
Algorithms and Data Structures 2024:
Assignment 3, due November 5

Please read the assignment policies on the course homepage before starting the assignment.

1. Reading: (i) Chapter 22 of CLRS. (ii) Section 24 Introduction, 24.1, 24.2 from CLRS.

2. (15 marks) Given a directed graph G = (V,E) with special vertices s and t, we define the
following sets. Let X be the set of vertices that always lie on the side of s in any minimum
cut (e.g., s ∈ X). Let Y be the set of vertices that always lie on the side of t in any minimum
cut (e.g., t ∈ Y ). Let Z = V \ (X ∪ Y ). Give an O(time for max-flow computation)-time
algorithm to partition V into X, Y , and Z.

3. (5 marks) Given a set S of n items, a function f : 2S → R is said to be submodular if, for all
sets A ⊆ B and elements x ̸∈ B,

f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B)

That is, the marginal value of an element to a smaller set, is at least it’s marginal value to a
larger set.

Prove that a function f is submodular if and only if it satisfies, for any sets X, Y ⊆ S ,

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) .

4. (5 marks) Let G = (V,E) be a directed graph with nonnegative integral capacity ce on each
edge. Define the cut function f : 2V → Z+ as

f(S) =
∑

e=(u,v):u∈S,v ̸∈S

ce .

Show that the cut function f is submodular.

5. (10 marks) Let G = (V,E) be a directed graph with nonnegative integral capacities on the
edges, and let s, t, be two special vertices in the graph. Let (S, V \ S) be a minimum s-t cut
with vertices u, v in S, so that there exists a minimum u-v cut (U, V \U) with t ̸∈ U .
Then show that there exists a minimum u-v cut (U ′, V \ U ′) so that U ′ ⊆ S or V \ U ⊆ S.

Problems 3, 4 may be useful in solving this.

6. (25 marks) Problem 21-2 from CLRS (the Find-Set procedure is the same as the Find
procedure discussed in class for the Union-Find data structure, but you may find it helpful
to read Sections 21.3 and 21.4 for this problem).

7. (10 marks) Problem 16-4 a. from CLRS. You don’t have to do Part b. of this problem.

8. We are given two red-black trees T1 and T2 and an element x, with the guarantee that, for
any x1 ∈ T1 and x2 ∈ T2, x1.key < x.key < x2.key. Our problem is to implement the
procedure RB-Join that forms a single red-black tree from the elements in T1, T2, and x.
Let n be the total number of nodes in T1 and T2.

1



(i) (5 marks) Given a red-black tree with n′ nodes, show that the black-height of the tree
can be obtained in time O(log n′). Let T.bh store this information for each red-black
tree T .

(ii) (5 marks) Assume that T1.bh ≥ T2.bh. Give an O(log n) times algorithm that finds a
black node y in T1 with the largest key from among all nodes in T1 with black-height
T2.bh.

(iii) (5 marks) Let Ty be the subtree rooted at y. Describe how Ty ∪{x}∪T2 can replace Ty

in O(1) time without destroying the binary search tree property.

(iv) (10 marks) What colour should x be so that the red-black properties 1, 3, 5 (from
Section 13.1 of CLRS) are maintained? Describe how to enforce properties 2 and 4 in
O(log n) time.

(v) (5 marks) Complete the description of RB-Join, and show the running time.

2


