Algorithms and Data Structures 2023: Assignment 1, due Sept. 12

Please read the assignment policies on the course homepage before starting the assignment. If you are working in a group, each group must turn in a single assignment. Please write with each question who wrote the solution to the question. I expect the load to be roughly balanced, i.e., each group member must write about half the solutions.

1. Background reading: Chapter 2 and Section 3.1 from CLRS. This is not part of your assignment, but you should already know the material covered: reading pseudocode, the use of loop invariants in algorithm analysis, RAM model, worst-case analysis, basic sorting algorithms, and asymptotic notation.
2. Reading: (i) Sections 4.2, 4.3, 4.4 of CLRS. (ii) Sections 15.2, 15.3 of CLRS.
3. (15 marks) Solve the recurrences: (i) $T(n)=2 T(n / 2)+n \log n$, (ii) $T(n)=7 T(n / 3)+n^{2}$, (iii) $T(n)=\sqrt{n} T(\sqrt{n})+n$.
4. (5 marks) Give the best upper bounds you can on the nth Fibonacci number F_{n}, where $F_{n}=F_{n-1}+F_{n-2}$ and $F_{1}=F_{2}=1$.
5. (10 marks) Consider two sets A and B, each having n integers in the range from 0 to $10 n$. We wish to compute the Cartesian sum of A and B, defined by

$$
C=\{x+y: x \in A, y \in B\} .
$$

Note that the integers in C are in the range 0 to $20 n$. We want to find the elements in C and the number of times each element of C is realized as a sum of elements in A and B. Give an algorithm that solves the problem in $O(n \log n)$ time, and prove correctness.
6. (20 marks) Define $[n]:=\{1,2, \ldots, n\}$. You are given n, and oracle access to a function $f:[n] \times[n] \rightarrow[n] \times[n]$ that takes as input two positive integers of value at most n, and returns two positive integers of value at most n. Let $f_{1}\left(x_{1}, x_{2}\right)$ and $f_{2}\left(x_{1}, x_{2}\right)$ be the first and second coordinates of $f\left(x_{1}, x_{2}\right)$, respectively. You are also told that f_{i} is monotone nondecreasing in coordinate i when coordinate $3-i$ is kept fixed, and monotone nonincreasing in coordinate $3-i$ when coordinate i is kept fixed. That is, given $x_{1} \leq x_{1}^{\prime} \in[n]$ and $x_{2} \leq x_{2}^{\prime} \in[n]$, $f_{1}\left(x_{1}, x_{2}\right) \leq f_{1}\left(x_{1}^{\prime}, x_{2}\right)$, and $f_{1}\left(x_{1}, x_{2}\right) \geq f_{1}\left(x_{1}, x_{2}^{\prime}\right)$. Similarly, $f_{2}\left(x_{1}, x_{2}\right) \geq f_{2}\left(x_{1}^{\prime}, x_{2}\right)$, and $f_{2}\left(x_{1}, x_{2}\right) \leq f_{2}\left(x_{1}, x_{2}^{\prime}\right)$.
The problem is to find a fixed point of the function, i.e., values $x_{1}, x_{2} \in[n]$ so that $f\left(x_{1}, x_{2}\right)=$ $\left(x_{1}, x_{2}\right)$. Give an algorithm that given n and oracle access to such a function f, finds a fixed point of f in time $O(\operatorname{poly}(\log n))$. You must also give a proof of correctness, and running time analysis.
7. (15 marks) A palindrome is a nonempty string over some alphabet that reads the same forward and backward. Examples of palindromes are all strings of length 1, civic, racecar, and aibohphobia. Give an efficient algorithm, with proof of correctness and run-time analysis, to find the longest palindrome that is a subsequence of a given input string. For example, given the input string character, your algorithm should return carac.
8. The purpose of this question is to extend the closest-points algorithm seen in the first lecture, to give an $O\left(n \log ^{2} n\right)$ algorithm for finding the closest pair of points in 3 dimensions. All points in this question are in \mathbb{R}^{3}.
(a) (5 marks) Prove that, if all points are at least distance δ apart, a cube with each dimension of size 2δ contains at most a constant (say k) number of points.
(b) (10 marks) You are now given 2 sets of points S_{1} and S_{2}, each containing n points. The distance between any pair of points in S_{1} is at least δ, and further, each point in S_{1} has z-coordinate in $[0, \delta]$. Similarly, the distance between any pair of points in S_{2} is at least δ, and each point in S_{2} has z-coordinate in $[-\delta, 0]$.
Extend the algorithm discussed in class to give an $O(n \log n)$-time algorithm for finding the closest pair of points in $S_{1} \cup S_{2}$. Note that, by the first part of the question, any cube with each dimension at most 2δ, contains at most $2 k$ points from $S_{1} \cup S_{2}$.
(c) (10 marks) Given a set S of n points in \mathbb{R}^{3}, now give an $O\left(n \log ^{2} n\right)$-time algorithm to find the closest pair of points.

