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Metrics
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• Reliability

Advantages
• Simplified Circuitry 
• Fewer Tx/Rx Chains
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Protocols
•  Amplify-forward
• Decode-forward

Metrics
• Mutual Information
• Reliability

Implementation
• Centralized
• Distributed
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CSIT

Prior Work

Lot of work assuming Genie-Aided Antenna Selection
No provably good simple algorithm for Antenna Selection

P2P Relay

No CSIT

AF DFTransmi Receiv

Distributed Centralize

CSIT NoCSI
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- If subset size is     then number of 
computations

Implementation

• Most analytical work assumes brute-force 
(exponential complexity)                                                                    

• Lots of greedy/heuristic algorithms 

No theoretical guarantees

✓
Nt

L

◆
L

      Prohibitive for large antennas, e.g. Massive MIMO
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Find the size L receive antenna subset that maximizes 
the mutual information
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Our Contribution

P2P

Relay

Greedy Algorithm with linear complexity achieves 
at least               fraction of the optimal solution(1� 1/e)

Greedy Algorithm with linear complexity 
achieves the optimal solution

Implication:  Genie-aided analysis holds
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Then f is called monotone if f(S [ {a}) � f(S).

Then f is called sub-modular if

Then f is called modular if

f(S [ {a})� f(S) = f(T [ {a})� f(T ), S ✓ T.

f(S [ {a})� f(S) � f(T [ {a})� f(T ), S ✓ T.

Diminishing Returns Property:  Value of adding an element 
to smaller set is more than that of the bigger set

Non-Diminishing Returns Property:  Value of adding an 
element to smaller set is equal to the bigger set

Let f : 2U ! R

S ⇢ U, a 2 U
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Why Sub-Modular Functions ?

Greedy Method : At each step add an element that 
maximizes the incremental gain.

Theorem (Nemhauser et. al. 1978):  If f is monotone and 
sub-modular, then the greedy method achieves at 
least           fraction of the optimal solution.

Theorem (Rado1968, Edmonds1971):  If f is monotone 
and modular, then the greedy method achieves the 
optimal solution.

(1� 1/e)
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Theorem: Greedy Algorithm for receive antenna 
selection with linear complexity achieves at least               
fraction of the optimal solution.

Result

(1� 1/e)

Greedy Algorithm : 
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Transmit Antenna Selection

Tx Rx
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C{1,2} = log
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C{1} = log(1 + P |h1|2)

Transmit Antenna Selection is NOT Monotone
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Receive Antenna Selection with CSIT

Channel

With Watefilling Receive Antenna Selection is Monotone 
but NOT Sub-modular
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Relay Antenna Selection with MIMO 
Source-Destination

F
G

With MIMO S-D Relay Antenna Selection is NOT Sub-modular



Conclusions
• Theoretical Bounds on Greedy 
Algorithms

• Relay case - Greedy is Optimal

• Most other antenna selection problems 
are not  sub-modular


