Approximating the FDMA Capacity

Rahul Vaze

Kiran Koshy

Andrew Thangaraj

$$\max \sum_{i=1}^{n} f_i(S_i)$$

 s_1

 s_1

 s_1

 s_1

 S_2

Guarantee

Greedy Algorithm: At each step add an element

that maximizes the incremental gain.

Guarantee

Greedy Algorithm: At each step add an element

that maximizes the incremental gain.

Theorem (Nemhauser et. al. 1978): If each fi is

monotone and sub-modular, then the greedy

algorithm achieves at least 1/2 fraction of the

optimal solution.

 s_1

 s_1

 s_1

 s_1

 s_1

 s_2

Guarantee

Online Greedy Algorithm: At each step add an

element that maximizes the incremental gain.

Guarantee

Online Greedy Algorithm: At each step add an

element that maximizes the incremental gain.

Theorem (Nemhauser et. al. 1978): If each fi is

monotone and sub-modular, then the online greedy

algorithm achieves at least 1/2 fraction of the

optimal solution.

Let $f: 2^U \to \mathbb{R}$

Let $f: 2^U \to \mathbb{R}$

Then f is called monotone if $f(S \cup \{a\}) \ge f(S)$. $S \subset U$, $a \in U$

Let $f: 2^U \to \mathbb{R}$

Then f is called monotone if $f(S \cup \{a\}) \ge f(S)$. $S \subset U$, $a \in U$

Then f is called sub-modular if

Some Priliminaries

Let $f: 2^U \to \mathbb{R}$

Then f is called monotone if $f(S \cup \{a\}) \ge f(S)$. $S \subset U$, $a \in U$

Then f is called sub-modular if

$$f(S \cup \{a\}) - f(S) \ge f(T \cup \{a\}) - f(T), \ S \subseteq T.$$

Some Priliminaries

Let $f: 2^U \to \mathbb{R}$

Then f is called monotone if $f(S \cup \{a\}) \ge f(S)$. $S \subset U$, $a \in U$

Then f is called sub-modular if

$$f(S \cup \{a\}) - f(S) \ge f(T \cup \{a\}) - f(T), \ S \subseteq T.$$

Diminishing Returns Property: Value of adding an element

to smaller set is more than that of the bigger set

Entropy: Proof (conditioning reduces entropy)

Entropy: Proof (conditioning reduces entropy)

Take vector A c B and element x not in B

Entropy: Proof (conditioning reduces entropy)

Take vector A c B and element x not in B

To Show $H(A \cup x) - H(A) >= H(B \cup x) - H(B)$

Entropy: Proof (conditioning reduces entropy)

Take vector A c B and element x not in B

To Show H

$$H(A \cup X) - H(A) >= H(B \cup X) - H(B)$$

$$H(x|A)$$
 $H(x|B)$

Entropy: Proof (conditioning reduces entropy)

Take vector A c B and element x not in B

To Show $H(A \cup x) - H(A) >= H(B \cup x) - H(B)$

$$H(x|A) >= H(x|B)$$

conditioning

Entropy: Proof (conditioning reduces entropy)

Take vector A c B and element x not in B

To Show
$$H(A \cup x) - H(A) >= H(B \cup x) - H(B)$$

$$H(x|A) >= H(x|B)$$

conditioning

Mutual Information

Graph Cut

of edges crossing the cut (S, Sc)

Two-user

Instead use FDMA: non-overlapping frequency use

Instead use FDMA: non-overlapping frequency use

Instead use FDMA: non-overlapping frequency use

Instead use FDMA: non-overlapping frequency use

$$R_1 \le \alpha W \log \left(1 + \frac{h_1 P_1}{\alpha W N} \right)$$

$$R_2 \le (1 - \alpha) W \log \left(1 + \frac{h_2 P_2}{(1 - \alpha) W N} \right)$$

Instead use FDMA: non-overlapping frequency use

$$R_1 \le \alpha W \log \left(1 + \frac{h_1 P_1}{\alpha W N} \right)$$

$$R_2 \le (1 - \alpha) W \log \left(1 + \frac{h_2 P_2}{(1 - \alpha) W N} \right)$$

Capacity Region of n Users FDMA

For each vector (w_1, w_2, \ldots, w_n)

Capacity Region of n Users FDMA

For each vector (w_1, w_2, \ldots, w_n)

Find opt power

$$\max_{P_i(f)} \sum_{i=1}^n w_i R_i$$

$$P_i(f)P_j(f) = 0$$

$$f \in W$$

Capacity Region of n Users FDMA

For each vector (w_1, w_2, \ldots, w_n)

Find opt power

non-overlapping freq

$$\max_{P_i(f)} \sum_{i=1}^n w_i R_i$$

$$P_i(f)P_j(f) = 0$$

$$f \in W$$

Capacity Region of n Users Discretized FDMA

BW W is partitioned into m bins

Capacity Region of n Users Discretized FDMA

BW W is partitioned into m bins Each user is allocated one or more bins User i is allocated bin j if $\ b_{ij}=1$

Capacity Region of n Users Discretized FDMA

Find bin and power allocation for each vector (w_1, w_2, \dots, w_n)

$$\max_{P_i, b_{ij} \in \{0,1\}} \sum_{i=1}^{n} w_i \sum_{j=1}^{F_j} b_{ij} R_{ij}$$

Each user sees a Parallel Gaussian Channel

Find powers Pi's to max sum-rate

$$\max_{\sum_{i=1}^{n} P_i \le P} \sum_{i=1}^{n} \log \left(1 + \frac{h_i}{n_i} P_i \right)$$

Water-filling

Optimal Solution to $\max_{\sum_{i=1}^{n} P_i \leq P} \sum_{i=1}^{n} \log \left(1 + \frac{h_i}{n_i} P_i\right)$

is Water-filling

$$P_i^{\star} = \left(\mu - \frac{n_i}{h_i}\right)^+ \qquad \sum_{i=1}^n P_i^{\star} = P$$

Water-filling

Optimal Solution to $\max_{\sum_{i=1}^{n} P_i \leq P} \sum_{i=1}^{n} \log \left(1 + \frac{h_i}{n_i} P_i\right)$

is Water-filling

$$P_i^{\star} = \left(\mu - \frac{n_i}{h_i}\right)^+ \qquad \sum_{i=1}^n P_i^{\star} = P$$

Water-filling

Optimal Solution to $\max_{\sum_{i=1}^{n} P_i \leq P} \sum_{i=1}^{n} \log \left(1 + \frac{h_i}{n_i} P_i\right)$

is Water-filling

$$P_i^{\star} = \left(\mu - \frac{n_i}{h_i}\right)^+ \qquad \sum_{i=1}^n P_i^{\star} = P$$

OFDMA Capacity as Partitioning Problem

OFDMA Capacity as Partitioning Problem

Partition N bins into S_1, S_2, \ldots, S_n

Known Results

Heuristics

- Convex Relaxation (YuCioffi'02)
- KKT (KimHanKim'05)

Subcarrier and Power allocation in uplink OFDMA

Identical to finding OFDMA capacity

Given sub-carrier (bins) allocation, find power using water-filling to max sum-rate

1/2 Approx.

Use Greedy Algorithm

- check if each users incentive \mathbf{f}_i (sum-rate with water-filling) is
 - sub-modular
 - monotone

1/2 Approx.

Use Greedy Algorithm

- check if each users incentive \mathbf{f}_i (sum-rate with water-filling) is
 - sub-modular
 - monotone

Monotonicity is clear: More channels give larger rate

Water-filling as a Set-Function

Let S be a set of channels then sum-rate is

$$R(S) = \max_{\sum_{i=1}^{n} P_i \le P} \sum_{i \in S} \log \left(1 + \frac{h_i}{n_i} P_i \right)$$

Water-filling
$$P_i^\star = \left(\mu_S - \frac{n_i}{h_i}\right)$$
 $\sum_{i \in S} P_i^\star = P$

Sub-Modularity of Water-Filling

To check $R(S \cup \{i\}) - R(S) \ge R(T \cup \{i\}) - R(T)$

Sub-Modularity of Water-Filling

Sub-Modularity of Water-Filling

- **A.** Majorization
- B. Karamata's Inequality

- **A.** Majorization
- B. Karamata's Inequality

Two vectors **a** and **b** arranged in descending order

$$\mathbf{a} = [a_1 a_2 \dots a_n]$$

$$\mathbf{b} = [b_1 b_2 \dots b_n]$$

- **A.** Majorization
- B. Karamata's Inequality

Two vectors **a** and **b** arranged in descending order

$$\mathbf{a} = [a_1 a_2 \dots a_n] \qquad \qquad \mathbf{b} = [b_1 b_2 \dots b_n]$$

a majorizes **b** if
$$\sum_{i=1}^k a_i \ge \sum_{i=1}^k b_i, \forall \ k \le n$$

- **A.** Majorization
- B. Karamata's Inequality

Two vectors **a** and **b** arranged in descending order

$$\mathbf{a} = [a_1 a_2 \dots a_n] \qquad \qquad \mathbf{b} = [b_1 b_2 \dots b_n]$$

a majorizes **b** if
$$\sum_{i=1}^k a_i \geq \sum_{i=1}^k b_i, \forall \ k \leq n$$

Karamata's inequality
$$\sum_{i=1}^{n} g(a_i) \ge \sum_{i=1}^{n} g(b_i)$$
 for any *convex* function g

- **A.** Majorization
- B. Karamata's Inequality

Two vectors a and b arranged in descending order

$$\mathbf{a} = [a_1 a_2 \dots a_n] \qquad \qquad \mathbf{b} = [b_1 b_2 \dots b_n]$$

a majorizes **b** if
$$\sum_{i=1}^k a_i \geq \sum_{i=1}^k b_i, \forall \ k \leq n$$

Karamata's inequality
$$\sum_{i=1}^{n} g(a_i) \ge \sum_{i=1}^{n} g(b_i)$$
 for any *convex* function g

Proof very specific to log utility

Simulations: Capacity

Comparison with Heuristics

Simulations: Sum-rate

Comparison with Heuristics with 10 users

What more!

Associate each mobile to one BS

Associate each mobile to one BS BSi Associate each mobile to one BS <math>Associate each mobile to one BS

Each BS gives power according to log utility for all associated users

$$R_i = \max_{\sum_{j \in A_i} P_j \le P} \sum_{j \in A_i} \log(1 + P_j h_{ij})$$

Associate each mobile to one BS

Each BS gives power according to log utility for all associated users

$$R_i = \max_{\sum_{j \in A_i} P_j \le P} \sum_{j \in A_i} \log(1 + P_j h_{ij})$$

Find association to maximize the sum-rate

$$\max_{A_i} \sum_{i=1}^{m} R_i$$

Each BS gives power according to log utility for all associated users

$$R_i = \max_{\sum_{j \in A_i} P_j \le P} \sum_{j \in A_i} \log(1 + P_j h_{ij})$$

Each BS gives power according to log utility for all associated users

$$R_i = \max_{\sum_{j \in A_i} P_j \le P} \sum_{j \in A_i} \log(1 + P_j h_{ij})$$

Again 1/2 Approx.

BS i

users appear one by one

associate to one BS immediately

BS i

users appear one by one

associate to one BS immediately

BS i

users appear one by one

associate to one BS immediately

Since the greedy algorithm works with one element (user) at a time

Again 1/2 Approx.

Untruthful Users Downlink BS association

Associate each mobile to one BS

Each BS gives power according to log utility for all associated users

$$R_i = \max_{\sum_{j \in A_i} P_j \le P} \sum_{j \in A_i} \log(1 + P_j h_{ij})$$

Untruthful Users Downlink BS association

Associate each mobile to one BS

Disjoint bands for BS

User j

To extract larger power may not be truth

Each BS gives power according to log utility for all associated users,

$$R_i = \max_{\sum_{j \in A_i} P_j \le P} \sum_{j \in A_i} \log(1 + P_j h_{ij}) \checkmark$$

Untruthful Users Downlink BS association

Using VCG pricing again 1/2 Approximation

Lot more!