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Online Greedy Algorithm : At each step add an

element that maximizes the incremental gain.

Theorem (Nembhauser et. al. 1978): If each fi is
monotone and sub-modular, then the online greedy
algorithm achieves at least 1/2 fraction of the

optimal solution.
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Some Priliminaries

Let f:2Y 5 R

Then f is called monotone if f(SUA{a}) > f(S). SCU, acU

Then f is called sub-modular if
f(sU{a}) = f(5) = f(TU{a}) - f(T), SCT.
Diminishing Returns Property: Value of adding an element

to smaller set is more than that of the bigger set
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Mutual Information



Examples

Graph Cut

# of edges crossing the cut (S, S°)
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Multiple Access Channel (MAC)

N1
X
Y = N1X1+hoXo+N
Two-user n .
X2 v N
h1 P
h2 Ry < Wlog <1+WN>
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RZ MAC requires Joint/Successive Decoding
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FDMA

Instead use FDMA: non-overlapping frequency use

Simple signal processing

hi1P;
< | 1
OzI User 1 ! Rl_aWog( JronN)
W ho Ps
User 2 ! Ry < (1 —a)Wlog <1+ (1—a)WN)
MAC Capacity
al FDMA Capacity
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For each vector (w1, ws,...,w,)
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Capacity Region of n Users Discretized FDMA

BW W is partitioned into m bins

Each user is allocated one or more bins

User i is allocated bin jif b;; = 1

Find bin and power allocation
for each vector (wq,ws,...,w,)

max E W; E b,: R
Pijbi; €{0,1} 4 ’ A



Each user sees a Parallel Gaussian Channel

X + >
I T
h]_ o M1
Yi = hiXi‘|‘ni
X + > r; = lOg (1 +
T T
N, N;

Find powers Pi's to max sum-rate

maxs e p,<p ) i log (1 * Z_R)
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Optimal Solution to  maxs~n  p<p > i, log (1 + ﬁ—jPi)
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with water-filling
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Known Results

Heuristics

* Convex Relaxation (YuCioffi'02)
o KKT (KimHanKim’05)



Subcarrier and Power allocation in uplink OFDMA

ldentical to finding OFDMA capacity

N bins

Given sub-carrier (bins) allocation, find power using water-filling to max sum-rate
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Use Greedy Algorithm

* check if each users incentive fi (sum-rate with water-filling) is
e sub-modular
* monotone

Monotonicity is clear : More channels give larger rate

AN




Water-filling as a Set-Function

| et S be a set of channels then sum-rate is

Waterfilng ~ Pr=(ns-7) LA =P

S channels



Sub-Modularity of Water-Filling

To check R(SU{i})—R(S)> R(TU{i}) — R(T)



Sub-Modularity of Water-Filling
Tocheck R(SuU{i})— R(S)> R(T U{i})— R(T)

{1}

ts s

T

hi

S channel SU1 channel

T channel T U 4 channel



Sub-Modularity of Water-Filling
Tocheck R(SuU{i})— R(S)> R(T U{i})— R(T)
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Everything Changes!
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A. Majorization

B. Karamata's Inequality

Two vectors a and b arranged in descending order
a:[alag...an] b:[blbgbn]

k k
a majorizes b if d ai>» bi,Vk<n

1=1 1=1

Karamata’'s inequality Zg(ai) > Zg(bi) for any convex function g
1=1 1=1

Proof very specific to log utility



Simulations: Capacity

Comparison with Heuristics

FDMA capacity region of 2 user cahnnel with ISI
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Simulations: Sum-rate

Comparison with Heuristics with 10 users
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Downlink BS association

Associate each mobile to one BS BS

Disjoint bands for BS , 4
@ User |

Each BS gives power according to log utility for all associated users

R, = log(1 + P;h;;
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Again 1/2 Approx.
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Online Downlink BS association

users appear one by one BS J
associate to one BS immediately w
© A
Disjoint bands for BS s v
ser /(.
o

Since the greedy algorithm works with one element (user) at a time

Again 1/2 Approx.
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Untruthful Users Downlink BS association

Associate each mobile to one BS BS

@ A
AR
AR
i\
“\. ... w
/T \ 1\

Disjoint bands for BS i To extract larger power

@ User j“ may not be truth

Each BS gives power according to log utility for all associated users

R, = log(1 + P;h;;
Zjerial}%épj;, og(1 + Pjh;j)

Using VCG pricing again 1/2 Approximation



Lot more !



