 4. Flow f is a Nash equilibrium flow if and only if for any player i and
any two directed paths p and q between the same pair of vertices such that on all
edges e ∈ p, f i

e > 0, then Li
p(f) ≤ Li

q(f).

By Lemma 4, at equilibrium the marginal delay of a player is the same on
any s-t path on every edge of which he has positive flow. For a player i, the
marginal delay is Li(f) := Li

p(f), where p is any s-t path on which player i has
positive flow on every edge.

For a given flow f and for every player i, we let Ei(f) = {e|f i
e > 0}. P i is

the set of all directed s-t paths p on which for every e ∈ p, f i
e > 0. We will use

e ∈ P i to mean that the edge e is in some path p ∈ P i; then e ∈ P i ⇔ e ∈ Ei.
Let p be a directed simple s-t path. A path flow on path p is a directed flow on
p of value fp. A cycle flow along cycle C is a directed flow along C of value fC .
Any flow f can be decomposed into a set of directed path flows and directed
cycle flows {fp}p∈P ∪ {fc}c∈C , [1]. This is a flow decomposition of f . Directed
cycle flows cannot exist in atomic splittable or nonatomic games (this follows
easily from Lemma 4). Thus, f i in these games can be expressed as a set of path
flows {f i

p}p∈Pi such that f i
e =

∑

p∈Pi:e∈p f i
p. This is a path flow decomposition

of the given flow. A generalized path flow decomposition is a flow decomposition
along paths where we allow the path flows to be negative.



Series-Parallel Graphs. Given graphs G1 = (V1, E1) and G2 = (V2, E2) and
vertices v1 ∈ V1, v2 ∈ V2, the operation merge(v1, v2) creates a new graph
G′ = (V ′ = V1 ∪ V2, E

′ = E1 ∪E2), replaces v1 and v2 in V ′ with a single vertex
v and replaces each edge e = (u, w) ∈ E′ incident to v1 or v2 by an edge incident
to v, directed in the same way as the original edge.

Definition 5. A tuple (G, s, t) is series-parallel if G is a single edge e = (s, t),
or is obtained by a series or parallel composition of two series-parallel graphs
(G1, s1, t1) and (G2, s2, t2). Nodes s and t are terminals of G.
(i) Parallel Composition: s = merge(s1, s2), t = merge(t1, t2),
(ii) Series Composition: s := s1, t := t2, v = merge(s2, t1).

In directed series-parallel graphs, all edges are directed from the source to
the destination and the graph is acyclic in the directed edges. This is without
loss of generality, since any edge not on an s-t path is not used in an equilibrium
flow, and no flow is sent along a directed cycle. The following lemma describes
a basic property of flows in a directed series-parallel graph.

Lemma 6. Let G = (V, E) be a directed series-parallel graph with terminals s
and t. Let h be an s-t flow of value |h|, and c is a function defined on the edges of
the graph G. (i) If

∑

e∈p c(e) ≥ κ on every s-t path p, then
∑

e∈E c(e)he ≥ κ|h|.
(ii) If

∑

e∈p c(e) = κ on every s-t paths p then
∑

e∈E c(e)he = κ|h| .

Vectors and matrices in the paper, except for flow vectors, will be referred
to using boldface. 1 and 0 refer to the column vectors consisting of all ones and
all zeros respectively. When the size of the vector or matrix is not clear from
context, we use a subscript to denote it, e.g. 1n.

Uniqueness of Equilibrium Flow. The equilibria in atomic splittable and
nonatomic routing games are known to be unique for affine delays, up to induced
delays on the edges (this is true for a larger class of delays [4], [17], but here we
only need affine delays). Although there may be multiple equilibrium flows, in
each of these flows the delay on an edge remains unchanged. If the delay func-
tions are strictly increasing, then the flow on each edge is uniquely determined.
However with constant delays, for two parallel links between s and t with the
same constant delay on each edge, any valid flow is an equilibrium flow. In this
paper, we assume only that the delay functions are differentiable, nondecreasing
and convex, hence we allow edges to have constant delays. We instead assume
that in the graph, between any pair of vertices, there is at most one path on
which all edges have constant delay. This does not affect the generality of our re-
sults. In graphs without this restriction there are Nash and Wardrop equilibrium
flows in which for every pair of vertices, there is at most one constant delay path
which has flow in either equilibrium. To see this, consider any equilibrium flow
in a general graph. For every pair of vertices with more than one constant delay
path between them, only the minimum delay path will be used at equilibrium. If
there are multiple minimum constant delay paths, we can shift all the flow onto



a single path; this does not affect the marginal delay of any player on any path,
and hence the flow is still an equilibrium flow.

Lemma 7. For atomic splittable and nonatomic routing games on series-parallel
networks with affine delays and at most one path between any pair of vertices
with constant delays on all edges, the equilibrium flow is unique.

For technical reasons, for proving Theorem 1 we also require that every s-
t path in the graph have at least one edge with strictly increasing delay. We
modify the graph in the following way: we add a single edge e in series with
graph G, with delay function le(x) = x. It is easy to see that for any flow, this
increases the total delay by exactly v2 where v is the value of the flow, and does
not change the value of flow on any edge at equilibrium. In addition, if the price
of collusion in the modified graph is less than one, then the price of collusion in
the original graph is also less than one. The proof of Theorem 2 does not use
this assumption.

3 Equilibria with Affine Delays

In this section we prove Theorem 1 where all delays are affine functions of the
form le(x) = aex + be. Our main result in this section is:

Theorem 8. In a series-parallel graph with affine delay functions, the total de-
lay of a Nash equilibrium is bounded by that of a Wardrop equilibrium of the
same total flow value.

We first present the high-level ideas of our proof. Given a series-parallel graph
G, terminals s and t, and edge delay functions l, let f(·) : R

k
+ → R

m×k
+ denote

the function mapping a vector of flow values to the equilibrium flow in the atomic
splittable routing game. By Lemma 7, the equilibrium flow is unique and hence
the function f(·) is well-defined. Let (G, u, l, s, t) be an atomic splittable routing
game. Our proof consists of the following three steps:

Step 1. Start with vi =
∑k

j=1 uj/k for each player i, i.e. the players are sym-
metric.

Step 2. Gradually adjust the flow values v of the k players so that the total
delay of the equilibrium flow f(v) is monotonically nonincreasing.

Step 3. Stop the flow redistribution process when for each i, vi = ui.

In step 1, we make use of a result of Cominetti et al. [8].

Lemma 9. [8] Let (G, v, l, s, t) denote an atomic splittable routing game with
k symmetric players. Let g be a Wardrop equilibrium of the same flow value
∑k

i=1 vi. Then C(f(v)) ≤ C(g).



Step 2 is the heart of our proof. The flow redistribution works as follows.
Let vi denote the current flow value of player i. Initially, each player i has
vi =

∑k
j=1 uj/k. Consider each player in turn from k to 1. We decrease the flow

of the kth player and give it evenly to the first k − 1 players until vk = uk.
Similarly, when we consider the rth player, for any r < k, we decrease vr and
give the flow evenly to the first r − 1 players until vr = ur. Throughout the
following discussion and proofs, player r refers specifically to the player whose
flow value is currently being decreased in our flow redistribution process.

Our flow redistribution strategy traces out a curve S in R
k
+, where points in

the curve correspond to flow value vectors v.

Lemma 10. For all e ∈ E, i ∈ [k], the function f(v) is continuous and piece-
wise linear along the curve S, with breakpoints occurring where the set of edges
used by any player changes.

In what follows, we consider expressions of the form ∂J(f(v))
∂vi , where J is some

differentiable function defined on a flow (e.g., the total delay, or the marginal

delay along a path). The expression ∂J(f(v))
∂vi considers the change in the function

J(·) evaluated at the equilibrium flow, as the flow value of player i changes by
an infinitesimal amount, keeping the flow values of the other players constant.
Though f(v) is not differentiable at all points in S, S is continous. Therefore,
it suffices to look at the intervals between these breakpoints of S. In the rest of
the paper, we confine our attention to these intervals.

We show that when the flow values are adjusted as described, the total delay
is monotonically nonincreasing.

Lemma 11. In a series-parallel graph, suppose that v1 = v2 = · · · = vr−1 ≥

vr ≥ · · · ≥ vk. If i < r, then ∂C(f(v))
∂vi ≤ ∂C(f(v))

∂vr .

Proof of Theorem 8. By Lemma 9, the equilibrium flow in Step 1 has total
delay at most the delay of the Wardrop equilibrium. We show below that during
step 2, C(f(v)) does not increase. Since the total volume of flow remains fixed,
the Wardrop equilibrium is unchanged throughout. Thus, the price of collusion
does not increase above 1, and hence the final equilibrium flow when v = u also
has this property.

Let v be the current flow values of the players. Since C(f(v)) is a continuous
function of v (Lemma 10), it is sufficient to show that the C(f(v)) does not
increase between breakpoints. Define x as follows: x

r = −1; x
i = 0, if i > r; and

x
i = 1

r−1 , if 1 ≤ i < r. The vector x is the rate of change of v when we decrease
the flow of player r in Step 2. Thus, using Lemma 11, the change in total delay
between two breakpoints in S satisfies

lim
δ→0

C(f(v + δx)) − C(f(v))

δ
= −

∂C(f(v))

∂vr
+

r−1
∑

i=1

∂C(f(v))

∂vi

1

r − 1
≤ 0 .

⊓⊔



The proof of Lemma 11 is described in Section 3.2. Here we highlight the
main ideas. To simplify notation, when the vector of flow values is clear from
the context, we use f instead of f(v) to denote the equilibrium flow.

By chain rule, we have that C(f)
∂vi =

∑

e∈E
∂Le(fe)

∂fe

∂fe

∂vi . The exact expressions

of ∂C(f)
∂vi , for 1 ≤ i ≤ r, are given in Lemmas 18 and 19 in Section 3.2. Our

derivations use the fact that it is possible to simplify the expression ∂fe

∂vi using
the following “nesting property” of a series-parallel graph.

Definition 12. A graph G with delay functions l, source s, and destination t
satisfies the nesting property if all atomic splittable routing games on G satisfy
the following condition: for any players i and j with flow values vi and vj, vi > vj

if and only if on every edge e ∈ E, for the equilibrium flow f , either f i
e = f j

e = 0
or f i

e > f j
e .

Lemma 13 ([5]). A series-parallel graph satisfies the nesting property for any
choice of non-decreasing, convex delay functions.

If a graph satisfies the nesting property, symmetric players have identical
flows at equilibrium. When the flow value of player r is decreased in Step
2, the first r − 1 players are symmetric. Thus, by Lemma 13, these players
have identical flows at equilibrium. Hence, for any player i < r, f i

e = f1
e and

Li
e(f

i
e, fe) = L1

e(f
1
e , fe) for any edge e. With affine delays, the nesting property

has the following implication.

Lemma 14 (Frozen Lemma). Let f be an equilibrium flow in an atomic
splittable routing game (G,v,l,s,t) with affine delays on the edges, and assume
that the nesting property holds for (G,l,s,t). Then for all players j, j 6= i with

Ej(f) ⊆ Ei(f) and all edges e,
∂f j

e

∂vi
= 0.

The frozen lemma has two important implications for our proof. Firstly, in
Step 2, players r + 1, · · · , k will not change their flow at equilibrium. Secondly,
this implies a simple expression for ∂fe

∂vi , 1 ≤ i ≤ r,

∂fe

∂vr
=

k
∑

i=1

∂f i
e

∂vr
= (r − 1)

∂f1
e

∂vr
+

∂f r
e

∂vr
. (3)

∂fe

∂vi
=

k
∑

i=1

∂f i
e

∂vi
=

∂f i
e

∂vi
, ∀i < r . (4)

3.1 Proof of Lemma 14 (Frozen Lemma)

By Lemma 10, we can assume that f is between the breakpoints of S and is thus
differentiable.

Lemma 15. If player h has positive flow on every edge of two directed paths p

and q between the same pair of vertices, then
∂Lh

p(f)

∂vi =
∂Lh

q (f)

∂vi .



Proof. Since f is an equilibrium, Lemma 4 implies that Lh
p(f) = Lh

q (f). Differen-
tiation of the two quantities are the same since f is maintained as an equilibrium.

⊓⊔

Lemma 16. Let G be a directed acyclic graph. For an atomic splittable routing
game (G, v, l, s, t) with equilibrium flow f , let c and κ be defined as in Lemma 6.

Then
∑

e∈E c(e)
∂fi

e(v)
∂vj = κ if i = j, and is zero otherwise.

Proof. Define x as follows: x
j = 1 and x

i = 0 for j 6= i. Then

∑

e∈E

c(e)
∂f i

e(v)

∂vj
=
∑

e∈E

c(e)

(

lim
δ→0

f i
e(v + δx) − f i

e(v)

δ

)

= lim
δ→0

∑

e∈E c(e)(f i
e(v + δx) − f i

e(v))

δ
,

where the second equality is due to the fact that f i
e(·) is differentiable.

For any two s-t flows f i, gi, it follows from Lemma 6 that
∑

e∈E c(e)(f i
e −

gi
e) = κ(|f i| − |gi|). If i 6= j then |f i(v + δx)| = |f i(v)|, hence

∑

e∈E c(e)(f i
e(v +

δx) − f i
e(v)) = 0. If i = j, then |f i(v + δx)| − |f i(v)| = δ, implying that

∑

e∈E c(e)(f i
e(v + δx) − f i

e(v)) = κδ. The proof follows. ⊓⊔

Proof of Lemma 14. We prove by induction on the decreasing order of the
index of j. We make use of the folllowing claim.

Claim 17 Let Sj = {h : Eh(f) ⊇ Ej(f)}. For player j and an s-t path p on
which j has positive flow,

|Sj |
∂Lj

p(f)

∂vi
−

∑

h∈Sj\{j}

∂Lh
p(f)

∂vi
= (|Sj | + 1)

∑

e∈p ae
∂fj

e

∂vi

+
∑

e∈p ae

∂
P

h:Eh(f)⊂Ej (f)
fh

e

∂vi .

Proof. Given players i and h,

∂Lh
p(f)

∂vi
=
∑

e∈p

ae

∂(fe + fh
e )

∂vi
. (5)

Summing (5) over all players h in Sj\{j} and subtract it from |Sj | times (5)
for player j gives the proof. ⊓⊔

Let Gj = (V, Ej). By definition, all players h ∈ Sj have flow on every s-t
path in this graph. Lemma 15 implies that for any s-t paths p, q in Gj and any

player h ∈ Sj,
∂Lh

p (f)

∂vi =
∂Lh

q (f)

∂vi . The expression on the left hand side of Claim 17
is thus equal for any path p ∈ Pj , and therefore so is the expression on the right.



For the base case j = k, the set {h : Eh(f) ⊂ Ej(f)} is empty. Hence, the
second term on the right of Claim 17 is zero, and by the previous discussion,

the quantity
∑

e∈p ae
∂fk

e

∂vi is equal for any path p ∈ Pk. Define c(e) = ae
∂fk

e

∂vi

for each e ∈ Ek and κ =
∑

e∈p ae
∂fk

e

∂vi for any s-t path p in Gk. By Lemma 16,
∑

e∈Ej(f) c(e)
∂fk

e

∂vi =
∑

e∈Ej(f) ae

(

∂fk
e

∂vi

)2

= 0. Hence,
∂fk

e

∂vi = 0, ∀e ∈ E.

For the induction step j < k, due to the inductive hypothesis,
∂fh

e

∂vi = 0 for
h > j. Since by the nesting property if Eh(f) ⊂ Ej(f) then h > j, the second
term on the right of Claim 17 is again zero. By the same argument as in the

base case,
∂fj

e

∂vi = 0, for each e ∈ E, proving the lemma. ⊓⊔

3.2 Proof of Lemma 11

An unstated assumption for all lemmas in this section is that the nesting property
holds. For the proof of Lemma 11, our first step is to express the rate of change of
total delay in terms of the rate of change of marginal delay of the players, as the
flow value of player r is being decreased. The next lemma gives this expression
for the first r − 1 players.

Lemma 18. For f = f(v), and for each i < r, ∂C(f)
∂vi = Li(f) + ∂Li(f)

∂vi

Pk
j=2 vj

2 .

Proof. For any player j, the set of edges used by player j is a subset of the
edges used by player i < r, since player i has the largest flow value and we
assume that the nesting property holds. Hence, the total delay at equilibrium
C(f) =

∑

e∈Ei(f) Ce(fe).

∂C(f)

∂vi
=

∑

e∈Ei(f)

∂Ce(fe)

∂fe

∂fe

∂vi
=

∑

e∈Ei(f)

(2aefe + be)
∂fe

∂vi

=
∑

e∈Ei(f)

∂fe

∂vi



Li
e(f

i
e, fe) + ae

∑

j 6=i

f j
e



 . (6)

By Lemma 16 with c(e) = Li
e(f

i
e, fe) and κ = Li(f),

∑

e∈Ei Li
e(f

i
e, fe)

∂fe

∂vi =

Li(f). Thus,
∂C(f)

∂vi
= Li(f) +

∑

j 6=i

∑

e∈Ei

aef
j
e

∂fe

∂vi
.

By (4), we have that ae
∂fe

∂vi = 1
2ae

∂(fe+fi
e)

∂vi = 1
2

∂Li
e(fi

e,fe)
∂vi . It follows that

∂C(f)

∂vi
= Li(f) +

1

2

∑

j 6=i

∑

e∈Ei

f j
e

∂Li
e(f

i
e, fe)

∂vi

= Li(f) +
1

2

∑

j 6=i

∑

e∈Ei

∑

q∈Pi:e∈q

f j
q

∂Li
e(f

i
e, fe)

∂vi
,



where the last equality is because for any player j, f j
e =

∑

q∈Pj :e∈q f j
q =

∑

q∈Pi:e∈q f j
q , and the nesting property. Reversing the order of summation and

observing that
∑

e∈p:p∈Pi

∂Li
e(fi

e,fe)
∂vi = ∂Li(f)

∂vi and vi = v1, we have the required
expression. ⊓⊔

We obtain a similar expression for ∂C(f)
∂vr .

Lemma 19. Let f = f(v). For player r whose flow value decreases in Step 2,

∂C(f)

∂vr
= L1(f) +

r − 1

r + 1

(

∂L1(f)

∂vr

k
∑

i=r

vi

)

+
1

r + 1

(

∂Lr(f)

∂vr

k
∑

i=r

vi

)

+ (r − 2)

(

∑

e∈E1

aef
1
e

∂fe

∂vr

)

. (7)

Let P denote the set of all s-t paths in G, and for equilibrium flow f , let
{f i

p}p∈P,i∈[k] denote a path flow decomposition of f . For players i, j ∈ [r] with
player r defined as in the flow redistribution, we will be interested in the rate
of change of marginal delay of player i along an s-t path p as the value of flow
controlled by player j changes. Given a decomposition {f i

p}p∈P,i∈[k] along paths
of the equilibrium flow, this rate of change can be expressed as

∂Li
p(f)

∂vj
=

∑

e∈p

ae

∂(fe + f i
e)

∂vj
=
∑

e∈p

ae

∑

q∈P:e∈q

∂(fq + f i
q)

∂vj

=
∑

q∈P

∂(fq + f i
q)

∂vj

∑

e∈q∩p

ae . (8)

Let upq =
∑

e∈p∩q ae for any paths p, q ∈ P and the matrix U is defined as
the matrix of size |P| × |P| with entries [upq]p,q∈P .

Lemma 20. For an equilibrium flow f , there exists a generalized path flow de-

composition {f i
p}p∈P

i
,i∈[k]

so that P
i
⊆ P i for all i ∈ [k] and P

1
⊇ P

2
⊇ · · · P

k
.

Moreover, each of the submatrices Ui = [upq]p,q∈P
i of U is invertible, ∀i ∈ [k].

Since P
i
⊆ P

i−1
, we can arrange the rows and columns of U so that Ui is a

leading principal submatrix of U for every player i.
Since matrix Ui is invertible, we define Wi = U−1. For a matrix A ∈ R

m×n,
we use Ap to refer to the pth row vector and apq to refer to the entry in the pth

row and qth column. We define ‖A‖ =
∑

i∈[m],j∈[n]

aij .

Lemma 21. For equilibrium flow f and sets P
i
⊆ P as described in Lemma 20,

for all players i ∈ [k], ‖Wi‖ ≥ ‖Wi+1‖ and ‖Wk‖ > 0.



The next lemma gives the rate of change of marginal delay at equilibrium.

Lemma 22. For player r defined as in the flow redistribution process and any
player i < r, for f = f(v),

(i)
∂Li(f(v))

∂vi
=

2

‖Wi‖
,

(ii)
∂Li(f)

∂vr
=

1

‖Wi‖
,

(iii)
∂Lr(f)

∂vr
=

r + 1

r

1

‖Wr‖
+

r − 1

r

1

‖W1‖
.

If we have just two players, it follows by substituting i = 1 and r = 2 and the

expressions from Lemma 22 into Lemma 18 and Lemma 19 that ∂C(f)
∂v2 − ∂C(f)

∂v1 =
1
2v2

(

1

‖W2
‖
− 1

‖W1
‖

)

. By Lemma 21, ‖W1‖ ≥ ‖W2‖, and hence ∂C(f)
∂v2 −∂C(f)

∂v1 ≥

0, proving Lemma 11 for the case of two players. However, if we have more than
two players, when r 6= 2 the fourth term on the right hand side of (7) has
nonzero contribution. Calculating this term is complicated. However, we show
the following inequality for this expression.

Lemma 23. For f = f(v) and the player r as defined in the flow redistribution

process,
∑

e∈E1

aef
1
e

∂fe

∂vr
≥

v1

‖W1‖
−

vr

r

(

1

‖W1‖
−

1

‖Wr‖

)

.

Proof of Lemma 11. For any player i < r, substituting the expression for ∂Li(f)
∂vi

from Lemma 22 into Lemma 18, and observing that Li(f) = L1(f) and ‖Wi‖ =
‖W1‖ since the flow of the first r − 1 players is identical,

∂C(f)

∂vi
= L1(f) +

∑k
j=2 vj

‖W1‖
. (9)

Similarly, substituting from Lemmas 22 and 23 into Lemma 19 and simplifying,

∂C(f)

∂vr
≥ L1(f) +

∑k
i=2 vi

‖W1‖
+

1

r

(

1

‖Wr‖
−

1

‖W1‖

)

(

k
∑

i=2

vi − (r − 2)(v1 − vr)

)

.

(10)

We subtract (9) from (10) to obtain, for any player i < r,

∂C(f)

∂vr
−

∂C(f)

∂vi
≥

1

r

(

1

‖Wr‖
−

1

‖W1‖

)

(

k
∑

i=2

vi − (r − 2)(v1 − vr)

)

. (11)

From Lemma 21 we know that ‖W1‖ ≥ ‖Wr‖. Also,
∑k

i=2 vi = (r − 2)v1 +
∑k

i=r vi ≥ (r− 2)(v1 − vr). Hence, the expression on the right of (11) is nonneg-
ative, completing the proof. ⊓⊔



4 Convex delays on series-parallel graphs

Let C denote the class of continuous, differentiable, nondecreasing and convex
functions. In this section we prove the following result.

Theorem 24. The price of collusion on a series-parallel graph with delay func-
tions taken from the set C is at most the price of collusion with linear delay
functions.

This theorem combined with Theorem 8, suffices to prove Theorem 1. The
following lemma is proved by Milchtaich.3

Lemma 25 ([14]). Let (G,v,l,s,t) and (G,ṽ,̃l,s,t) be nonatomic routing games
on a directed series-parallel graph with terminals s and t, where v ≥ ṽ, and
∀x ∈ R

+ and e ∈ E, le(x) ≥ l̃e(x). Let f and f̃ be equilibrium flows for the
games with delays l and l̃ respectively. Then C(f) ≥ C̃(f̃).

We now use Lemma 25 to prove Theorem 24.

Proof of Theorem 24. Given a series-parallel graph G with delay functions l taken
from C, let g denote the atomic equilibrium flow and f denote the nonatomic
equilibrium. We define a set of linear delay functions l̃ as follows. For an edge,

l̃e(x) = aex+be, where ae = ∂le(fe)
∂fe

∣

∣

∣

fe=ge

and be = le(ge)−aege. Hence, the delay

function l̃e is the tangent to the original delay function at the atomic equilibrium
flow. Note that a convex continuous differentiable function lies above all of its
tangents.

Let g̃ and f̃ denote the atomic and nonatomic equilibrium flows respectively
with delay functions l̃. Then by the definition of l̃, g̃ = g and l̃(g̃) = l(g). Hence,

C̃(g̃) = C(g). Further, by Lemma 25, C(f) ≥ C̃(f̃). Since C(g)
C(f) ≤ C̃(g̃)

C̃(f̃)
, the proof

follows.

5 Total Delay without the Nesting Property

If the nesting property does not hold, the total delay can increase as we decrease
the flow of a smaller player and increase the flow of a larger player, thus causing
our flow redistribution strategy presented in Section 3.2 to break down. See the
full version for an example.

References

1. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows. Prentice Hall, 1993.

3 Milchtaich in fact shows the same result for undirected series-parallel graphs. In our
context, every simple s-t path in the underlying undirected graph is also an s-t path
in the directed graph G.



2. Eitan Altman, Tamer Basar, Tania Jimenez, and Nahum Shimkin. Competitive
routing in networks with polynomial costs. IEEE Transactions on Automatic Con-
trol, 47(1):92–96, January 2002.

3. Baruch Awerbuch, Yossi Azar, and Amir Epstein. The price of routing unsplittable
flow. In STOC, pages 57–66, New York, NY, USA, 2005. ACM.

4. Martin Beckmann, C. B. McGuire, and Christopher B. Winsten. Studies in the
Economics of Transportation. Yale University Press, 1956.

5. Umang Bhaskar, Lisa Fleischer, Darrell Hoy, and Chien-Chung Huang. Equilibria
of atomic flow games are not unique. In SODA, pages 748–757, 2009.

6. Umang Bhaskar, Lisa Fleischer, and Chien-Chung Huang. The price of collusion
in series-parallel networks, 2010. Unpublished Manuscript.

7. Stefano Catoni and Stefano Pallottino. Traffic equilibrium paradoxes. Transporta-
tion Science, 25(3):240–244, August 1991.

8. Roberto Cominetti, Jose R. Correa, and N. E. Stier-Moses. The impact of
oligopolistic competition in networks. Operations Research, 57(6):1421–1437, 2009.

9. J. R. Correa, A. S. Schulz, and N. E. Stier-Moses. On the inefficiency of equilibria
in congestion games. In IPCO, pages 167–181, 2005.

10. Dimitris Fotakis and Paul Spirakis. Selfish unsplittable flows. In TCS, pages
593–605. Springer-Verlag, 2004.

11. P. Harker. Multiple equilibrium behaviors on networks. Transportation Science,
22(1):39–46, 1988.

12. Tobias Harks. Stackelberg strategies and collusion in network games with splittable
flow. In WAOA, pages 133–146, 2008.
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