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Energy Arrivals

* Arbitrary

e Not drawn from a distribution




Energy

Harvestor

<

Only Tx-EH Problem Set-Up

-

\_

Source
has B bits

~

J

(

s Destination

N

~

J




Only Tx-EH Problem Set-Up

Energy
Harv\es'tor
Source ,[ r(t) = g(p(t)) ) » Destination
has B bits ) \ /

B(t) Bits sent until time ¢
E(t) Energy used up until time ¢

Find an Online Algorithm

4 )

T = min T
B(T)=B E(t)<zz ,L<t
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Example
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P+ P, < Ej
(Ey — P+ Py) + P; < Es

Under these constraint maximize throughput
without knowing the future energy arrivals
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Petrol use = v x ¢
e |nitial Petrol Available

* Next Petrol Station Distance and Availability Unknown
* Minimize the time to destination
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U(t),C(t) Energy used at time ¢ at I'x, Rx

Find an Online Algorithm

4 )

T = min T
B(T)=B,U(t)<E(t),C(t)<I'(t)
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Tx-Rx Energy Harvesting

Energy Energy
Harv\ejtor ?rvestor

Source { r(t) = g(p(t }—ﬂ Destination
has B bits () Ph) N y

- J

Receiver consumes fixed power to stay ON, say P
- Rx decision is binary, either its ON or OFF

Thus the total receiver energy constraints
the total time for which it is ON

r<
=P
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Equivalent Problem

\:\-

Total Distance Dy
D = tlog(1 + v)
Petrol use = v x ¢

* |nitial Petrol Available

* Next Petrol Station Distance and Availability Unknown

e Minimize the time to destination

(with max time of actual run < Rx ON-time) Challenging !
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Offline Algorithm

everything known in future - arrivals epochs and amounts

by () U(t)a C(t)
Tx : Energy used until time t at Tx, Rx
T1 T9 T3 t
bits with power p(t)
| r(t) = g(p(t))
Lo O(r)
Rx
1 Y
T1 T2 T3 {
a D
T = min T
B(T)=B,U(t)<E(t),C(t)<I(t)
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Offline Algorithm- Deconstructed

Rx
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Look at receiver energy arrival instant r;

Oi be the earliest time instant such that the receiver can be kept
on continuously, without any break, from time O;i to Oi+ I'(7;)
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Oi be the earliest time instant such that the receiver can be kept
on continuously, without any break, from time O; to Oi+ I'(r;)
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For 1 2 io
OFF, Starting time O; only one receiver energy harvest of I'(7;)

OPT; Optimal offline solution for OFF;

Claim 2: If problem is feasible then 3, OPT, = OPT
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Claim 2: If problem is feasible then 3, OPT; = OPT

Contradiction :Assume none of OPT; are optimal

Let OPT start at s O < 51 < Opyq

| |

Or 51 Ogaq end t

< >

is less than or equal to I'(r;) by defn.of Oj41

Since OPT starts after Ok and uses less than I'(ry) time, it is feasible to OFF

T(OPT}) < T(OPT)
But since none of OPT,are optimal to OFF T'(OPT,) > T(OPT)
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ldea for Claim 2

So OPT is one among OPT;  which one?

OFF; Starting time O; only one receiver energy harvest of I'(r;)

optimal: min i for which OPT; starts before Oi+)

L't

0,0, 7 11 02,5\ ro T3 t
Otherwise if OPT; starts here, then its OPT

If OPT, starts here, then its OPT
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E(t) Power

Tx B p(0
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Final Important Property

- either transmission starts at origin transmission time is < I'y

= Or transmission time is I'

E(t) Power
Tx FE
t p(t)
1
T T2 T3 ¢ t
Rx Io Power
P(t)
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Optimal Policy

- Three phase
|. find a feasible constant power policy that starts earliest
2. iteratively update first and last transmit power

3. make sure that transmission time = I'y if not started from origin

Power /
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Prediction is

very difficult,
especially about
the future. 99

Robert Storm Petersen (18582-1949)
Danish cartoonist, writer, animator,
Hustrator, panter and humorist

online it is, Damn it!
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Quantifying Performance of Online Algorithm

Compare against the best offline strategy
(everything known in future)

Let o energy arrival sequence
T™ be time taken by an optimal offline algorithm

To be time taken by an online algorithm O

T,
Then the competitive ratio of O is rp = max T_z

1
Objective is to find O™ such that O* = arg moin max T_?



Typical Strategy

T,
Produce an O to upper bound max T_C‘i

Derive an online algorithm independent lower bound on

. 1o
11111 1IMax —

O o T

Hope that they match !
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min max — = 2
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Lazy (Best effort delivery) Online Algorithm

Let t be the earliest time, where
Pair (E(t),I'(t)) is feasible

Call this t, Tstart

transmit with power D1

E(t)
P1

g(p1) = b

total time for which Rx can be ON
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Lazy (Best effort delivery) Online Algorithm

Update transmit power at each
energy arrival at Tx

E’rem
g(pz) — Brem

Pi

No change at any
energy arrival at Rx

We have already checked for
feasibility at Tsart

total time for which Rx can be ON




Competitive Ratio of Lazy Online Algorithm

Theorem: The competitive ratio of Lazy Online

Algorithm is < 2.
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Let t be the earliest time, where
Pair (E(t),I'(t)) is feasible

Tx E®)

< > {

>
OPT ['(t)

total energy for OPT is at most E(7.,,,:)

Thus using energy at most E(T,

start

| OPT can transmit B bits

and receiver time at most I'(T,;,,;)

Contradiction to the definition of Tsart



Proof - claim 2

Et I I start ‘/Tﬁnish

Claim 2: Once the alg. starts it takes at most OPT time

Thus total time is < 2 OPT
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Since OFF finishes by OPT

OPT
Clearly, B < OPTyg (

E(OPT™)
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Tx
Et | I start ‘/Tﬁnlsh
¢ OPT +— : !
OPT B
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Theorem: The competitive ratio of any Online

Algorithm is > 2-a for any a >0.
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Conclusions

e Optimal Offline Algorithm - modular
® Online Algorithm cr=2

® Finite Battery can be handled as well
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Random Wireless Networks

An Information Theoretic Perspective

Rahul Vaze

The optimal role of multiple
antennas, ARQ protocols, and
scheduling protocols in random
wireless networks is identified using
the transmission capacity
paradigm. This book provides a
holistic view of all relevant tools
and concepts used to analyse
random wireless networks. A
conscious attempt is made to bring
out the connections between
transmission and throughput
capacity, between percolation
theory and throughput capacity,
and stochastic geometry and
cellular networks. For effective
understanding, an extensive effort
is made to explain the physical
interpretation of all results.



