Algorithmic Game Theory

Assignment 2: due March 11, 2025

Assignment policies:

- 1. While you may discuss the problems with others, you must write up the solution by yourself, in your own words.
- 2. Please write in your submission the people with whom you discussed the problems, as well as any references you used.
- 3. Late submissions will not be accepted, unless agreed to by me **prior** to the last date for submission.
- 4. Please write clearly and legibly, and include how you arrived at the solution!

Question 1 [10]: Consider the bimatrix game (A, B) where $A, B \in \mathbb{R}^{n \times n}$ and, further, rank $(A) = \operatorname{rank}(B) = k$. Give an algorithm that computes a Nash equilibrium in this game in time $\operatorname{poly}(n^{O(k)}, |A|, |B|)$ where, as before, |x| is the bit-complexity of x. You may need to use Caratheodory's theorem:

Theorem 1. Let $S = \{x_1, x_2, ..., x_n\}$ be a set of points in \mathbb{R}^k , and y lie in the convex hull of S. Then there exists $\overline{S} \subseteq S$ of cardinality k + 1, so that y lies in the convex hull of the points in \overline{S} .

Question 2 [10]: Recall the single-agent regret-minimization problem with n pure strategies studied in class, for which we showed that the multiplicative weight algorithm with $\epsilon = \sqrt{\ln n/T}$ has regret $2\sqrt{\ln n/T}$. Modify the algorithm to remove the assumption that T is known to the algorithm, while maintaining a bound of $O(\sqrt{\ln n}/\sqrt{T})$ on the regret.

Question 3 [10]: We saw in class that any deterministic regret-minimization algorithm, that selects a point distribution p^t at each time t, has regret at least 1 - 1/n. Consider the deterministic regret-minimization algorithm that at each time t, selects the pure strategy that has least cumulative cost so far. That is, $p^t(a) = 1$ for some $a \in \arg \min \sum_{\tau \leq t} c^{\tau}(a)$. Show the regret of this algorithm (called "Follow-the-Leader") is at most

$$\frac{(n-1)\text{OPT}}{T} + \frac{n}{T}$$

Question 4 [10]: Recall the value of a zero-sum game: this was the payoff for the row player in any Nash equilibrium of the game. Show that, in fact, this extends to CCE of zero-sum games as well: any CCE has the same payoff for the row-player.

Question 5 [5]: In a 3-player zero sum game, for any pure strategy profile s, $\sum_{i=1}^{3} u_i(s) = 0$. Either give an efficient algorithm for computing an MNE in a 3-player zero-sum game, or prove that computing a MNE in a 3-player zero-sum game is PPAD-hard.

Question 6 [10]: Given a 2-player game (R, C), prove that the following problems are either in P or are NP-complete:

- Determine if there exists an MNE (x^*, y^*) where both players play each pure strategy with positive probability (i.e., $x_i^* > 0$ for all i, and $y_j^* > 0$ for all j).
- Determine if there exists an MNE (x^*, y^*) where $x_1^* = 1$ (i.e., a given pure strategy is played with probability 1).

Question 7 [10]: Players 1 and 2 choose an element of the set $\{1, \dots, K\}$. If the players choose the same number, then player 2 pays 1 rupee to player 1; otherwise no payment is made. Find all pure and mixed strategy Nash equilibrium of this game.