Graph Matchings and Wireless Communication

HEHAS WIFI |

\

:

Rahul Vaze



In this talk

like us on




In this talk

105 pictures 3 equations

like us on




In this talk

105 pictures 3 equations

color blind friendly

like us on




In this talk

105 pictures 3 equations

color blind friendly

NOT in this talk

like us on




Wireless Channel




Wireless Channel




Wireless Channel

Amplitude
A' ¥ y fast facing
, E
) ) P ’ H
M slow fading
L
|y I | ‘
FOTA yhavs it )
Ly AT
! TV
'. i 97 N0 ) |
" | T | | I

Cistance




Wireless Channel

Amplitude

fast facing

m==eme= slow fading

h|°P
Rate = log, [ 1 + ’ ]‘V bits/sec/H z




Wireless Channel

h|°P
Rate = log, (1 - | ]|V ) bits/sec/H z

SNR



Wireless Channel

Amplitude

A'H ' fast facing

, R

TN m==eme= slow fading

Y |
AN
| ".L 1y | ‘
/ ~ ) ! (|
FOTREL AL
W g, 8 |
! )
R [} VI ) | I
‘ L \. |
v ."-..-_ "
- |
{ | | ‘l‘\\" N | |
| L [ . |
| h.“-u- )
| | I l"“---N
| LI -~
Cistance
o -79dBa & higher S bars

-88dBs to -84dBm - 4 bars
-85dB= to -89dBm - 3 bars
-90dBay to -99dBm - 2 bars

-109dBn & lower - 1 bar

h|2P
N

SNR

Rate = log, [ 1 + | bits/sec/H z




Legacy Problem



Legacy Problem -Wireless Communication

BS

A
r§< — A
/%




Legacy Problem -Wireless Communication
BS é\
AN A

|
. A )
‘ﬂ/

Resources shared equally




Legacy Problem -Wireless Communication

T A
r/r2§ Kq . é\
3 . A )

wakes up ‘

Resources shared equally




Legacy Problem -Wireless Communication

.
*
.
*
.
.
.
*
.
*
o
* .
g AR
. .
.
.
.
.
.
.
.
.
o
.

"
"
L]
.....
e
"
.




Legacy Problem -Wireless Communication

.
*
.
*
.
.
.
-
.
*
o*
* .
g AR
. .
.
.
.
.
.
.
.
.
o*
.

"
"
L]
.....
e
"
.

'
Associate with one BS
v




Legacy Problem -Wireless Communication

.
*
.
*
.
.
.
-
.
*
o
* .
g AR
. .
.
.
.
.
.
.
.
.
o
.

"
"
L]
.....
e
"
.

'
Associate with one BS
e

Find optimal BS allocation to maximize sum-rate
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Find optimal helper association and incentive rule that is truthful
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Truthful Auction

Winner: Largest bid

Price: Second-Largest bid

No incentive to bid more than private utility/price
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Hiring staft - not adversarial

Success with prob > 1/4

first half second half
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Actually Matching

accept the edge with the largest weight instantaneously
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Natural Generalization

each advisor gets at most one student - allocation made by

Advisors
Students

Objective: Matching with largest sum weight
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match the largest weight
more than price ‘

Result: 8-competive/optimal [Korula, Pal’ 08]
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Find optimal BS allocation to maximize sum-rate
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Important Observation

Note that sum-weight is still dominated by Max-Weight with MATCHING

‘ 1

Upper Bound : Max-Weight with Matching
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Sampling idea as before

Choose one BS randomly and associate all users rejected by Matching

Find best matching I

match the largest weight
more than price

all users in sampling phase
and rejected in decision phase

Result: 8m/(m-1)—competitive/optimal [V Thangaraj’ 13]



Implication

Lot of users get associated to just one BS

Still better than natural algorithm of connecting to the strongest BS

7 T T \
—&— HideAndSeek corr user
—O— max—weight corr user
—%— max—weight iid model

61 —— HideAndSeek iid model |

O O O f)
\J \J \J N

o
(0]
(0]
(0]
o
[0

9
I
|

Competitive Ratio Upper Bound
o e
| |

2./'/\/'/\./\/ |
e ——% - — ——

| | | | | | | |
lbOO 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Users







Vodern Problem Device-2-Device Communication




Vodern Problem Device-2-Device Communication




Vodern Problem Device-2-Device Communication




Vodern Problem Device-2-Device Communication




Vodern Problem Device-2-Device Communication

A
K bid b for help Q . é




Vodern Problem Device-2-Device Communication

A
K bid b for help Q . é

e A [

pay pi for help

v
*a

“
.
.
“
. L]
.
.
.
.
“




Vodern Problem Device-2-Device Communication

A
K bid b for help 'Q . é

Sl S

pay pi for help

v .
“““““
. .
“““
\d .
.
“““
“
.
.
“

[
»

weak links

Q
g
Q
Q
Q
Q
g
»
-

mechanism to avoid cheating




Vodern Problem Device-2-Device Communication

A
K bid b for help Q . AA

Sl S

pay pi for help T

\

mechanism to avoid cheating
ensure maximum throughput é
N




Vodern Problem Device-2-Device Communication

A
K bid b for help 'Q . é

e A [

pay pi for help 1

\

mechanism to avoid cheating
ensure maximum throughput é
N

Find optimal helper association and incentive rule that is truthful
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NATION, IN OTHER NEWS

Kerala IAS officer lures public with biryani to
clean lake

DECCAN CHRONICLE
Published Jan 27, 2016, 5:54 pm IST Updated Jan 27, 2016, 5:57 pm IST

Volunteers cleaned up the 14-acre lake and were rewarded with a plate of Malabar
biryani.

@ IAS officer and collector Prasanth Nair (Photo Courtesy: Facebook.com/Prasanth Nair)
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same idea as before sampling and decision phase

In Sampling Phase

value threshold utility
b
100 ‘ 100 bid to benefit ratio of an edge %
‘ good Graph G(v) = {e cG: % < fy}
0 M(7) be greedy matching over G(v)
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For decision phase utility threshold of each blue node to be value in Matching M(7)
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b ‘ ‘ 100 remove all edges with bid to benefit ratio <y

o match the largest weight more than
D2 ‘ ‘ = 0.1 utility threshold

Payment for each selected e, p(e) = ~yv(e)

n=.1
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Result: 144 —competitive/optimal and truthful [V, Coupechoux]



when Is a reverse auction truthful ?

Monotonicity - if an agent is selected with bid b, then
he is always selected if he bids below b

Critical Price - there exists a threshold price such that
R. Myerson If an agent bids above it he is never selected
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But when | do, | make sure that you're
in the middle of something important.






Secretary Problem

1. Why arbit doesn't work
2. Randomized Model
3. Simple Algo 1/2

Sec. Prob as Matching with only one left vertex
Bipartite matching problem

Greedy

1/2 algo

Philosophy from Sec problem Hide the first half Set the price
and select above the threshold

Wireless Prob

Use the same philosophy s
Designate one BS as garbage

rest Guarantee (M-1)/8M

em -BS assoc
Equal weight case- Offline is to keep one per good BS

now that OF
and do Onl

- < Max Weight
ne Matching on the




