
Routing Games between Selfish Users

Umang Bhaskar

September 27, 2008

With Lisa Fleischer, Darrell Hoy, Chien-Chung Huang



Motivation



Motivation

• What’s the best way from point a to point b?
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• Directed graph

• Source s, destination t
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Flows

• Conservation: Flow in = flow out except s and t

• “Value” of flow
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• Delay function: f (x), where x is total flow on edge

• Delay to player p = p’s flow on edge × delay of edge

• Total delay = 3 × 4 + 3 × 6 = 30
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Routing with Delays

• Total delay = 5 × 4 + 1 × 2 = 22

• Properties of delay functions
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• Delay to player p = p’s flow on edge × delay of edge

• Delay to red player = 4 × 6 = 24

• Delay to blue player = 6 × 6 = 36



Routing with Multiple Users



Routing with Multiple Users

• Delay to red player = 3 × 6 + 1 × 4 = 22 (earlier 24)



Routing with Multiple Users

• Delay to red player = 3 × 6 + 1 × 4 = 22 (earlier 24)

• Delay to blue player = 5 × 6 + 1 × 4 = 34 (earlier 36)



Routing with Multiple Users

• Delay to red player = 3 × 6 + 1 × 4 = 22 (earlier 24)

• Delay to blue player = 5 × 6 + 1 × 4 = 34 (earlier 36)

• Neither player can reduce delay by changing its flow
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• Delay to blue player = 4 × 6 + 2 × 6 = 36
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• Delay for red player = 22, delay for blue player = 34

• No user can reduce delay by changing its flow

• The flow is in “equilibrium”
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Equilibrium

• A flow is in “equilibrium” if no user can reduce its delay by
changing its own flow

• Equilibrium represents “stability”
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Questions about Equilibrium

• Does equilibrium always exist?
• If delay functions are semi-convex, yes! [Orda et al. 1993]

• Is equilibrium unique?
• Depends...
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The Uniqueness of Equilibrium

Question: Is equilibrium unique?

• Large number of users, each controlling infinitesimal amount
of flow, equilibrium is unique [Beckmann et al. 1956]

• Small number of users, each controlling significant amount of
flow...

• In a few specific cases, equilibrium was known to be unique
[Beckmann, Orda, ...]

In our work,

• show that equilibrium may not be unique,

• give a complete characterization of graph topologies with a
unique equilibrium
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Uniqueness Results

Main results (to appear in SODA ’09):

• Construct the first instances of non-uniqueness of equilibria

• Give a complete characterization of topologies with unique
equilibria. In particular,

• For 2 players, equilibrium is unique if and only if the network is
generalized series-parallel

• For more than 2 players, of only 2 types, equilibrium is unique
if and only if the network is series-parallel

Players are of the same type if they have the same flow value

Two players of the same type Four players, two types
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Uniqueness Results

Main results (to appear in SODA ’09):

• Constructed the first instances of non-uniqueness of equilibria

• Gave a complete characterization of topologies with unique
equilibria. In particular,

• For 2 players, equilibrium is unique if and only if the network is
generalized series-parallel

• For more than 2 players, of only 2 types, equilibrium is unique
if and only if the network is series-parallel

• For players of more than 2 types, equilibrium is unique if and
only if the network is generalized nearly-parallel
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Series-parallel graphs

Defined inductively:

• Base case: a single edge is a
series-parallel graph

• Inductive step: Join two series-parallel
graphs,

• either in series,

• or in parallel
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A series-parallel graph



Series-parallel Graphs

A series-parallel graph

• Generalized series-parallel graphs are a slightly bigger class of
graphs.
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Series-parallel Graphs

A non-series-parallel graph

• This is the smallest non-generalized series-parallel graph
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Uniqueness of Equilibrium

• 2 players, series-parallel graph ⇒ unique equilibrium

• Key idea: properties arising from difference of flows
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The Difference of Two Flows

Flow f Flow f ′

The difference of flows, f − f ′
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The difference of flows, f − f ′
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A red agreeing cycle A blue agreeing cycle

Not an agreeing cycle



Agreeing Cycles

A red agreeing cycle A blue agreeing cycle

A cycle C is a p-agreeing cycle if on every edge of cycle C , the
direction of the total change in flow is the same as the direction of
change in flow for player p.
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Agreeing Cycles on Generalized Series-parallel Graphs

We show the following results in our paper:

• If f and f ′ are equilibrium flows, then the flow difference
f − f ′ cannot contain an agreeing cycle

• For 2 players on generalized series-parallel graphs, the
difference in two flows must contain an agreeing cyle

• Hence, for 2 players on generalized series-parallel graphs, there
must be a unique equilibrium

• We explicitly construct an example of multiple equilibria on a
non-generalized series-parallel graph for 2 players



Multiple Equilibria on a Non-generalized series-parallel

Graph

A non-generalized series-parallel graph



Multiple Equilibria on a Non-generalized series-parallel

Graph

Flow difference on the graph



Multiple Equilibria on a Non-generalized series-parallel

Graph

Red player does not have an agreeing cycle



Multiple Equilibria on a Non-series-parallel Graph

Blue player does not have an agreeing cycle
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Multiple Equilibria on a Non-series-parallel Graph

• No agreeing cycles in the given flow difference

• We use this as basis to construct example of multiple
equilibria in paper
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Summary

• Difference of two equilibrium flows cannot contain agreeing
cycle

• For 2 players on generalized series-parallel graphs, difference of
two flows contains agreeing cycles; hence equilibrium unique

• For more than 2 types of players on nearly-parallel graphs,
difference of two flows contains agreeing cycles; hence
equilibrium unique

• Give examples of multiple equilibria on non-generalized
series-parallel graphs and non-nearly-parallel graphs



Questions?


