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• Arbitrary 

• Not drawn from a distribution

Energy Arrivals
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Example

t0 1 2 3

P3

P2
P1

t0 1 2 3

E0

E2

P1 + P2  E0

(E0 � P1 + P2) + P3  E2

Under these constraint maximize throughput 
without knowing the future energy arrivals
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Tx-Rx Energy Harvesting

DestinationSource
has B bits

Energy 
Harvestor

Receiver consumes fixed power to stay ON, say Pr

 - Rx decision is binary, either its ON or OFF

Thus the total receiver energy constraints 
the total time for which it is ON

Energy 
Harvestor

r(t) = g(p(t))

�  R

Pr
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Equivalent Problem

• Initial Petrol Available
• Next Petrol Station Distance and Availability Unknown
• Minimize the time to destination                                                        
(with max time of actual run < Rx ON-time)

D = t log(1 + v)
Petrol use = v � t

Total Distance D0



Equivalent Problem

• Initial Petrol Available
• Next Petrol Station Distance and Availability Unknown
• Minimize the time to destination                                                        
(with max time of actual run < Rx ON-time)

D = t log(1 + v)
Petrol use = v � t

Total Distance D0

Challenging ! 
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Only Tx

Prior Work - EH

Tx-Rx

[Ulukus, Yener et al]
• AWGN
• Fading
• MAC,BC,Intf.

[Vaze’13]

• AWGN
• Fading
• MAC

Nothing

Nothing

Cap.  Approx.
  [DoshiVaze’14]

Offline Algorithms

Online Algorithms
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everything known in future - arrivals epochs and amounts

Tx

t

�t

tr1 r2 r3

�(r1)Rx

Et
E(t)

⌧1 ⌧2 ⌧3

r(t) = g(p(t))

Energy used until time t at Tx, Rx 

T ? = min
B(T )=B,U(t)E(t),C(t)�(t)

T

U(t), C(t)

bits with power p(t)
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Oi  be the earliest time instant such that the receiver can be kept 
on continuously, without any break, from time Oi  to Oi + 

�(r1)
�(r3)

�(ri)

Look at receiver energy arrival instant ri
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Example for O’s

�t

t

Rx

r1 r2
O1

O0

Oi  be the earliest time instant such that the receiver can be kept 
on continuously, without any break, from time Oi  to Oi + �(ri)

3

1

2

4

8
O2 = 1

�(r1) = 7 �(r2) = 8



Offline Algorithm for simpler problem

Tx
�t

tr1 r2 r3

�(r1)
�(r3)

i0 = min

⇢
i : lim

t!1
�(ri)g

✓
E(t)

�(ri)

◆
� B

�

Earliest time such that Rx-time available till then is sufficient to 
transmit B bits eventually from Tx

t
Rx

count all Tx energy

Claim 1: If problem is feasible then i0 < 1



Offline Algorithm for simpler problem

Tx
t

�t

tr1 r2 r3O1O0 O2, O3

�(r1)
�(r3)

Rx



Offline Algorithm for simpler problem

Starting time Oi, only one receiver energy harvest of  �(ri)OFFi

OPTi Optimal offline solution for OFFi

i � i0For

Tx
t

�t

tr1 r2 r3O1O0 O2, O3

�(r1)
�(r3)

Rx



Offline Algorithm for simpler problem

Starting time Oi, only one receiver energy harvest of  �(ri)OFFi

OPTi Optimal offline solution for OFFi

i � i0For

Tx
t

�t

tr1 r2 r3O1O0 O2, O3

�(r1)
�(r3)

Rx

�t

tr1 r2 r3O1O0 O2, O3

�(r1)
�(r3)



Offline Algorithm for simpler problem

Starting time Oi, only one receiver energy harvest of  �(ri)OFFi

OPTi Optimal offline solution for OFFi

i � i0For

Tx
t

�t

tr1 r2 r3O1O0 O2, O3

�(r1)
�(r3)

Rx

�t

tO1O0

�(r1)



Offline Algorithm for simpler problem

Starting time Oi, only one receiver energy harvest of  �(ri)OFFi

OPTi Optimal offline solution for OFFi

i � i0For

Tx
t

�t

tr1 r2 r3O1O0 O2, O3

�(r1)
�(r3)

Rx

�t

tO1O0

�(r1)



Offline Algorithm for simpler problem

Starting time Oi, only one receiver energy harvest of  �(ri)OFFi

OPTi Optimal offline solution for OFFi

i � i0For

�t

tr1 r2 r3O1O0 O2, O3

�(r1)
�(r3)

Tx
t

�t

tr1 r2 r3O1O0 O2, O3

�(r1)
�(r3)

Rx

�t

tO1O0

�(r1)



Offline Algorithm for simpler problem

Starting time Oi, only one receiver energy harvest of  �(ri)OFFi

OPTi Optimal offline solution for OFFi

i � i0For

�t

tO2, O3

�(r3)

Tx
t

�t

tr1 r2 r3O1O0 O2, O3

�(r1)
�(r3)

Rx

�t

tO1O0

�(r1)



Offline Algorithm for simpler problem

Starting time Oi, only one receiver energy harvest of  �(ri)OFFi

OPTi Optimal offline solution for OFFi

i � i0For

�t

tO2, O3

�(r3)

Tx
t

�t

tr1 r2 r3O1O0 O2, O3

�(r1)
�(r3)

Rx

�t

tO1O0

�(r1)
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Starting time Oi, only one receiver energy harvest of  �(ri)OFFi

Claim 2: If problem is feasible then 

OPTi

9 i,OPTi = OPT
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Claim 2: If problem is feasible then 
OPTi

9 i,OPTi = OPT

Rx

Contradiction : Assume none of         are optimal

�t

t

Let OPT start at s1 Ok  s1  Ok+1

Ok Ok+1
s1 end

Since OPT starts after Ok and uses less than         time, it is feasible to OFFk

is less than or equal to  �(rk) by defn. of Ok+1

T (OPTk)  T (OPT)

�(rk)
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Idea for Claim 2

Claim 2: If problem is feasible then 
OPTi

9 i,OPTi = OPT

Rx

Contradiction : Assume none of         are optimal

�t

t

Let OPT start at s1 Ok  s1  Ok+1

Ok Ok+1
s1 end

Since OPT starts after Ok and uses less than         time, it is feasible to OFFk

is less than or equal to  �(rk) by defn. of Ok+1

T (OPTk)  T (OPT)

�(rk)

OPTi T (OPTk) > T (OPT)
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Idea for Claim 2
So OPT is one among OPTi which one ?

�t

tr1 r2 r3O1O0 O2, O3

�(r1)
�(r3)

Starting time Oi, only one receiver energy harvest of  �(ri)OFFi

optimal: min i for which OPTi  starts before Oi+1

If OPT1 starts here, then its OPT

Otherwise if OPT2 starts here, then its OPT
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online it is, Damn it!
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Quantifying Performance of Online Algorithm

Let � energy arrival sequence

T ?
be time taken by an optimal o✏ine algorithm

TO be time taken by an online algorithm O

Then the competitive ratio of O is rO = max

�

TO

T ?

Objective is to find O? such that O? = argmin
O

max
�

TO

T ?

Compare against the best offline strategy    
(everything known in future)



Typical Strategy

Produce an O to upper bound max

�

TO

T ?

Hope that they match !

Derive an online algorithm independent lower bound on

min

O
max

�

TO

T ?



Result

min

O
max

�

TO

T ?
= 2



Lazy (Best effort delivery) Online Algorithm

t0

E0

0

Tx

Rx
�0

total time for which Rx can be ON

�0



Lazy (Best effort delivery) Online Algorithm

t0

E0

0

Tx

Rx
�0

total time for which Rx can be ON

�0



Lazy (Best effort delivery) Online Algorithm

t0

E0

0

Tx

Rx
�0

total time for which Rx can be ON

�0



Lazy (Best effort delivery) Online Algorithm

t0

E0

0

Tx

Rx
�0

total time for which Rx can be ON

�0

E0 �0        :if B bits can be sent using energy     within time        
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Competitive Ratio of Lazy Online Algorithm

Theorem: The competitive ratio of Lazy Online 
Algorithm is < 2.
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c

E{E} + 1 E{S
on

}  E{⌧} B

g(B/c)
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To compare look at an Alg. that gets energy = full batt. cap every slot
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B B

transmit with all the energy

Sub �
B

g(B)Thus to transmit B bits at least                  slots are needed

E{S
on

}  E{⌧} B

g(B/c)
While for the online algorithm

Choosing 

E{r}  E{S
on

}
S
ub

c =
B

E{E} ,

is a constant for  g(x) = log(1 + x)



Conclusions

• Optimal Offline Algorithm - modular

• Online Algorithm cr=2

• Finite Battery can be handled as well




