
Algorithms and Data Structures: Assignment 4, due Nov. 15

Please read the assignment policies on the course homepage before starting the assignment.

1. Reading: (i) Introduction of Chapter 34, and Sections 34.1, 34.2. (ii) Sections C.1, C.2, C.3
in the Appendix.

2. (20 marks) Given a directed graph with positive edge weights, give an algorithm to find the
second min-weight path between vertices s and t. Note that multiple s-t paths may have
the same weight, so the path returned must have weight strictly greater than the minimum
weight path.

3. (15 marks) Let G be a graph with 2n vertices. A bisection of G is a cut (S, T) with |S| = |T |.
Since G has an even number of vertices, it clearly has a bisection. Find a probabilistic
polynomial-time algorithm that produces a bisection with an expected cut (i.e., number of
edges across cut) at least half that of the maximum. Then convert your algorithm to a
deterministic polynomial-time algorithm.

4. (10 marks) Consider a random walk on a path with vertices numbered 1, 2, . . . , n from left to
right. At each step, we flip an unbiased coin to decide which direction to walk, moving one
step left or one step right with equal probability. The random walk ends when we fall off one
end of the path either by moving left from vertex 1 or right from vertex n. If we start from
vertex 1, what is the probability that the walk ends by falling off the right end of the path?

5. (20 marks) This problem deals with an efficient technique for verifying matrix multiplication.
The fastest known algorithm for multiplying two n× n matrices runs in O(nω) time, where
ω ≈ 2.37. This is significantly faster than the obvious O(n3) algorithm but this O(nω)
algorithm has the disadvantage of being extremely complicated. Suppose we are given an
implementation of this algorithm and would like to verify its correctness. Since program
verification is a difficult task, a reasonable goal might be to verify the correctness of the
output produced on specific executions of the algorithm. In other words, given n×n matrices
A,B, and C with entries from rational numbers, we would like to verify that AB = C. Note
that here we want to use the fact that we do not have to compute C; rather, our task is
to verify that the product is indeed C. Give an O(n2) time randomized algorithm for this
problem with error probability at most 1/2.

6. (20 marks) Show how to implement the push-relabel algorithm using O(n) time per relabel
operation, O(1) time per push, and O(1) time to select an applicable operation, for a total
running time of O(mn2).

These questions are added on Nov 9th

7. (20 marks) Given an undirected graph G, an edge colouring is an assignment of colours to
the edges of G such that no two edges incident to the same vertex get the same colour. The
edge colouring problem asks for an edge colouring using the minimum number of colours.
This is a hard problem to solve. Here we are interested in the online edge colouring problem
where the vertex set V of the graph G is fixed and the edges in the graph are presented to
us in an online manner, one after another.

As each edge e is specified, our algorithm must assign this edge e a colour and this colour of
e cannot be changed henceforth. While the offline edge colouring of G knows all the edges
of E while deciding on their colours, the online edge colouring algorithm has to decide on
the colour of each edge e without any knowledge of the future edges. Design a 2-competitive
algorithm for the online edge colouring problem.

1

8. (20 marks) We have seen an efficient Monte Carlo algorithm for testing if a given number is
prime. In several applications (for example, the RSA crypto scheme), it is necessary to pick
large prime numbers at random. Give an efficient Monte Carlo algorithm for generating a
random Θ(log n) bit length prime.

9. (20 marks) Show that the number of distinct minimum cuts in an undirected graph (assume
all edge weights are one) is at most

(
n
2

)
. That is, show that the number of distinct cuts whose

value is equal to the value of the min-cut in the graph is at most n(n−1)
2 .

10. (20 marks) We are given an n × n 0-1 matrix M whose determinant value is known to be
between −2n and 2n. There is a simple algorithm for computing the determinant of an n×n
matrix using O(n3) arithmetic operations and it works over any field.

Arithmetic on O(log n) bit numbers takes unit time – so when all arithmetic operations in
the above algorithm are on O(log n) bit numbers, then the running time of this algorithm is
O(n3). However when numbers are large, then arithmetic operations cannot be assumed to
take unit time; for example, doing arithmetic on n-bit numbers takes Θ(n) time.

Show a randomized algorithm with expected running time O(n3 · poly(log n)) and success
probability ≥ 1− 1/n for determining whether M is singular or not.

[Hint: You can take the following fact for granted. For any m, the probability that an integer
chosen uniformly at random in {1, . . . ,m} is prime ≈ c/lnm for some constant c.]

2

