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Antenna Selection

¢ Transmit Side
e Receive Side

Advantages

* Simplified Circuitry
e Fewer Tx/Rx Chains

Metrics

e Mutual Information
* Reliability



Source

Relay Selection

Y i
’ N
LN
LN
)}
1
LN ;7|
LN
N [
~ y

d

-

\_

Destination

~

J




Protocols
* Amplify-forward
¢ Decode-forward

Relay Selection

4 B " — ~.
A 3
Source J .
\ J . A
A [
@

d

-

\_

Destination

~

J




4 N
Source
\_ ,
Protocols

* Amplify-forward
¢ Decode-forward

Relay Selection

Metrics
e Mutual Information
* Reliability

-

\_

Destination

~

J




Relay Selection

4 )
i ) Destination
Source . )
- J
Protocols Metrics Implementation
* Amplify-forward * Mutual Information * Centralized

e Decode-forward * Reliability e Distributed
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Lot of work assuming Genie-Aided Antenna Selection
No provably good simple algorithm for Antenna Selection
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Implementation

® Most analytical work assumes brute-force
(exponential complexity)

, L
computations L

- If subset size is, then number of (Nt)
Prohibitive for large antennas, e.g. Massive MIMO

® | ots of greedy/heuristic algorithms

No theoretical guarantees
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Find the size L receive antenna subset that maximizes
the mutual information
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Our Contribution

P2P

Greedy Algorithm with linear complexity achieves
at least (1 —1/e) fraction of the optimal solution

Implication: Genie-aided analysis holds

Relay

Greedy Algorithm with linear complexity
achieves the optimal solution
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Some Priliminaries

Let f:2Y - R

Then f is called monotone if f(SU{a}) > f(S). SCU, acU
Then f is called sub-modular if
f(SU{a}) = f(S) = f(TU{a}) - f(T), SCT.

Diminishing Returns Property: Value of adding an element
to smaller set is more than that of the bigger set

Then f is called modular if
f(5Uda}) = f(5) = f(T'U{a}) = f(T), SCT.

Non-Diminishing Returns Property: Value of adding an
element to smaller set is equal to the bigger set
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Why Sub-Modular Functions ?

Greedy Method : At each step add an element that
maximizes the incremental gain.

Theorem (Nemhauser et. al. 1978): If f is monotone and
sub-modular, then the greedy method achieves at
least (1 —1/¢) fraction of the optimal solution.

Theorem (Radol 968, Edmonds1971): If f is monotone
and modular, then the greedy method achieves the
optimal solution.
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Mutual Information
f(SU{a}) — f(S) between A and C with

Gaussian Signalling
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Result

Greedy Algorithm :

Start with Ry, = &
At step i, R, = Rr U{i"}, Choose the best among the rest

P
o _ logdet (T+ —Hp ynHL
) argie{l,Z,.I.?]%f}:},iéRL og de ( +Nt RpU{i} RLU{1}>7

Repeat until |R| = L.

Theorem: Greedy Algorithm for receive antenna
selection with linear complexity achieves at least (1 —1/e)
fraction of the optimal solution.
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Simulation Result

Performance of Greedy Receive Antenna Selection with Nt=4, and L =4
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Massive MIMO

Performance Better than promised
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mutual information
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Relay Antenna Selection is Modular
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Relay Selection Problem is Modular
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Result

Theorem: Greedy Algorithm for relay antenna
selection with linear complexity achieves the optimal
solution.



Simulation Result

Comparison of achievable rate with greedy and brute force relay antenna selection
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Transmit Antenna Selection
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Transmit Antenna Selection is NOT Monotone
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Receive Antenna Selection with CSIT
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With Watefilling Receive Antenna Selection is Monotone
but NOT Sub-modular



Relay Antenna Selection with MIMO
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Relay Antenna Selection with MIMO
Source-Destination
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With MIMO S-D Relay Antenna Selection is NOT Sub-modular



Conclusions

® Theoretical Bounds on Greedy
Algorithms

® Relay case - Greedy is Optimal

® Most other antenna selection problems
are not sub-modular



