Algorithms and Data Structures: Assignment 2, due Sept. 27

- Please read the assignment policies on the course homepage before starting the assignment.
- Any algorithm must be accompanied by a proof of correctness and a runtime analysis.

1. Reading: (i) Chapter 10 of CLRS, particularly 10.4. (ii) Sections 17.1, 17.2, 17.3 from CLRS
2. (10 marks) Give a greedy algorithm that takes as input an undirected graph $G=(V, E)$ with nonnegative weights w_{e} on the edges, and returns a matching that has weight at least half the maximum-weight matching.
3. (10 marks) Let $G=(V, E)$ be a directed acyclic graph $G=(V, E)$. Additionally, you are given a nonnegative, integral weight w_{e} on each edge $e \in E$, and two special vertices $s, t \in V$. Give an algorithm to find a max-weight path from s to t.
4. (15 marks) Given a matroid (S, \mathcal{I}), show that $\left(S, \mathcal{I}^{\prime}\right)$ is also a matroid, where $A \in \mathcal{I}^{\prime}$ if $S \backslash A$ contains a maximal independent set in \mathcal{I}.
5. (15 marks) In class, we showed that if (S, \mathcal{I}) is a matroid, then for any nonnegative weights w on the elements of S, the greedy algorithm obtains a maximum weight independent set. Show that this is only true if (S, \mathcal{I}) is a matroid. That is, for a fixed downward-closed set system (S, \mathcal{I}), if the greedy algorithm obtains a maximum weight element of \mathcal{I} for every assignment of nonnegative weights to elements of S, then (S, \mathcal{I}) is a matroid.
6. (10 marks) Exercise 10.4-6 (on tree representations with pointers) from CLRS.
7. (10 marks) Suppose the above directed graph $G=(V, E)$ has a negative-weight cycle that is reachable from the source s. Give an efficient algorithm to list the vertices of such a cycle.
8. (15 marks) Let us modify the "cut rule" (in the implementation of decrease-key operation for a Fibonacci heap) to cut a node x from its parent as soon as it loses its 3rd child. Recall that the rule that we studied in class was when a node loses its 2 nd child. Can we still upper bound the maximum degree of a node of an n-node Fibonacci heap with $O(\log n)$?
9. (15 marks) The following are Fibonacci-heap operations: extract-min (\cdot), decrease-key (\cdot, \cdot), and also create-node (x, k) which creates a node x in the root list with key value k. Show a sequence of these operations that results in a Fibonacci heap consisting of just one tree that is a linear chain of n nodes.
