Sub-modularity and Antenna Selection in MIMO systems

Rahul VazeHarish GanapathyImage: Control of the second se

Antenna Selection

- Transmit Side
- Receive Side

Antenna Selection

- Transmit Side
- Receive Side

Metrics

- Mutual Information
- Reliability

Antenna Selection

- Transmit Side
- Receive Side

Advantages

- Simplified Circuitry
- Fewer Tx/Rx Chains

Metrics

- Mutual Information
- Reliability

Protocols

- Amplify-forward
- Decode-forward

Protocols

- Amplify-forward
- Decode-forward

Metrics

- Mutual Information
- Reliability

Protocols

- Amplify-forward
- Decode-forward

Metrics

- Mutual Information
- Reliability

Implementation

- Centralized
- Distributed

P2P

Lot of work assuming Genie-Aided Antenna Selection No provably good simple algorithm for Antenna Selection

Implementation

• Most analytical work assumes brute-force (exponential complexity)

Implementation

- Most analytical work assumes brute-force (exponential complexity)
 - If subset size is then number of $\binom{N_t}{L}$ computations Prohibitive for large antennas, e.g. Massive MIMO

Implementation

 Most analytical work assumes brute-force (exponential complexity)

- If subset size is then number of $\binom{N_t}{L}$ computations Prohibitive for large antennas, e.g. Massive MIMO

Lots of greedy/heuristic algorithms

No theoretical guarantees

Objective for Point-to-Point MIMO Channel

Objective for Point-to-Point MIMO Channel

Find the size *L* receive antenna subset that maximizes the mutual information

$$\max_{\mathcal{R}_L \subset \{1,2,\ldots,N_r\}, |\mathcal{R}_L|=L} \log \det \left(\mathbf{I} + \frac{P}{N_t} \mathbf{H}_{\mathcal{R}_L} \mathbf{H}_{\mathcal{R}_L}^{\dagger} \right)$$

Find the size *L* relay antennas subset that maximizes the mutual information

$$\max_{\mathcal{T}_L \subseteq \{1,2,\ldots,N\}} \max_{\mathbf{w}} \log \left(1 + \frac{\mathbf{w}^{\dagger} \Delta \Delta^{\dagger} \mathbf{w}}{\mathbf{w}^{\dagger} (\Sigma \Sigma^{\dagger} + \mathbf{I}) \mathbf{w}} \right)$$

Find the size *L* relay antennas subset that maximizes the mutual information

$$\max_{\mathcal{T}_{L} \subseteq \{1,2,...,N\}} \max_{\mathbf{w}} \log \left(1 + \frac{\mathbf{w}^{\dagger} \Delta \Delta^{\dagger} \mathbf{w}}{\mathbf{w}^{\dagger} (\Sigma \Sigma^{\dagger} + \mathbf{I}) \mathbf{w}} \right)$$

$$\Delta = \left[\frac{g_{t_1}f_{t_1}}{\gamma_{t_1}}, \dots, \frac{g_{t_L}f_{t_L}}{\gamma_{t_L}}\right]^T,$$

$$\mathbf{w} = [w_{t_1}, \dots, w_{t_L}]^T,$$

P2P

Greedy Algorithm with linear complexity achieves at least (1 - 1/e) fraction of the optimal solution

P2P

Greedy Algorithm with linear complexity achieves at least (1 - 1/e) fraction of the optimal solution

Implication: Genie-aided analysis holds

P2P

Greedy Algorithm with linear complexity achieves at least (1 - 1/e) fraction of the optimal solution

Implication: Genie-aided analysis holds

Relay

Greedy Algorithm with linear complexity achieves the optimal solution

Let $f: 2^U \to \mathbb{R}$

Let $f: 2^U \to \mathbb{R}$

Then f is called monotone if $f(S \cup \{a\}) \ge f(S)$. $S \subset U, a \in U$

Let $f: 2^U \to \mathbb{R}$

Then f is called monotone if $f(S \cup \{a\}) \ge f(S)$. $S \subset U$, $a \in U$ Then f is called sub-modular if

Let $f: 2^U \to \mathbb{R}$

Then f is called monotone if $f(S \cup \{a\}) \ge f(S)$. $S \subset U$, $a \in U$ Then f is called sub-modular if

 $f(S \cup \{a\}) - f(S) \ge f(T \cup \{a\}) - f(T), \ S \subseteq T.$
Let $f: 2^U \to \mathbb{R}$

Then f is called monotone if $f(S \cup \{a\}) \ge f(S)$. $S \subset U$, $a \in U$ Then f is called sub-modular if

 $f(S \cup \{a\}) - f(S) \ge f(T \cup \{a\}) - f(T), \ S \subseteq T.$

Diminishing Returns Property: Value of adding an element to smaller set is more than that of the bigger set

Let $f: 2^U \to \mathbb{R}$

Then f is called monotone if $f(S \cup \{a\}) \ge f(S)$. $S \subset U$, $a \in U$ Then f is called sub-modular if

 $f(S \cup \{a\}) - f(S) \ge f(T \cup \{a\}) - f(T), \ S \subseteq T.$

Diminishing Returns Property: Value of adding an element to smaller set is more than that of the bigger set

Then f is called *modular* if

Let $f: 2^U \to \mathbb{R}$

Then f is called monotone if $f(S \cup \{a\}) \ge f(S)$. $S \subset U$, $a \in U$ Then f is called sub-modular if

 $f(S \cup \{a\}) - f(S) \ge f(T \cup \{a\}) - f(T), \ S \subseteq T.$

Diminishing Returns Property: Value of adding an element to smaller set is more than that of the bigger set

Then f is called *modular* if

 $f(S \cup \{a\}) - f(S) = f(T \cup \{a\}) - f(T), \ S \subseteq T.$

Let $f: 2^U \to \mathbb{R}$

Then f is called monotone if $f(S \cup \{a\}) \ge f(S)$. $S \subset U$, $a \in U$ Then f is called sub-modular if

 $f(S \cup \{a\}) - f(S) \ge f(T \cup \{a\}) - f(T), \ S \subseteq T.$

Diminishing Returns Property: Value of adding an element to smaller set is more than that of the bigger set

Then f is called *modular if*

$$f(S \cup \{a\}) - f(S) = f(T \cup \{a\}) - f(T), \ S \subseteq T.$$

Non-Diminishing Returns Property: Value of adding an element to smaller set is equal to the bigger set

Why Sub-Modular Functions ?

Greedy Method : At each step add an element that maximizes the incremental gain.

Why Sub-Modular Functions ?

Greedy Method : At each step add an element that maximizes the incremental gain.

Theorem (Nemhauser et. al. 1978): If **f** is monotone and sub-modular, then the greedy method achieves at least (1 - 1/e) fraction of the optimal solution.

Why Sub-Modular Functions ?

Greedy Method : At each step add an element that maximizes the incremental gain.

Theorem (Nemhauser et. al. 1978): If **f** is monotone and sub-modular, then the greedy method achieves at least (1 - 1/e) fraction of the optimal solution.

Theorem (Rado 1968, Edmonds 1971): If f is monotone and modular, then the greedy method achieves the optimal solution.

$$f(S \cup \{a\}) - f(S) = \log \det \left(\mathbf{I}_{|S|+1} + \frac{P}{N_t} \begin{bmatrix} \mathbf{H}_S \\ \mathbf{h} \end{bmatrix} \begin{bmatrix} \mathbf{H}_S^{\dagger} & \mathbf{h}^{\dagger} \end{bmatrix} \right) - \log \det \left(\mathbf{I}_{|S|} + \frac{P}{N_t} \mathbf{H}_S & \mathbf{H}_S^{\dagger} \right),$$

$$f(S \cup \{a\}) - f(S) = \log \det \left(\mathbf{I}_{|S|+1} + \frac{P}{N_t} \begin{bmatrix} \mathbf{H}_S \\ \mathbf{h} \end{bmatrix} [\mathbf{H}_S^{\dagger} \ \mathbf{h}^{\dagger}] \right) - \log \det \left(\mathbf{I}_{|S|} + \frac{P}{N_t} \mathbf{H}_S \ \mathbf{H}_S^{\dagger} \right),$$
$$= \log \det \left(\mathbf{I}_{N_t} + \frac{P}{N_t} [\mathbf{H}_S^{\dagger} \ \mathbf{h}^{\dagger}] \begin{bmatrix} \mathbf{H}_S \\ \mathbf{h} \end{bmatrix} \right) - \log \det \left(\mathbf{I}_{N_t} + \frac{P}{N_t} \mathbf{H}_S^{\dagger} \ \mathbf{H}_S \right)$$

$$f(S \cup \{a\}) - f(S) = \log \det \left(\mathbf{I}_{|S|+1} + \frac{P}{N_t} \begin{bmatrix} \mathbf{H}_S \\ \mathbf{h} \end{bmatrix} [\mathbf{H}_S^{\dagger} \ \mathbf{h}^{\dagger}] \right) - \log \det \left(\mathbf{I}_{|S|} + \frac{P}{N_t} \mathbf{H}_S \ \mathbf{H}_S^{\dagger} \right),$$
$$= \log \det \left(\mathbf{I}_{N_t} + \frac{P}{N_t} [\mathbf{H}_S^{\dagger} \ \mathbf{h}^{\dagger}] \begin{bmatrix} \mathbf{H}_S \\ \mathbf{h} \end{bmatrix} \right) - \log \det \left(\mathbf{I}_{N_t} + \frac{P}{N_t} \mathbf{H}_S^{\dagger} \ \mathbf{H}_S \right)$$

 $f(S \cup \{a\}) - f(S)$

Mutual Information between A and C with Gaussian Signalling

Greedy Algorithm :

Greedy Algorithm :

Start with $\mathcal{R}_L = \Phi$

Greedy Algorithm :

Start with $\mathcal{R}_L = \Phi$ At step $i, \mathcal{R}_L = \mathcal{R}_L \cup \{i^*\}$, Choose the best among the rest $i^* = \arg \max_{i \in \{1, 2, \dots, N_r\}, i \notin \mathcal{R}_L} \log \det \left(\mathbf{I} + \frac{P}{N_t} \mathbf{H}_{\mathcal{R}_L \cup \{i\}} \mathbf{H}_{\mathcal{R}_L \cup \{i\}}^{\dagger}\right),$

Greedy Algorithm :

Start with $\mathcal{R}_L = \Phi$ At step $i, \mathcal{R}_L = \mathcal{R}_L \cup \{i^\star\}$, Choose the best among the rest $i^{\star} = \arg \max_{i \in \{1, 2, \dots, N_r\}, i \notin \mathcal{R}_L} \log \det \left(\mathbf{I} + \frac{P}{N_t} \mathbf{H}_{\mathcal{R}_L \cup \{i\}} \mathbf{H}_{\mathcal{R}_L \cup \{i\}}^{\dagger} \right),$

Repeat until $|\mathcal{R}_L| = L$.

Greedy Algorithm :

Start with $\mathcal{R}_L = \Phi$ At step $i, \mathcal{R}_L = \mathcal{R}_L \cup \{i^\star\}$, Choose the best among the rest $i^\star = \arg \max_{i \in \{1, 2, \dots, N_r\}, i \notin \mathcal{R}_L} \log \det \left(\mathbf{I} + \frac{P}{N_t} \mathbf{H}_{\mathcal{R}_L \cup \{i\}} \mathbf{H}_{\mathcal{R}_L \cup \{i\}}^\dagger\right),$ Repeat until $|\mathcal{R}_L| = L$.

Theorem: Greedy Algorithm for receive antenna selection with linear complexity achieves at least (1 - 1/e) fraction of the optimal solution.

Simulation Result

Simulation Result

Simulation Result

Massive MIMO

Performance Better than promised

Relay Selection

Relay Selection

Find the *L* relay antennas subset that maximizes the mutual information

$$\max_{\mathcal{T}_L \subseteq \{1,2,\ldots,N\}} \max_{\mathbf{w}} \log \left(1 + \frac{\mathbf{w}^{\dagger} \Delta \Delta^{\dagger} \mathbf{w}}{\mathbf{w}^{\dagger} (\Sigma \Sigma^{\dagger} + \mathbf{I}) \mathbf{w}} \right)$$

$$\max_{\mathcal{T}_L \subseteq \{1,2,\dots,N\}} \max_{\mathbf{w}} \log \left(1 + \frac{\mathbf{w}^{\dagger} \Delta \Delta^{\dagger} \mathbf{w}}{\mathbf{w}^{\dagger} (\Sigma \Sigma^{\dagger} + \mathbf{I}) \mathbf{w}} \right) \qquad \Delta = \left[\frac{g_{t_1} f_{t_1}}{\gamma_{t_1}}, \dots, \frac{g_{t_L} f_{t_L}}{\gamma_{t_L}} \right]^T,$$
$$\mathbf{w} = [w_{t_1}, \dots, w_{t_L}]^T,$$

$$\Sigma = \begin{bmatrix} \frac{g_{t_1}}{\gamma_{t_1}} & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & \frac{g_{t_L}}{\gamma_{t_L}} \end{bmatrix}$$

Rayleigh-Ritz Theorem

$$\max_{\mathcal{T}_L \subseteq \{1,2,\dots,N\}} \sum_{i \in \mathcal{T}_L} \frac{|g_i|^2 |f_i|^2}{|f_i|^2 + |g_i|^2 + 1}$$

Rayleigh-Ritz Theorem

$$\max_{\mathcal{T}_L \subseteq \{1,2,\dots,N\}} \sum_{i \in \mathcal{T}_L} \frac{|g_i|^2 |f_i|^2}{|f_i|^2 + |g_i|^2 + 1}$$

Relay Selection Problem is Modular
Result

Result

Theorem: Greedy Algorithm for relay antenna selection with linear complexity achieves the optimal solution.

Simulation Result

Some Counter-Examples

$$C_{\{1\}} = \log(1 + P|h_1|^2)$$

$$C_{\{1\}} = \log(1 + P|h_1|^2)$$

$$C_{\{1\}} = \log(1+P|h_1|^2) \qquad C_{\{1,2\}} = \log\left(1+\frac{P}{2}(|h_1|^2+|h_2|^2)\right)$$

$$C_{\{1\}} = \log(1+P|h_1|^2) \qquad C_{\{1,2\}} = \log\left(1+\frac{P}{2}(|h_1|^2+|h_2|^2)\right)$$

Transmit Antenna Selection is NOT Monotone

Receive Antenna Selection with CSIT

Receive Antenna Selection with CSIT

Receive Antenna Selection with CSIT

With Watefilling Receive Antenna Selection is Monotone but NOT Sub-modular

Relay Antenna Selection with MIMO Source-Destination

Relay Antenna Selection with MIMO Source-Destination

With MIMO S-D Relay Antenna Selection is NOT Sub-modular

Conclusions

- Theoretical Bounds on Greedy Algorithms
- Relay case Greedy is Optimal
- Most other antenna selection problems are not sub-modular