
Algorithms and Data Structures: Assignment 2, due Sept. 27

� Please read the assignment policies on the course homepage before starting the assignment.

� Any algorithm must be accompanied by a proof of correctness and a runtime analysis.

1. Reading: (i) Chapter 10 of CLRS, particularly 10.4. (ii) Sections 17.1, 17.2, 17.3 from CLRS

2. (10 marks) Give a greedy algorithm that takes as input an undirected graph G = (V,E) with
nonnegative weights we on the edges, and returns a matching that has weight at least half
the maximum-weight matching.

3. (10 marks) Let G = (V,E) be a directed acyclic graph G = (V,E). Additionally, you are
given a nonnegative, integral weight we on each edge e ∈ E, and two special vertices s, t ∈ V .
Give an algorithm to find a max-weight path from s to t.

4. (15 marks) Given a matroid (S, I), show that (S, I ′) is also a matroid, where A ∈ I ′ if S \A
contains a maximal independent set in I.

5. (15 marks) In class, we showed that if (S, I) is a matroid, then for any nonnegative weights
w on the elements of S, the greedy algorithm obtains a maximum weight independent set.
Show that this is only true if (S, I) is a matroid. That is, for a fixed downward-closed set
system (S, I), if the greedy algorithm obtains a maximum weight element of I for every
assignment of nonnegative weights to elements of S, then (S, I) is a matroid.

6. (10 marks) Exercise 10.4-6 (on tree representations with pointers) from CLRS.

7. (10 marks) Suppose the above directed graph G = (V,E) has a negative-weight cycle that is
reachable from the source s. Give an efficient algorithm to list the vertices of such a cycle.

8. (15 marks) Let us modify the “cut rule” (in the implementation of decrease-key operation
for a Fibonacci heap) to cut a node x from its parent as soon as it loses its 3rd child. Recall
that the rule that we studied in class was when a node loses its 2nd child. Can we still upper
bound the maximum degree of a node of an n-node Fibonacci heap with O(log n)?

9. (15 marks) The following are Fibonacci-heap operations: extract-min(·), decrease-key(·, ·),
and also create-node(x, k) which creates a node x in the root list with key value k. Show a
sequence of these operations that results in a Fibonacci heap consisting of just one tree that
is a linear chain of n nodes.

1


