Algorithms and Data Structures 2023:
 Assignment 3, due October 25

Please read the assignment policies on the course homepage before starting the assignment.

1. Reading: (i) Chapter 22 of CLRS. (ii) Section 24 Introduction, 24.1, 24.2 from CLRS.
2. (10 marks) Let $G=(V, E)$ be a connected, undirected graph. Give an $O(m)$-time algorithm to compute a path in G that traverses each edge in E exactly twice: once in each direction.
3. (15 marks) Given a directed graph $G=(V, E)$ with special vertices s and t, we define the following sets. Let X be the set of vertices that always lie on the side of s in any minimum cut (e.g., $s \in X$). Let Y be the set of vertices that always lie on the side of t in any minimum cut (e.g., $t \in Y$). Let $Z=V \backslash(X \cup Y)$. Give an O (time for max-flow computation)-time algorithm to partition V into X, Y, and Z.
4. (5 marks) Given a set S of n items, a function $f: 2^{S} \rightarrow \mathbb{R}$ is said to be submodular if, for all sets $A \subseteq B$ and elements $x \notin B$,

$$
f(A \cup\{x\})-f(A) \geq f(B \cup\{x\})-f(B)
$$

That is, the marginal value of an element to a smaller set, is at least it's marginal value to a larger set.
Prove that a function f is submodular if and only if it satisfies, for any sets $X, Y \subseteq S$,

$$
f(X)+f(Y) \geq f(X \cup Y)+f(X \cap Y)
$$

5. (5 marks) Let $G=(V, E)$ be a directed graph with nonnegative integral capacity c_{e} on each edge. Define the cut function $f: 2^{V} \rightarrow \mathbb{Z}_{+}$as

$$
f(S)=\sum_{e=(u, v): u \in S, v \notin S} c_{e}
$$

Show that the cut function f is submodular.
6. (10 marks) Let $G=(V, E)$ be a directed graph with nonnegative integral capacities on the edges, and let s, t, be two special vertices in the graph. Let $(S, V \backslash S)$ be a minimum s - t cut with vertices u, v in S, so that there exists a minimum $u-v$ cut $(U, V \backslash U)$ with $t \notin U$. Then show that there exists a minimum u-v cut $\left(U^{\prime}, V \backslash U^{\prime}\right)$ so that $U^{\prime} \subseteq S$ or $V \backslash U \subseteq S$.
Problems 4, 5 may be useful in solving this.
7. (25 marks) Problem 21-2 from CLRS (the Find-Set procedure is the same as the Find procedure discussed in class for the Union-Find data structure, but you may find it helpful to read Sections 21.3 and 21.4 for this problem).
8. (10 marks) Problem 16-4 a. from CLRS. You don't have to do Part b. of this problem.
9. We are given two red-black trees T_{1} and T_{2} and an element x, with the guarantee that, for any $x_{1} \in T_{1}$ and $x_{2} \in T_{2}, x_{1} . k e y<x . k e y<x_{2} . k e y$. Our problem is to implement the procedure RB-Join that forms a single red-black tree from the elements in T_{1}, T_{2}, and x. Let n be the total number of nodes in T_{1} and T_{2}.
(i) (5 marks) Given a red-black tree with n^{\prime} nodes, show that the black-height of the tree can be obtained in time $O\left(\log n^{\prime}\right)$. Let $T . b h$ store this information for each red-black tree T.
(ii) (5 marks) Assume that $T_{1} . b h \geq T_{2}$.bh. Give an $O(\log n)$ times algorithm that finds a black node y in T_{1} with the largest key from among all nodes in T_{1} with black-height T_{2}. $b h$.
(iii) (5 marks) Let T_{y} be the subtree rooted at y. Describe how $T_{y} \cup\{x\} \cup T_{2}$ can replace T_{y} in $O(1)$ time without destroying the binary search tree property.
(iv) (10 marks) What colour should x be so that the red-black properties $1,3,5$ (from Section 13.1 of CLRS) are maintained? Describe how to enforce properties 2 and 4 in $O(\log n)$ time.
(v) (5 marks) Complete the description of RB-Join, and show the running time.

